Литий-воздушный аккумулятор и способ его получения

Иллюстрации

Показать все

Изобретение относится к литий-воздушному аккумулятору, состоящему из металлического литиевого анода, находящегося в герметичной камере, заполненной неводным литий-проводящим электролитом, катода, находящегося в катодной камере, имеющей доступ к кислороду и заполненной неводным литий-проводящим электролитом. Аккумулятор характеризуется тем, что токосъемник катода покрыт восстановленным оксидом графита с соотношением углерода к кислороду от 5 до 10, при этом разделительная перегородка выполнена из твердого литий-проводящего электролита, катод и анод прижимаются к мембране с помощью поршня (перфорированного в случае катода) и пружины. Также изобретение относится к способу получения аккумулятора. Использование настоящего изобретения позволяет достичь высокой удельной емкости аккумулятора 6000 мАч/г катодного материала при плотности тока 0,01 мА/см2, что позволяет увеличить время работы аккумулятора без подзарядки. 2 н. и 2 з.п. ф-лы, 3 ил.

Реферат

Литий-воздушный аккумулятор и способ его получения

Настоящее изобретение относится к области перезаряжаемых химических источников тока и применяется для обеспечения электропитанием различных устройств, включая портативную электронику, электроинструмент, медицинскую технику и электротранспорт.

Из существующего уровня техники известен литий-воздушный аккумулятор, который состоит из металлического литиевого анода, находящегося в герметичной камере, заполненной неводным литий-проводящим электролитом, устойчивым к металлическому литию (алкилкарбонаты, ионные жидкости, диоксолан и т.д.), и пористого катода, находящегося в катодной камере, имеющей доступ к кислороду и заполненной неводным литий-проводящим электролитом (глимы, эфиры, лактоны, сульфоны, ионные жидкости и т.д.). Катод и анод разделены твердым газоплотным литий-проводящим электролитом (стеклокерамическим, керамическим, полимеркерамическим и т.д.). Катод представляет собой токосъемник (никелевая или нержавеющая сетка или фольга), на который нанесен слой пористого активного материала: смеси или композита проводящей углеродной матрицы (графита, ацетиленовой сажи, активированного угля, углеродных нанотрубок и т.д.) с каталитическими оксидами переходных металлов, благородными металлами (US 20110223494, опубл. 15.09.2011), макроциклическими комплексами переходных металлов (US 20110305974, опубл. 15.12.2011). Недостатками данного технического решения является то, что каталитические добавки зачастую имеют низкую электронную проводимость и рабочая площадь поверхности катода сокращается до площади границы фазового раздела между каталитическим и углеродным материалом, что значительно снижает эффективность работы катода.

Наиболее близким к заявленному техническому решению является литий-воздушный аккумулятор, в котором в качестве каталитического катодного материала используется непосредственно углеродная матрица (ацетиленовая сажа, графит, углеродные нанотрубки, мезопористый углерод и т.д.; US 20110305974, опубл. 15.12.2011), которая обладает одновременно электронной проводимостью, пористостью и способностью к адсорбции и восстановлению молекулярного кислорода. Недостатком данного технического решения является то, что коммерчески доступные углеродные материалы зачастую не обладают достаточно высокой каталитической активностью, и их использование в литий-воздушном аккумуляторе не позволяет достичь высокой удельной емкости. Это может быть связано с недостаточным количеством находящихся на поверхности углеродных материалов кислородных функциональных групп, являющихся активными центрами, на которых происходит восстановления кислорода.

Задачей, на решение которой направлено заявляемое изобретение, является увеличение времени работы аккумулятора без подзарядки за счет увеличения емкости аккумулятора.

Указанная задача достигается тем, что в литий-воздушном аккумуляторе, состоящем из металлического литиевого анода, находящегося в герметичной камере, заполненной неводным литий-проводящим электролитом, катода, находящегося в катодной камере, имеющей доступ к кислороду и заполненной неводным литий-проводящим электролитом,

токосъемник катода покрыт восстановленным оксидом графита с соотношением углерода к кислороду от 5 до 10, при этом разделительная перегородка выполнена из твердого литий-проводящего электролита, катод и анод прижимаются к мембране с помощью поршня (перфорированного в случае катода) и пружины;

анодная камера заполнена неводным литий-проводящим электролитом, представляющим собой 1 М раствор LiClO4 в смеси пропиленкарбоната и 1,2-диметоксиэтана;

катодная камера заполнена неводным литий-проводящим электролитом, представляющим собой 1 М раствор бис-трифторметилсульфонилимида лития в тетраглиме;

для этого оксид графита, полученный методом Хаммерса, восстанавливают химически раствором аскорбиновой кислоты, отфильтровывают, промывают дистиллированной водой и высушивают при температуре в диапазоне от 60° до 80°С, затем сухой восстановленный оксид графита при помощи ультразвуковой обработки диспергируют в органическом растворителе (например, ацетон, гептан, N-метил-2-пирролидон), наносят полученную суспензию на токосъемник катода и высушивают при температуре в диапазоне от 60° до 80°С, что позволяет получить большее количество функциональных кислородных групп.

Сущность изобретения поясняется чертежами, на которых

На фиг. 1 представлено схематическое изображение предлагаемого аккумулятора,

где 1 - катод;

2 - токосъемник;

3 - литиевый анод;

4 - анодная камера;

5 - катодная камера;

6 - твердый литий-проводящий электролит;

7 - перфорированный поршень;

8 - поршень;

9 - пружина;.

На фиг. 2 - микрофотография РЭМ восстановленного оксида графита;

На фиг. 3 - гальваностатическая разрядная кривая литий-воздушного аккумулятора с катодом, содержащим восстановленный оксид графита (плотность тока 0.01 мА/см2).

Работает устройство следующим образом. При заряде аккумулятора литиевый анод 3 растворяется и ионы лития посредством электролитов поступают в катод 1. Кислород воздуха восстанавливается на катоде, в присутствии ионов лития образуя пероксид лития. При заряде образовавшийся пероксид лития электрохимически разлагается с выделением в электролит ионов лития и молекулярного кислорода. Образовавшиеся ионы лития восстанавливаются на аноде до металлического лития.

В результате применения в качестве катода электрода из восстановленного оксида графита с соотношением углерода к кислороду 7, полученного диспергированием восстановленного оксида графита в N-метилпирролидоне, нанесенного на токосъемник и высушенного при 80°С, и использовании в качестве твердого литий-проводящего электролита стеклокерамической мембраны на основе фосфатов германия и алюминия, достигнута высокая удельная емкость аккумулятора (6000 мАч/г катодного материала при плотности тока 0.01 мА/см2), что позволяет увеличить время работы аккумулятора без подзарядки.

1. Литий-воздушный аккумулятор, состоящий из металлического литиевого анода, находящегося в герметичной камере, заполненной неводным литий-проводящим электролитом, катода, находящегося в катодной камере, имеющей доступ к кислороду и заполненной неводным литий-проводящим электролитом,отличающийся тем, что токосъемник катода покрыт восстановленным оксидом графита с соотношением углерода к кислороду от 5 до 10, при этом разделительная перегородка выполнена из твердого литий-проводящего электролита, катод и анод прижимаются к мембране с помощью поршня (перфорированного в случае катода) и пружины.

2. Литий-воздушный аккумулятор по п. 1, отличающийся тем, что анодная камера заполнена неводным литий-проводящим электролитом, представляющим собой 1 М раствор LiClO4 в смеси пропиленкарбоната и 1,2-диметоксиэтана.

3. Литий-воздушный аккумулятор по п. 1, отличающийся тем, что катодная камера заполнена неводным литий-проводящим электролитом, представляющим собой 1 М раствор бис-трифторметилсульфонилимида лития в тетраглиме.

4. Способ получения литий-воздушного аккумулятора по пп. 1, 2, 3, отличающийся тем, что оксид графита, полученный методом Хаммерса, восстанавливают химически раствором аскорбиновой кислоты, отфильтровывают, промывают дистиллированной водой и высушивают при температуре в диапазоне от 60 до 80°С, затем сухой восстановленный оксид графита при помощи ультразвуковой обработки диспергируют в органическом растворителе, наносят полученную суспензию на токосъемник катода и высушивают при температуре в диапазоне от 60 до 80°С, что позволяет получить большее количество функциональных кислородных групп.