Очки, содержащие дугообразный гибкий элемент

Иллюстрации

Показать все

Изобретение относится к очкам и может быть использовано для пользователей с нестандартными размерами головы. Очки содержат дужку, протяженную назад от передней стороны очков и содержащую гибкую часть, характеризующуюся радиусом кривизны ρ и включающую первое и второе продольно расположенные ребра. При этом, когда дужка находится в не изогнутом состоянии, первое ребро расположено под углом ко второму ребру ρ<80 мм. Техническим результатом изобретения является оптимальное сочетание надежности посадки и комфорта ношения для широкого диапазона размеров головы пользователя. 2 н. и 18 з.п. ф-лы, 11 ил., 2 табл.

Реферат

Область применения

В изобретении предлагаются очки, характеризующиеся лучшей посадкой на голову для пользователей с размерами головы в широком диапазоне.

Уровень техники

Изделия в виде очков широко известны. В частности, применяются очки для коррекции зрения и очки для защиты глаз и/или лица от вредных факторов окружающей среды. Оба типа очков, как правило, надеваются на нос и на ушные раковины. На общее ощущение хорошей посадки очков пользователем влияют правильность посадки очков на нос и уши, близость стекол к глазам и прочие факторы.

Исторически удобство посадки очков на голову обеспечивалась путем изготовления очков разного размера и подбором очков пользователем под свой размер головы. Кроме того, многие конструкции очков включают подпружиненные шарниры и прочие механизмы регулировки, позволяющие настроить очки под размер головы пользователя. Однако такие подходы приводят к росту стоимости очков, из-за усложнения их конструкции и производственного процесса, или из-за необходимости продавца иметь в запасе множество очков разного размера на каждую модель.

Поэтому остается потребность в очках, характеризующихся лучшей посадкой на голову и подходящих пользователям с различными размерами головы.

Сущность изобретения

Определения

В контексте настоящего описания перечисленные ниже термины имеют следующее значение.

Термин "и/или" означает "и", "или" и сочетание "и" и "или."

Термин "расположены под углом", используемый в отношении ребер гибкой части, означает, что ребра не параллельны, то есть одна или более основных поверхностей ребер образуют друг с другом угол, более, чем на 5° отличающийся от 180°.

Термин "крепежная часть" означает элемент стекла, рамы или другого подходящего элемента, к которому может быть прикреплена дужка очков.

Термин "контактная часть", используемый в отношении дужки, означает часть, контактирующую с головой пользователя непосредственно за ухом и/или над ухом.

Термин "гибкая часть" означает часть дужки, которая гнется, когда к ней приложено достаточное усилие, например, когда очки находятся в рабочем положении на голове пользователя.

Термин "модуль упругости на изгиб" означает отношение приложенного усилия к величине возникающего под его действием изгиба и может быть измерен, например, методами ASTM D790 или ISO 178.

Термин "усилие, действующее в контактной части," означает усилие, направленное в целом по нормали к поверхности контактной части, с которым контактная часть воздействует на голову пользователя, и/или, соответственно, усилие, с которым голова пользователя воздействует на контактную часть, и может быть измерено в точке, расположенной на расстоянии примерно 110 мм от фронтальной плоскости очков, находящихся в рабочем положении.

Термин "стекло" означает структурный элемент очков, через который пользователь может видеть окружающую среду, и который может включать любой подходящий материал.

Термин "часть" означает фрагмент большего элемента конструкции.

Термин "рабочее положение", используемый в отношении очков, означает, что очки расположены в целом перед глазами пользователя для выполнения своего основного назначения.

Термин "не изогнутое состояние", используемый в отношении дужки или гибкой части очков, означает исходное положение, в котором к контактной части дужки не приложено практически никаких усилий.

Термин "радиус кривизны" означает радиус окружности, которой аппроксимируется участок кривой, в соответствии с обычным математическим смыслом данного термина.

Термин "ширина", используемый в отношении головы пользователя, означает расстояние между точками, расположенными непосредственно над ушами пользователя.

В настоящем изобретении предлагаются очки, имеющие дужку, протяженную назад от передней стороны очков и включающую гибкую часть, имеющую радиус кривизны (ρ) и имеющую первое и второе продольно расположенные ребра. Первое и второе ребра вращаются относительно друг друга при изгибе гибкой части при надевании очков на голову пользователя. Когда дужка находится в не изогнутом состоянии, первое ребро расположено под углом ко второму ребру и ρ<80 мм. В различных воплощениях величина ρ составляет от 20 мм до 60 мм, или от 45 мм до 55 мм. В некоторых воплощениях гибкая часть имеет максимальный радиус кривизны (ρМ) и минимальный радиус кривизны (ρm), и при этом [ρМm]<5 мм. Очки могут дополнительно включать крепежную часть, и дужка в таких очках прикреплена к крепежной части с возможностью вращения, и ρ может составлять от 20 мм до 80 мм на расстоянии 30 мм от крепежной части вдоль длины дужки.

В некоторых воплощениях каждое из ребер имеет первую и вторую основные поверхности, разнесенные друг от друга на толщину (t), и каждое ребро имеет длину (l), измеренную в продольном направлении ребра и высоту (h), измеренную в направлении, перпендикулярном направлениям толщины (t) и длины (l), и при этом первая и вторая основные поверхности являются в сущности плоскими. В некоторых воплощениях длина (l) составляет от 15 мм до 45 мм, а высота (h) каждого из ребер является изменяющейся вдоль длины соответствующего ребра. В других воплощениях каждое из ребер имеет первую и вторую основные поверхности, разнесенные друг от друга на толщину (t), и каждое ребро имеет длину (l), измеренную в продольном направлении ребра и высоту (h), измеренную в направлении, перпендикулярном направлениям толщины (t) и длины (l), и при этом первая и вторая основные поверхности имеют кривизну в направлении высоты ребра. В некоторых воплощениях очки имеют более, чем два протяженных в продольном направлении ребра, каждое из ребер имеет первую и вторую основные поверхности, разнесенные друг от друга на толщину (t), и при этом первые основные поверхности каждого из ребер не перпендикулярны по отношению к поперечной плоскости, рассекающей очки на воображаемые верхнюю и нижнюю половину.

В некоторых воплощениях дужка выполнена из материала, выбранного из группы, состоящей из поликарбонатов, полимеров сложных эфиров, полиамидов и ацеталей. Гибкая часть может быть выполнена из материалов, имеющих модуль упругости на изгиб, составляющий от 800 МПа до 2500 МПа, или от 800 МПа до 1700 МПа, или от 1000 МПа до 1200 МПа.

В некоторых воплощениях дужка включает контактную часть, и усилие (F), действующее в контактной части и направленное по нормали к контактной части, составляет от 50 г до 140 г, когда очки находятся в рабочем положении на голове пользователя, имеющей ширину (W) от 130 мм до 170 мм. В некоторых воплощениях усилие F может составлять от 50 г до 110 г, или от 70 г до 110 г, когда очки находятся в рабочем положении на голове пользователя, имеющей ширину (W) от 150 мм до 180 мм.

В некоторых воплощениях дужка дополнительно содержит контактную часть, и при этом когда очки находятся в рабочем положении на голове пользователя, имеющей ширину 130 мм, в контактной части действует первое усилие (F1), направленное по нормали к контактной части, и когда очки находятся в рабочем положении на голове пользователя, имеющей ширину 180 мм, в контактной части действует второе усилие (F2), направленное по нормали к контактной части, и при этом (F2-F1)<50 г.

В настоящем изобретении дополнительно предлагаются очки, имеющие дужку, протяженную назад от передней стороны очков и включающую гибкую часть, имеющую радиус кривизны (ρ) и имеющую первое и второе ребра, протяженные в продольном направлении. Каждое из ребер имеет первую и вторую основные поверхности, разнесенные друг от друга на толщину (t), и когда дужка находится в не изогнутом состоянии, ρ<80 мм и первые основные поверхности каждого из ребер не перпендикулярны по отношению к поперечной плоскости, рассекающей очки на воображаемые верхнюю и нижнюю половину. В некоторых воплощениях дужка дополнительно содержит контактную часть, и при этом когда очки находятся в рабочем положении на голове пользователя, имеющей ширину 130 мм, в контактной части действует первое усилие (F1), и когда очки находятся в рабочем положении на голове пользователя, имеющей ширину 180 мм, в контактной части действует второе усилие (F2), и при этом (F2-F1)<50 г.

Очки в соответствии с настоящим изобретением могут быть защитными очками, защитной маской, противосолнечными очками, косметическими очками, очками для коррекции зрения и/или очками другого типа, известными в данной области техники. В приведенном выше изложении сущности изобретения не подразумевалось описать все возможные воплощения настоящего изобретения и все возможные их исполнения. Ниже приводится более подробное описание ряда воплощений настоящего изобретения, сопровождаемое прилагаемыми чертежами. В патентной заявке США 13/410924 «Очки, имеющие гибкий элемент», поданной 2 марта 2012 года, описана структура и конфигурация одного из воплощений очков, имеющих гибкую часть, и данная патентная заявка включена в настоящую заявку посредством ссылки.

Краткое описание чертежей

Ниже приводится более подробное описание настоящего изобретения со ссылками на прилагаемые чертежи. При этом на нескольких чертежах аналогичными номерами позиций могут быть обозначены аналогичные элементы.

Фиг. 1. Аксонометрический вид очков в соответствии с настоящим изобретением.

Фиг. 2. Аксонометрический вид очков в соответствии с настоящим изобретением, на котором вводятся ключевые плоскости, помогающие лучше понять настоящее изобретение.

Фиг. 3. Аксонометрический вид дужки, протяженной назад от передней стороны очков и имеющей гибкую часть в соответствии с одним из воплощений настоящего изобретения.

Фиг. 4А-4С. Виды сбоку ребер дужки в различных воплощениях настоящего изобретения.

Фиг. 5А и 5B. Сечения дужек в соответствии с настоящим изобретением, имеющих гибкую часть, включающую ребра с первой и второй плоскими поверхностями.

Фиг. 6. Сечения дужек в соответствии с настоящим изобретением, имеющих гибкую часть, включающую ребра с первой и второй криволинейными поверхностями.

Фиг. 7. Аксонометрический вид сверху очков в соответствии с настоящим изобретением, имеющих дужку и гибкую часть, имеющую кривизну в не изогнутом состоянии.

Фиг. 8. Аксонометрический вид очков в соответствии с настоящим изобретением, имеющих гибкую часть, которая включает четыре продольно расположенных ребра.

Фиг. 9. Аксонометрический вид гибкой части, которая включает четыре продольно расположенных ребра.

Фиг. 10. Вид сбоку воплощения гибкой части в соответствии с настоящим изобретением.

Фиг. 11. Сечение воплощения гибкой части в соответствии с настоящим изобретением.

Подробное описание изобретения

В настоящем изобретении предлагаются очки, имеющие набор отличительных особенностей, обеспечивающих оптимальное сочетание между надежностью посадки и комфортом ношения, и пригодных для ношения пользователями с размером головы в широком диапазоне. Очки обеспечивают достаточное усилие в контактных частях дужек для удержания их на голове пользователя даже с относительно малой шириной головы, и одновременно обеспечивают усилие в комфортном диапазоне, будучи надеты на голову пользователем с относительно большой шириной головы. В одном из воплощений очки обеспечивают требуемый уровень усилия в контактных частях дужек, который является менее зависимым от ширины головы пользователя, чем у очков при существующем уровне техники.

На фиг. 1 показано первое воплощение очков 100. Очки 100 могут включать традиционные компоненты очков, например, одно или более стекол 130 или оправу. Очки 100 включают две дужки 110, каждая из которых имеет первую концевую часть 111, контактную часть 112 и гибкую часть 120. Дужки 110 являются протяженными назад от передней стороны очков 100. Гибкая часть 120 имеет радиус кривизны в не изогнутом состоянии. Гибкая часть 120 изгибается наружу при надевании очков на голову пользователем, и имеет конструкцию, обеспечивающую требуемые ее характеристики для определенного диапазона ширины головы пользователей. В одном из воплощений контактная часть 112 в сущности остается в одной и той же ориентации, независимо от степени изгиба, которую претерпевает гибкая часть 120 при надевании очков на голову пользователя, имеющую ту или иную ширину. В рабочем положении очки 100, как правило, расположены перед глазами пользователя, для выполнения своих основных функций. Одно или более стекол 130 корректируют поле зрения пользователя или закрывают глаза пользователя и прилегающие к ним участки лица от воздействия внешних факторов.

В одном из воплощений первая концевая часть 111 дужки 110 может быть прикреплена к крепежной части 150 одного или более стекол 130, оправы или другого подходящего элемента очков 100. Дужка 110 может быть прикреплена к крепежной части 150 любым подходящим способом из известных в данной области техники. Так, например, дужка 110 может быть прикреплена с помощью шарнира, обеспечивающего возможность вращения дужки 110 вокруг оси шарнира, между закрытым положением и открытым положением. Это может быть достигнуто путем включения в переднюю концевую часть 111 дужки 110 элементов, сопрягающихся с ответными элементами одного или более стекол 130, оправы или другого подходящего элемента очков 100, и скрепления их друг с другом с возможностью вращения винтом, штифтом или другим крепежным элементом из известных в данной области техники. Дужка 110 может быть также закреплена, например, защелкиванием. В одном из воплощений очки 100 могут включать, или могут не включать оправы, и дужки могут быть прикреплены к точкам крепления одного или более стекол.

Компоненты очков 100, описанных выше, могут быть изготовлены по отдельности и после этого собраны друг с другом. В одном из воплощений одно или более стекол 130 и оправа могут быть выполнены в виде единой целой детали, например, способами инжекционного формования, трансферного формования, компрессионного формования или другими способами из известных в данной области техники. В другом воплощении дужки 110 могут быть изготовлены способами инжекционного формования, трансферного формования, компрессионного формования или другими способами из известных в данной области техники, и затем прикреплены к стеклам или оправе. Кроме того, за единое целое могут быть выполнены различные части очков 100, или все очки.

Гибкая часть 120 может быть сформирована из материала, имеющего подходящие свойства, в частности, допускающего упругую деформацию в типичных диапазонах изгибов, которые могут испытывать дужка и гибкая часть в обычных условиях эксплуатации очков. В одном из воплощений дужка 110 и/или гибкая часть 120 могут быть изготовлены из материала, представляющего собой смесь поликарбоната и полиэфира, стабилизированную ультрафиолетовым излучением, в частности из материала под торговым названием XYLEX Х8300 производства Sabic Innovative Plastics (Питтсфилд, штат Массачусетс, США), или из смеси поликарбоната и полибутилена, в частности из материала под торговым названием XENOY 5720 производства Sabic Innovative Plastics. В других воплощениях дужка 110 и/или гибкая часть 120 могут быть изготовлены из поликарбоната, такого, как PC124R производства Sabic Innovative Plastics, или из ацеталя, такого, как D 100 ST производства E.I. Du Pont De Nemours and Co. Прочие подходящие материалы включают прочие поликарбонаты, сложные эфиры, полиамиды, ацетали, термопластические полимеры, прочие материалы, известные в данной области техники, и подходящие сочетания таких материалов.

В одном из воплощений дужка 110 и гибкая часть 120 изготовлены из материала, имеющего модуль упругости на изгиб от 800 МПа до 2500 МПа. В различных воплощениях модуль упругости на изгиб может составлять от примерно 800 МПа до примерно 1700 МПа, или от примерно 1000 МПа до примерно 1200 МПа.

Отличительные особенности настоящего изобретения будут более понятны, если ввести для очков 100 три базисные плоскости, как показано на фиг. 2. Когда очки 100 расположены горизонтально, в своем рабочем положении медианная сагиттальная плоскость 161 рассекает очки 100 на воображаемую переднюю и правую половины. Горизонтальная поперечная плоскость 162 разделяет очки на воображаемые верхнюю и нижнюю части. Поперечная плоскость 162 в целом параллельна плоскости вращения, образуемой дужкой 110 при ее перемещении между открытым положением и закрытым положением, и при ее переходе из не изогнутого состояния в согнутое состояние при надевании очков на голову пользователя. Считается, что дужка 110 находится в открытом положении, когда шарнир, соединяющий дужку 110 с рамой или стеклом, полностью открыт, и дужка 110 остается при этом в не изогнутом состоянии, в результате чего к контактной части 112 дужки 110 не приложено никакого усилия, и соответственно дужка 110 не создает никакого усилия. Считается, что дужка 110 находится в закрытом положении, когда шарнир полностью закрыт, в результате чего дужка 110, например, сложена вовнутрь очков. Фронтальная плоскость 163 перпендикулярна как медианной сагиттальной плоскости, так и поперечной плоскости, и в сущности является касательной к наиболее выступающим вперед участкам одного или более стекол 130.

Как показано на фиг. 2, положение контактной части 112 и соответственно степень изгиба дужки 110 могут быть охарактеризованы расстоянием d, измеренным в сущности параллельно поперечной плоскости 162 очков 100 и перпендикулярно медианной сагиттальной плоскости 161, и на которое разнесены друг от друга контактная часть и медианная сагиттальная плоскость очков 100. Так, например, когда дужка 110 находится в открытом положении и в не изогнутом состоянии, контактная часть 112 отнесена от медианной сагиттальной плоскости 161 на первое расстояние. Когда дужка 110 изогнута в результате надевания очков на голову пользователя, как показано пунктиром, контактная часть 112 отстоит от медианной сагиттальной плоскости 161 на второе расстояние d. Второе расстояние d может составлять примерно половину ширины головы, на которую надеты очки. Когда дужка 110 изогнута, на нее действует возвращающее усилие, стремящееся вернуть дужку 110 в положение, в котором она не изогнута. Может быть определена величина усилия, действующего в контактной части 112, которая зависит от геометрии и материалов дужки и очков в целом, как будет подробно описано ниже.

На фиг. 3 показана дужка 110, протяженная назад от передней стороны очков 100, и которая имеет гибкую часть 120 в соответствии с одним из воплощений настоящего изобретения. Гибкая часть 120 имеет первый конец 121, второй конец 122, и первое и второе продольно расположенные ребра 125 и 126, протяженные между первым концом 121 и вторым концом 122. Каждое из ребер имеет первую и вторую основные поверхности S1 и S2, отстоящие друг от друга на толщину t, и имеет длину l, измеренную в продольном направлении ребра, и высоту h, измеренную в направлении, перпендикулярном направлениям толщины t и длины l. В различных воплощениях длина l может составлять от примерно 10 мм до примерно 75 мм, или от примерно 15 мм до примерно 45 мм, или может составлять примерно 30 мм.

В воплощении, изображенном на фиг. 3, внутренние периферийные края первого и второго ребер 125 и 126 образуют прорезь 129, протяженную между частями первого и второго ребер 125 и 126. В альтернативных воплощениях внутренние периферийные края ребер могут образовывать множество прорезей, канавок или иного типа отверстий, или первое и второе ребра могут полностью или частично соединяться друг с другом вдоль своей длины, то есть иметь связанные друг с другом внутренние периферийные края.

Толщина и высота ребер 125 и 126 могут влиять на характеристики изгиба гибкой части 120 и на прочие особенности ее реакции на приложение усилия к дужке 110. В частности, толщина и высота ребер 125 и 126 могут влиять на место, в котором начинается изгиб гибкой части 120 при приложении усилия к дужке 110, и на распределение усилия по гибкой части 120. В различных воплощениях ребра 125 и 126 могут иметь высоту h, составляющую от 2 мм до 10 мм, или от 2,5 мм до 8 мм. В одном из воплощений одно или оба из ребер 125 и 126 могут иметь высоту h, изменяющуюся между минимальной высотой и максимальной высотой. В таком воплощении при приложении усилия к дужке гибкая часть 120 может начинать свой изгиб в месте, в котором высота ребра минимальна, или в непосредственной близости к такому месту.

В одном из воплощений минимальная высота hmin одного или обоих из ребер 125 и 126 имеет место в положении, отстоящем от первого и второго концов 121 и 122 гибкой части 120, как показано на фиг. 4А. В других воплощениях высота каждого из ребер может быть постоянной по длине ребра, как показано на фиг. 4B, или может изменяться вдоль длины каждого из ребер, от максимальной высоты hmax в окрестности первого конца 121 до минимальной высоты hmin в окрестности второго конца 122, как показано на фиг. 4С.

В одном из воплощений первое ребро 125 расположено под углом ко второму ребру 126, когда гибкая часть находится в не изогнутом состоянии, так что первые основные поверхности S1, то есть основные поверхности на внутренних сторонах ребер 125 и 126, образуют угол θ, меньший, чем 180°. При сгибании дужки 110, например, при приведении очков 100 в рабочее положение и надевании их на голову пользователем, ребра 125 и 126 вращаются относительно друг друга таким образом, что угол θ увеличивается, как будет более подробно описано ниже. Как показано на фиг. 5А, угол θ1, образуемый первыми плоскими поверхностями S1 на внутренних сторонах ребер 125 и 126, когда дужка 110 находится в не изогнутом состоянии, меньше, чем угол θ2, образуемый первыми плоскими поверхностями S1 на внутренних сторонах ребер 125 и 126, когда дужка 110 находится в изогнутом состоянии. В изогнутом состоянии угол θ2 ближе к 180°, чем угол θ1, в результате чего поверхности S1 каждого из ребер 125 и 126 ближе к параллельным. Из-за относительного вращения ребер момент инерции сечения каждого из ребер относительно оси изгиба постепенно уменьшается. Соответственно, для последующего изгиба дужки 110 требуется все меньшее усилие, и усилие, действующее в контактной области, возрастает все медленнее, или вообще остается постоянным при дальнейшем увеличении степени изгиба, как будет более подробно описано ниже.

В другом воплощении первое ребро 125 и второе ребро 126 могут быть расположены под углом друг к другу таким образом, что вторые основные поверхности S2, то есть основные поверхности на наружных сторонах ребер 125 и 126, образуют угол θ, меньший, чем 180°, когда 120 находится в не изогнутом состоянии, как показано на фиг. 5B. При сгибании дужки 110, например, при приведении очков 100 в рабочее положение и надевании их на голову пользователем, ребра 125 и 126 вращаются относительно друг друга таким образом, что угол θ увеличивается, приближаясь к 180°, как будет более подробно описано ниже. Как показано на фиг. 5А, угол θ3, образуемый вторыми плоскими поверхностями S2 на наружных сторонах ребер 125 и 126, когда дужка 110 находится в не изогнутом состоянии, меньше, чем угол θ4, образуемый вторыми плоскими поверхностями S2 на наружных сторонах ребер 125 и 126, когда дужка 110 находится в изогнутом состоянии. В согнутом состоянии угол θ3 ближе к 180°, чем угол θ4, в результате чего поверхности S2 каждого из ребер 125 и 126 становятся более параллельными.

В другом воплощении первое ребро 126 и/или второе ребро 126 расположены под углом друг к другу таким образом, что одна или обе из первой основной поверхности S1 и второй основной поверхности S2 не перпендикулярны поперечной плоскости 162 очков 100, как показано на фиг. 5А и 5B. То есть одна или обе из первой основной поверхности S1 и второй основной поверхности S2 не образуют угол в пределах 5° от 90° с поперечной плоскостью 162 очков 100. При изгибе дужки 110, например, при приведении очков 100 в рабочее положение и надевании их на голову пользователем, первое и второе ребра 125 и 126 вращаются относительно друг друга таким образом, что одна или обе из первой основной поверхности S1 и второй основной поверхности S2 становятся более перпендикулярными поперечной плоскости 162 очков 100.

Как показано на фиг. 5А и 5B, в одном из воплощений первое и второе ребра 125 и 126 имеют толщину t, измеренную, как расстояние между первой и второй плоскими поверхностями S1 и S2, которая уменьшается от внутреннего периферийного края 123 к наружному периферийному краю 124. В некоторых воплощениях первое и второе ребра могут иметь толщину t, в любом взятом месте составляющую от 0,5 мм до 5 мм. В других воплощениях толщина t может составлять от 0,5 мм до 4 мм, или от 0,5 мм до 2,5 мм. При увеличении толщины ребер жесткость гибкой части возрастает, что обеспечивает более высокое значение усилия, в контактной части дужки, по сравнению с гибкой частью, имеющей ребра меньшей толщины, при том же расстоянии, на которое разведены дужки.

В некоторых воплощениях толщина t может изменяться вдоль высоты ребра, от толщины t, равной примерно 0,5 мм на наружном периферийном крае 124, до толщины t, равной примерно 2,5 мм на внутреннем периферийном крае 123. В других воплощениях первое и второе ребра 125 и 126 имеют толщину t, постоянную по высоте h каждого из ребер, или толщину t, увеличивающуюся от внутреннего периферийного края 123 к наружному периферийному краю 124.

В некоторых воплощениях толщина tmax на внутреннем периферийном крае 123 может оставаться постоянной вдоль длины 1 каждого из ребер 125 и 126, в то время как толщина tmin на наружном периферийном крае 124 изменяется вдоль длины l. В одном из воплощений толщина tmax на внутреннем периферийном крае 123 составляет примерно 1,5 мм вдоль всей длины l, а толщина tmin на наружном периферийном крае 124 изменяется вдоль длины l от примерно 1,0 мм на каждом конце до примерно 0,5 мм в месте вдоль длины l, расположенном на расстоянии примерно 10 мм от конца каждого из ребер, ближайшего к первому концу 321 гибкой части 320.

В другом воплощении, показанном на фиг. 6, первое и второе ребра 125 и 126 могут иметь первую и вторую криволинейные поверхности S1 и S2. Подобно воплощениям, в которых первая и вторая основные поверхности ребер являются плоскими, толщина ребер может быть постоянной, или может изменяться по высоте ребра. Первое и второе ребра 125 и 126 имеют толщину t, измеренную между первой и второй криволинейными поверхностями, уменьшающуюся от внутреннего периферийного края 123 каждого из ребер, к наружному периферийному краю 124 того же ребра.

В других воплощениях первое и второе ребра 125 и 126 имеют толщину t, которая является постоянной, или толщину t, которая увеличивается от внутреннего периферийного края 123 к наружному периферийному краю 124. В качестве альтернативы, внутренние периферийные края первого и второго ребер 125 и 126 могут быть связаны друг с другом, и толщина t может изменяться по высоте каждого из ребер от наружного периферийного края каждого из ребер к месту соединения внутренних периферийных краев 123 первого и второго ребра.

Криволинейные поверхности ребер 125 и 126 определяют радиус кривизны соответствующих ребер. В не изогнутом состоянии дужки ребра расположены под углом друг к другу таким образом, что они имеют радиус кривизны R1. Когда к дужке 110 приложено усилие, например, во время приведения очков в рабочее положение (надевании их на голову пользователем), первое и второе ребра 125 и 126 могут изгибаться и/или поворачиваться относительно друг друга таким образом, что они принимают радиус кривизны R2, больший, чем радиус R1 (показано пунктиром).

На фиг. 7 показано воплощение очков 100 с дужкой 110 в соответствии с настоящим изобретением. Дужка 110 имеет гибкую часть 120, имеющую кривизну в не изогнутом состоянии. Кривизна гибкой части 120 может быть охарактеризована радиусом кривизны. Радиус кривизны представляет собой радиус окружности, которой локально аппроксимируется участок кривой, прилегающий к данной ее точке. Считается, что кривая резко изменяющейся формы имеет большую кривизну и меньший радиус кривизны, а более плавная кривая имеет меньшую кривизну и больший радиус кривизны. Когда дужка 110 отогнута от исходного положения, например, когда очки надеты на голову пользователя, радиус кривизны гибкой части 120 увеличивается. Соответственно, кривизна гибкой части 120 в таком воплощении в не изогнутом состоянии больше, чем кривизна в рабочем положении очков, надетых на голову пользователем.

Гибкая часть 120 дужки 110 характеризуется радиусом кривизны ρ, когда гибкая часть 120 находится в не изогнутом состоянии. В одном из воплощений радиус кривизны ρ гибкой части 120, когда она находится в не изогнутом состоянии, составляет менее, чем 80 мм. В других воплощениях радиус кривизны ρ гибкой части 120 составляет от 20 мм до 60 мм, или от 45 мм до 55 мм, когда гибкая часть 120 находится в не изогнутом состоянии. В одном из воплощений радиус кривизны ρ является постоянным или практически постоянным вдоль длины гибкой части 120. Так, например, гибкая часть 120 может иметь максимальный радиус кривизны ρM и минимальный радиус кривизны ρm, и величина максимального радиуса кривизны может отличаться в пределах 5 мм от минимального радиуса кривизны. В одном из воплощений радиус кривизны дужки 110 может характеризоваться радиусом кривизны в определенной точке, расположенной на определенном расстоянии вдоль длины дужки от одного из ее концов. Так, например, в одном из воплощений радиус кривизны ρ гибкой части 120 на расстоянии 30 мм от крепежной части 150 или первой концевой части 111, измеренном вдоль длины дужки 110, составляет от 20 мм до 80 мм.

Гибкая часть 120, имеющая радиус кривизны в пределах, описанных выше, обеспечивает ряд преимуществ очков в соответствии с настоящим изобретением. Гибкая часть, имеющая малый радиус кривизны, адаптируясь под размер головы пользователя, должна испытывать дополнительный изгиб, по сравнению с изгибом обычной дужки очков, не имеющей кривизны, при надевании ее на ту же голову. То есть в то время как обычные (прямые) дужки не испытывают практически никакого изгиба при надевании очков на голову пользователем (пока контактные части дужек не будут значительно разведены друг от друга), дужки 110, в частности их гибкие части 120, очков 100 в соответствии с настоящим изобретением, показанных на фиг. 7, будут испытывать существенный изгиб при надевании их на голову той же ширины. Соответственно, дужка 110, имеющая такую гибкую часть, переходит в напряженное состояние при меньшей степени разведения дужек 110 друг от друга по сравнению с обычными очками. Соответственно обеспечивается достаточное усилие крепления очков 100 к голове даже при использовании более гибкой дужки. Более того, радиус кривизны, который имеет гибкая часть 120 еще в не изогнутом состоянии, обеспечивает выполнение гибкой частью своих функций в широком диапазоне степени изгиба, что позволяет использовать такую дужку для основной массы пользователей, то есть практически с любой шириной головы. Указанные выше значения кривизны гибкой части 120 обеспечивают оказание контактной частью 112 дужки 110 требуемого уровня прижимающего усилия при определенной степени разведения дужек друг от друга. Данные, а также прочие преимущества будут более понятны из приведенного ниже описания характеристик распределения усилий в дужке, имеющей гибкую часть в соответствии с настоящим изобретением.

Очки, включающие гибкую часть в соответствии с настоящим изобретением, могут обеспечивать требуемое усилие в контактных частях дужек для более широкого диапазона размеров головы, чем очки в соответствии с существующим уровнем техники. В значительном большинстве случаев голова взрослого человека имеет ширину от 130 мм до 170 мм, измеренную между точками, расположенными непосредственно над ушами. Кроме того, авторы настоящего изобретения определили, что усилие, составляющее от примерно 40 граммов до примерно 140 граммов, или от примерно 50 г до примерно 110 г, или примерно 80 г, обеспечивает оптимальное сочетание надежности крепления и комфортного давления, в том смысле, что исключается ненамеренное падение очков с их рабочего положения на голове пользователя с одной стороны, и при этом они не оказывают на голову слишком большого давления, которое могло бы вызвать дискомфорт, с другой стороны. Соответственно, очки 100, находясь в рабочем положении на голове пользователя шириной от 130 мм до 170 мм, своими контактными частями оказывают на голову усилие в указанном выше оптимальном диапазоне. В частности, усилие, действующая на голову со стороны контактной части 112 дужки 110, находится в пределах оптимального диапазона, когда расстояние d между контактной частью 112 соответствующей дужки 110 и медианной сагиттальной плоскостью 161 очков 100, определение которой было дано выше со ссылками на фиг. 2, составляет от 65 мм до 85 мм. В одном из воплощений усилие, действующее на голову со стороны контактной части 112 и направленное по нормали к контактной части 112, составляет от 50 г до 140 г, когда очки 100 находятся в рабочем положении на голове пользователя шириной от 130 мм до 170 мм. В других воплощениях указанное усилие составляет от 50 г до 110 г, и может составлять от 70 г до 110 г, когда очки 100 находятся в рабочем положении на голове пользователя шириной от 150 г до 180 г, или когда расстояние d составляет от 75 мм до 90 мм.

Кривая зависимости усилия, действующего в контактной частью, от величины смещения контактной части дужки очков, может быть получена, например, путем измерения значений усилия при различных значениях расстояния между дужками, например, с помощью метода 1, описанного ниже. И хотя теоретически это не обязательно, можно ожидать, что наклон такой кривой характеризует гибкость исследуемой дужки. Так, более гибкая дужка обычно дает усилие со стороны контактной части, которое меньше изменяется в заданном диапазоне степени изгиба, по сравнению с более жесткой дужкой, для которой относительно небольшое увеличение степени изгиба приводит к относительно большому увеличению усилия со стороны контактной части. В одном из воплощений усилие, действующее в контактной части 112 дужки 110, изменяется в пределах 50 г в диапазоне разведения дужек друг от друга от 130 мм до 180 мм. То есть, если F1 - первое усилие, действующее в контактной части 112, когда очки 100 находятся в рабочем положении на голове пользователя, имеющей ширину 130 мм, a F2 - второе усилие, действующее в контактной части 112, когда очки 100 находятся в рабочем положении на голове пользователя, имеющей ширину 180, то разность между F2 и F1 меньше или равна 50 г. В других воплощениях разность между F2 и F1 может составлять менее чем 30 г или менее чем 20 г. В противоположность этому, в очках при существующем уровне техники разность усилий при разведении дужек на 130 мм и 180 мм значительно превышает 50 г.

Минимальный требуемый уровень усилий со стороны контактной части 112 дужки 110 может быть получен даже при изготовлении ее из материала, имеющего большую гибкость по сравнению с материалами большинства очков с обычными дужками. Такое преимущество объясняется, по меньшей мере частично, наличием кривизны дужки 110 и гибкой части 120 еще в не изогнутом состоянии, и наличием протяженных в продольном направлении ребер. В одном из воплощений дужка 110 претерпевает изгиб еще до того, как дужки разведены друг от друга на 80 мм. Благодаря этому усилие, действующее в контактной части 112, достигает значения свыше 50 г при раздвижении дужек на 130 см и более, несмотря на то, что дужка 110 имеет гибкость, большую, чем гибкость дужек большинства очков в соответствии с существующим уровнем техники. Кроме того, благодаря относительно большой гибкости дужки 110 в сочетании с кривизной гибкой части 120, которую она имеет даже в не изогнутом состоянии, уровень усилия, действующего в контактной части 112, остается ближе к оптимальному уровню в более широком диапазоне расстояний разведения дужек.

Уровни усилий, действующих в контактной части 112 дужки 110 в соответствии с настоящим изобретением, могут быть также объяснены структурой и конфигурацией гибкой части 120. И хотя теоретически это не обязательно, можно ожидать, что усилие, действующее в контактной части 112 дужки 110 в соответствии с настоящим изобретением, пропорциональна произведению расстояния, на которое разведены дужки, и момента инерции сечения контактной части 112. Момент инерции сечения рассчитывается вокру