Соединения и способы лечения боли и других расстройств

Иллюстрации

Показать все

Изобретение относится к соединениям:

; ;

которые могут быть использованы для производства лекарственного средства для лечения гипералгезии, толерантности, абстиненции и/или зависимости от вызывающих зависимость лекарственных средств. 3 н. и 2 з.п. ф-лы, 10 ил., 9 табл., 136 пр.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится по существу к соединениям, ингибирующим металлопротеазы, и, более конкретно, к соединениям, ингибирующим ММП-2 и/или ММП-9 и их применению для лечения боли, лекарственной зависимости и синдрома абстиненции, а также других заболеваний.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Воспаление определяется как комплексная биологическая реакция сосудистых тканей на вредные стимулы, такие как патогены, поврежденные клетки или раздражители. Это защитная попытка организма удалить вредные раздражители, а также начать процесс исцеления ткани. Воспаление может быть острым (ранняя стадия реакции) или хроническим (развивающимся на протяжении длительного времени). В остром воспалении принимают участие полиморфноядерные нейтрофильные лейкоциты, тогда как в хроническом воспалении задействуются моноциты, макрофаги, лимфоциты и плазматические клетки (обобщенно моноядерные лейкоциты). Одним из проявлений как острого, так и хронического воспаления является ощущение боли, которая может носить невропатический либо ноцицептивный характер. Типичными заболеваниями, для которых характерна невропатическая боль, являются боль в нижней части спины, невралгия/ фибромиалгия, диабетическая невропатическая боль и боль, связанная с рассеянным склерозом. Типичными заболеваниями, для которых характерна ноцицептивная боль, являются артритическая боль, в частности, остеоартрит или ревматоидный артрит, послеоперационная боль, боль, вызванная раком и ВИЧ.

В 1997 г. исследовательская группа Соммера и коллег (Соммер К., Шмидт К., Джордж А., Тойка К.В., Неврологический бюллетень, 1997; 237: 45-48) продемонстрировала, что эпиневральная инъекция потенциального ингибитора матричной металлопротеиназы (TAPI-0) в модели на мышах с хронической компрессией (ХК) обеспечивала блокирование как механической аллодинии, так и термической гипералгезии на третий день ежедневных инъекций. На тот момент авторы пришли к заключению, что механизм данного действия представляет собой ингибирование ФНО альфа, поскольку ингибитор (TAPI-0) являлся известным ингибитором ФНО-альфа (IC50 ~ 100 нМ). Однако впоследствии было продемонстрировано, что TABI-0 обладает значением IC50 для ММП-9, составляющим 0,5 нМ.

Чжи и коллеги (журнал Натуральная медицина 14 (13) (2008), 331-336) недавно установили, что матричная металлопротеаза-9

(ММП-9) повышенно регулировалась в поврежденных первичных сенсорных нейронах узла заднего корешка (УЗК) на ранней стадии лигирования спинномозгового нерва (ЛСН) на уровне L5 в модели невропатической боли (в первые сутки со снижением после 3-х суток) и что матричная металлопротеазу-2 (ММП-2) проявляла замедленную реакцию в модели (начало повышенной регуляции с 7-х суток и ее присутствие до 21-х суток). Они также установили, что ММП-2 индуцирует невропатическую боль посредством расщепления IL-1β и активации астроцитарной внеклеточной сигнал-регулируемой киназы (ERK). Кроме того, ими было установлено, что эндогенные ингибиторы матричных металлопротеиназ (TIMP-1 и TIMP-2) также подавляли невропатическую боль в модели. Кобаяши и коллеги («Молекулярная и клеточная неврология», 39 (2008), 619-627) совсем недавно продемонстрировали, что ММП расщепляют периферический основной миелиновый белок (ОМБ) и что ингибитор широкого спектра, содержащий гидроксамовую кислоту (GM6001), снижает механическую ноцицепцию. Также другими группами были выполнены другие исследования с использованием нокаутных мышей (Комори К. и соавт., бюллетень Федерации европейских биохимических обществ, 557: 125-128 (2004) и Фольгуэра А. и соавт., Труды национальной академии наук США, 106 (38), 16451-16456 (2009)), демонстрирующие, что ММП-2 имеет ключевое значение в индуцировании хронической невропатической боли.

Было выдвинуто предположение, что лекарственная зависимость является результатом индуцированного лекарственными средствами обучения и формирования долговременной памяти. С каждым применением лекарственного средства возможна повторная активация и закрепление памяти о лекарственном средстве для поддержания первоначальной памяти (Химен С.Э.; Маленка Р.К.; Нестлер Э.Дж.; «Нейронные механизмы зависимости: роль обучения и памяти за вознаграждение», Годовой неврологический обзор, 29, 565-598 (2006)). Было установлено, что к эндогенным белкам, играющим ключевую роль в синаптической пластичности, относятся матричные металлопротеазы (ММП) и, в частности, ММП-2 и ММП-9. Было определено, что ММП-2 и ММП-9 принимают участие в удлинении аксонов, аксональном наведении рецепторов, миелинизации аксонов, а также расчистке пути через внеклеточную матрицу (Райт Дж.У.; Хардинг Дж.У.; «Вклад матричных металлопротеаз в нейронную пластичность, привыкание, ассоциативное обучение и лекарственную зависимость», Нейронная пластичность, том 2009, 12 страниц (2009)). Также было установлено, что ММП-2 и ММП-9 непосредственно связаны с метамфетаминовой (Мизогучи X.; Ямада К.; Нива М; Моури А.; Мизуно Т.; Нода И.; Нитта А.; Итохеара С; Банно И. и Набешима Т.; «Снижение метамфетамин-индуцированной сенсибилизации и подкрепления у мышей с дефицитом матричной металлопротеазы-2 и -9», Журнал нейрохимии, 100, 1579-1588 (2007) и кокаин-индуцированной (Браун Т.Э.; Форкер М.Р.; Кокинг Д.Л.; Янсен Х.Т.; Хардинг Дж.У. и Сорг Б.А.; «Роль матричных металлопротеиназ в приобретении и закреплении кокаин-индуцированного предпочтения мест введения психоактивного вещества», Обучение и память, 14, 214-223 (2007)) поведенческой сенсибилизацией и подкреплением. Например, Набешима и коллеги (Мизогучи X.; Ямада К.; Нива М.; Моури А.; Мизуно Т.; Нода И.; Нитта А.; Итохеара С; Банно И. и Набешима Т.; «Роль матричной металлопротеиназы и тканевого ингибитора ММП в метамфетамин-индуцированной сенсибилизации и подкреплении: последствия понижающей регуляции дофаминовых рецепторов и выделения дофамина», Журнал нейрохимии, 102, 1548-1560 (2007) установили, что при вливании ингибитора ММП-2/-9 (с применением осмотического мининасоса) в правый желудочек или лобную долю крыс происходит блокирование метамфетамин-индуцированной сенсибилизации и предпочтения мест введения психоактивного вещества, а также снижение выделения дофамина в центре удовольствия.

У лиц с хроническим употреблением опиоидов часто развивается толерантность и гипералгезия. Толерантность является состоянием адаптации, при котором воздействие опиоидов вызывает изменения, которые приводят к снижению эффективности подавления боли лекарственным средством. Результат толерантности заключается в необходимости приема пациентом повышенных доз опиоидов для сохранения терапевтического эффекта. Гипералгезия представляет собой состояние, при котором введение опиоидов вызывает сенсибилизацию к боли. Пациенты с хроническим употреблением опиоидов, таких как морфин, не только становятся более восприимчивыми к первоначальной боли, но и в ряде случаев испытывают боли нового типа при введении самого опиоида. Как толерантность, так и гипералгезия являются факторами, которые позволяют объяснить возникновение зависимости от опиоидов у лиц с хроническим употреблением. Недавно Сонг и коллеги (Неврологический журнал, 30 (22) (2010), 7613-7623) обнаружили сильную связь между физической зависимостью, связанной с опиоидной абстиненцией, и повышенной активностью ММП-9 в заднем роге. Эти исследователи установили, что вследствие введения экзогенной ММП-9 в спинной мозг возможно индуцирование морфиноподобного абстинентного поведения, а также механической аллодинии у нормальных мышей. При интратекальном введении исследователями ингибитора ММП-9 (2-[бензил-(4-метоксибензолсульфонил)амино]-5-дииэтиламино-N-гидрокси-3-метил-бензамид) мышам с наблюдающейся морфиновой абстиненцией было достигнуто устранение абстинентного поведения. При совместном введении ингибитора ММП-2 или ММП-9 было достигнуто снижение морфиновой толерантности у мышей. Соединения, использованные во всех вышеуказанных исследованиях для подавления активности ММП-2 и/или ММП-9, представляли собой ингибиторы ММП, содержащие гидроксамовую кислоту, которые обладают известными токсичными побочными эффектами.

Матричные металлопротеазы (ММП) представляют семейство структурно родственных цинксодержащих ферментов, для которых было зарегистрировано стимулирование разрушения соединительной ткани в нормальных физиологических процессах, таких как эмбриональное развитие, воспроизведение и ремоделирование тканей. Повышенная экспрессия ММП или нарушение равновесия между ММП рассматривались как факторы воспалительных, злокачественных и дегенеративных патологических процессов, характеризующихся нарушением ткани внеклеточной матрицы или соединительной ткани. В связи с этим ММП являются мишенями терапевтических ингибиторов в случае некоторых воспалительных, злокачественных и дегенеративных заболеваний, таких как ревматоидный артрит, остеоартрит, остеопороз, периодонтит, рассеянный склероз, гингивит, роговичное, эпидермальное и желудочное изъязвление, атеросклероз, пролиферация неоинтимы (которая приводит к рестенозу и ишемической сердечной недостаточности) и метастаз опухоли, но не в случае боли. ММП-2 (72 кДа желатиназа/желатиназа A) и ММП-9 (92 кДа желатиназа/желатиназа B) расщепляет компоненты внеклеточной матрицы базальной мембраны. Их субстраты включают коллаген IV и V типов, фибронектин, эластин и денатурированные интерстициальные коллагены. Было продемонстрировано, что расщепление матрицы, связанное с данной протеиназой, играет важную роль в развитии таких заболеваний, как атеросклероз, воспаление, инсульт, а также рост и метастаз опухолей. Однако до недавнего времени было опубликовано мало научной литературы, посвященной использованию ингибиторов ММП-2 и/или ММП-9 для лечения боли и/или зависимости.

Клинические исследования матричных металлопротеиназ были выполнены лишь для некоторых показаний. В подавляющем большинстве случаев для артрита и рака. В число ингибиторов, для которых были выполнены клинические исследования, в особенности по онкологическим показаниям, входят приномастат (AG3340; Agouron/Pfizer (Агурон/Пфайзер)), BAY 12-9566 (Bayer Corp. (корпорация «Байер»)), батимистат (BB-94; British Biotech, Ltd (Бритиш Битех Лтд.)), BMS-275291 (бывший D2163; Celltech/Bristol-Myers Squibb («Селлтек»/ «Бристол-Майерс Сквибб»)), маримастат (BB 2516; British Biotech, Ltd/ Schering-Plough («Шеринг-Плау»)), MMI270(B) (бывший CGS-27023A; Novartis («Новартис»)) и метастат (COL-3; CollaGenex («КоллаГенекс»)). Ряд ингибиторов, содержащих гидроксамовую кислоту, проявляют обширную токсичность для человека. Например, маримастат, который содержит гидроксаматную группу, проявляет зависимую от времени и дозировки мышечно-скелетную токсичность (артралгия, миалгия, тендинит) для человека. Другие токсичности маримастата включают асцит, диссеминированную злокачественную опухоль, озноб, холангит, головокружение, одышку, отек, усталость, лихорадку, желудочно-кишечные нарушения (потеря аппетита, тошнота, рвота, диарея, запор), желудочно-кишечные кровотечения, головную боль, изжогу, печеночную токсичность, гиперкальцемию, гипергликемию, высыпания и затруднение дыхания. Неизвестно, связана ли токсичность, проявляемая многими ингибиторами ММП, с гидроксамовой кислотой, однако очевидно, что получение ингибитора ММП, который не содержит группу гидроксамовой кислоты, может снизить некоторые потенциальные метаболические последствия.

Кушнер и коллеги (Кушнер Д.Дж.; Бейкер А.; Данстолл Т.Дж. Кан. Журнал физиологии и фармакологии, 77 (2) (1999), стр.79-88) представили примеры того, каким образом включение дейтерия в лекарственный препарат зачастую способно снизить уровень метаболически индуцированных преобразований, в частности, стимулированных цитохромом P450. Этот сниженный уровень индукции метаболизма цитохромом P450 иногда может быть непосредственно выражен в повышении биологической доступности. Причина этого связана с тем фактом, что атомное замещение водорода дейтерием в лекарственном препарате изменяет силу связи углерод-дейтерий, обеспечивая при этом сохранение очень высокой схожести его трехмерной поверхности с недейтерированной версией. Замещение дейтерия водородом может повлечь за собой возникновение изотопного эффекта, который способен изменить фармакокинетику лекарственного препарата. В реакции, в которой происходит расщепление связи C-H, скорость аналогичной реакции для связи C-D будет снижена. Например, Шнайдер и коллеги (Шнайдер Ф. и соавт., BiRDS Pharma GmbH (Бердс Фарма ГмбХ), исследование лекарственного препарата (2006), 56 (4), стр.295-300) продемонстрировали, что замещение нескольких атомов водорода в одном из ароматических колец ингибитора COX-2 рефекоксиба (4-(4-метилсульфонилфенил)-3-фенил-5H-фуран-2-один) дейтерием (в положениях 2′, 3′, 4′ 5′ и 6′) повышало пероральную биологическую доступность лекарственного препарата, не оказывая воздействия на избирательность COX-2. При применении этой стратегии к кислоте на основе триптофана S-3304 возможно снижение ее восприимчивости к гидроксилированию цитохромом P450 и повышение, в конечном счете, ее общей биологической доступности и, возможно, концентрации целевого соединения в ткани.

Другим возможным следствием включения дейтерия в лекарственный препарат являются его полиморфные свойства (т.е. различные кристаллические формы). Например, Хирота и Урушибара (Бюллетень химического общества Японии, 32 (7) (1959), 703-706) продемонстрировали, что замещение одного винилового водорода на дейтерий в аллокоричной кислоте способно изменить как температуру плавления, так и интенсивность рентгеновской дифракционной картины молекулы. Лин и Гиллори (журнал фармацевтической науки, том 59 (7) (2006), 972-979) продемонстрировали, что сульфаниламид-d4 проявлял сниженные показатели теплоты перехода и теплоты плавления в различных кристаллических состояниях по сравнению с соответствующими недейтерированными формами. И наконец, Кроуфорд и коллеги (Кроуфорд С.и соавт., международное издание «Прикладная химия», 48 (4) (2009), 755-757) недавно продемонстрировали, что кристаллическая форма полностью дейтерированного пиридина принимает уникальную конфигурацию, которая может быть достигнута только при оказании высокого давления на недейтерированную исходную версию. В их работе явно продемонстрировано, что замещение водорода на дейтерий изменяет силу взаимодействия между различными атомами в соседних молекулах, вызывая переход кристаллической структуры в более энергетически выгодную форму. Это изменение кристаллической структуры, или полиморфная модификация, может обеспечить повышение свойств растворимости и улучшение биологической доступности.

Сухолейки (WO/2010/075287) продемонстрировал, что частичное дейтерирование ингибитора матричной металлопротеиназы (ММП) может повысить биологическую доступность этого ингибитора по сравнению с недейтерированной исходной версией. Известно, что в крови человека ингибитор ММП S3304 образует несколько гидроксилированных метаболитов (Чиаппори А.А. и соавт., Клиническое исследование рака 2007, 13 (7), 2091-2099). В двух из основных метаболитов гидроксилирование осуществляется по индоловому кольцу группы триптофана, а в третьем происходит гидроксилирование метиловой группы толуола молекулы S3304. При дейтерировании концевой метиловой группы толуола S3304 наблюдалось повышение биологической активности соединения in vivo в модели на мышах лигирования спинномозгового нерва (ЛСН) для механической аллодинии по сравнению с контролем растворителем и недейтерированной исходной версией (S3304).

В литературе отражены несколько не содержащих гидроксамовую кислоту ингибиторов ММП, лишь для некоторых из которых были выполнены клинические исследования для применения при раке и/или воспалении. Однако ни для одного из них не были выполнены исследования в отношении боли, зависимости от лекарственных средств или снижения толерантности и абстиненции, связанных с применением опиоидов, на модельных животных или человеке. В настоящей заявке предлагается ряд соединений, ингибирующих ММП-2 и/или ММП-9, и способ их применения для ингибирования боли и других расстройств.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к соединениям и фармацевтическим композициям для применения в качестве лекарственного препарата для лечения обусловленных ММП состояний или заболеваний.

Один вариант осуществления настоящего изобретения относится к новому способу лечения боли, зависимости от лекарственных средств и/или снижения побочных эффектов толерантности и абстиненции, связанных со злоупотреблением психоактивными веществами, с применением ингибитора ММП-2 и/или ММП-9.

Ингибитор ММП-2 и/или ММП-9 представлен общими формулами (I-XIII):

где все переменные в предыдущих формулах (I-XIII) определены ниже в настоящем описании.

R1, R2 независимо выбраны из группы, состоящей из водорода, галогена, алкила, циклоалкила, гетероциклоалкила, бициклоалкила, гетеробициклоалкила, спироалкила, спирогетероалкила, арила, гетероарила, циклоалкила, конденсированного с арилом, гетероциклоалкила, конденсированного с арилом, циклоалкила, конденсированного с гетероарилом, гетероциклоалкила, конденсированного с гетероарилом, циклоалкилалкила, гетероциклоалкилалкила, бициклоалкилалкила, гетеробициклоалкилалкила, спироалкилалкила, спирогетероалкилалкила, арилалкила, гетероарилалкила, циклоалкила, конденсированного с арилалкилом, гетероциклоалкила, конденсированного с арилалкилом, циклоалкила, конденсированного с гетероарилалкилом, гетероциклоалкила, конденсированного с гетероарилалкилом, гетероциклоалкила, бициклоалкила, гетеробициклоалкила, спироалкила, спирогетероалкила, арила, гетероарила, циклоалкила, конденсированного с арилом, гетероциклоалкила, конденсированного с арилом, циклоалкила, конденсированного с гетероарилом, гетероциклоалкила, конденсированного с гетероарилом, циклоалкилалкила, гетероциклоалкилалкила, бициклоалкилалкила, гетеробициклоалкилалкила, спироалкилалкила, спирогетероалкилалкила, арилалкила, гетероарилалкила, циклоалкила, конденсированного с арилалкилом, гетероциклоалкила, конденсированного с арилалкилом, циклоалкила, конденсированного с гетероарилалкилом, гидроксигруппы, алкоксигруппы, арила, гетероарила, арилалкила, гетероарилалкила, алкенила, алкинила, NO2, NR9R9, NR9NR9R9, NR9N=CR9R9, NR9SO2R9, CN, C(O)OR9 и фторалкила, где алкил, циклоалкил, алкоксигруппа, алкенил, алкинил и фторалкил являются необязательно замещенными один или большее количество раз, а гетероциклоалкил, конденсированный с гетероарилалкилом является необязательно замещенным один или большее количество раз;

его N-оксиды, дейтерированные аналоги, фармацевтически приемлемые соли, пролекарства, лекарственные формы, полиморфы, таутомеры, рацемические смеси и стереоизомеры.

Соединения настоящего изобретения, ингибирующие ММП-2 и/или ММП-9, также могут быть применены для лечения других заболеваний, обусловленных активностью металлопротеаз, таких как ревматоидный артрит, остеоартрит, аневризма брюшной аорты, рак, воспаление, атеросклероз, рассеянный склероз, хроническая обструктивная болезнь легких, глазные болезни, неврологические заболевания, психиатрические заболевания, тромбоз, бактериальное заражение, болезнь Паркинсона, усталость, тремор, диабетическая ретинопатия, сосудистые заболевания сетчатки глаза, старение, слабоумие, кардиомиопатия, почечная тубулярная недостаточность, диабет, психоз, дискинезия, пигментные нарушения, глухота, воспалительный и фиброзный синдромы, раздражающий кишечный синдром, аллергии, болезнь Альцгеймера, артериальное распространение бактерий, пародонтоз, вирусное заражение, инсульт, сердечнососудистое заболевание, реперфузионное повреждение, травмы, химическое или окислительное повреждение тканей, заживление ран, геморрой, процедура омоложения кожи и боль.

В частности, соединения настоящего изобретения, ингибирующие ММП-2 и/или ММП-9, также могут быть применены для лечения боли, снижения побочных эффектов зависимости от и/или отмены лекарственных средств, связанных со злоупотреблением пациентом психоактивными веществами, указанный способ, включающий этап введения пациенту эффективного количества настоящего соединения в сочетании с носителем, отличающийся тем, что пациент страдает от повышенной или гипертрофированной чувствительности к боли, такой как гипералгезия, каузалгия и аллодиния; острая боль, жгучая боль; атипичная лицевая боль; невропатическая боль; боль в спине; комплексные региональные болевые синдромы I и II; артритическая боль; боль от спортивных травм; боль, связанная с вирусным заражением, напр., ВИЧ, постполиомиелитным синдромом и постгерпетической невралгией; фантомная боль конечностей; родовые схватки; раковая боль; боль после химиотерапии; постинсультная боль; послеоперационная боль; физиологическая боль; воспалительная боль; боль острых воспалительных состояний/боль во внутренних органах, напр., стенокардия, раздражающий кишечный синдром и воспалительные заболевания кишечника; невропатическая боль; невралгия; болевая диабетическая невропатия; травматическое повреждение нервов; повреждение спинного мозга; зависимость от лекарственных средств и/или толерантность или абстиненция от опиоидов или других вызывающих зависимость лекарственных средств.

Настоящее изобретение также предлагает соединения, ингибирующие ММП-2, ММП-9 и/или другие металлопротеазы, которые используются в качестве действующих веществ в фармацевтических композициях для лечения или профилактики активности металлопротеаз, в частности, заболеваний, обусловленных активностью ММП-2 и/или ММП-9. Настоящее изобретение также предполагает использование таких соединений в фармацевтических композициях для перорального или парентерального введения, включающих одно или более соединений, ингибирующих ММП-2 и/или ММП-9, представленных в настоящем описании.

Настоящее изобретение далее предлагает способы ингибирования ММП-2, ММП-9 и/или других металлопротеаз посредством введения лекарственных форм, включая, но не ограничиваясь, пероральные, ректальные, местные, интратекальные, внутривенные, парентеральные (включая, но не ограничиваясь, внутримышечные, внутривенные), инъекции склеры (офтальмические) чрескожные, ингаляционные (включая, но не ограничиваясь, легочную, аэрозольную ингаляцию), назальные, сублингвальные, подкожные или внутрисуставные лекарственные формы, включающие соединения, ингибирующие гетеробициклические металлопротеазы, стандартными способами, известными в медицинской практике, для лечения заболеваний или симптомов, обусловленных или связанных с металлопротеазой, в частности с ММП-2, в том числе профилактическое и терапевтическое лечение. Хотя наиболее подходящие пути введения зависят от характера и степени тяжести состояний, подвергаемых лечению, и характера действующего вещества. Соединения настоящего изобретения для удобства представлены в единичной дозированной форме и могут быть получены с помощью любых способов, хорошо известных в области фармацевтики.

Соединения настоящего изобретения, ингибирующие ММП-2 и/или ММП-9, могут быть использованы в сочетании с болезнь-модифицирующими противоревматическими препаратами, нестероидными противовоспалительными препаратами, избирательным ингибитором СОХ-2, ингибитором СОХ-1, иммунодепрессивными, стероидными препаратами, модификатором биологической реакции или другими противовоспалительными препаратами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

ФИГУРЫ 1 (A-J) представляют собой графики, демонстрирующие, что интратекальное введение соединения 10 значительно смягчает поведенческие признаки симптомов абстиненции, связанной с отменой морфина, которая спровоцирована налоксоном, у мышей линии CD-1 по сравнению с контрольным препаратом и растворителем (n=5 мышей для контрольного препарата; n=13 мышей для контроля растворителем ДМСО и n=14 мышей для введения соединения 10).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Термин «D», используемый в настоящем описании сам по себе или в составе химической структуры или группы, обозначает дейтерий.

Термин «дейтерий», используемый в настоящем описании сам по себе или в составе другой группы, обозначает стабильный изотоп водорода с массовым числом 2.

Термин «дейтерированный», используемый в настоящем описании сам по себе или в составе группы, обозначает необязательно замещенные атомы дейтерия.

Термин «дейтерированный аналог», используемый в настоящем описании сам по себе или в составе группы, обозначает необязательно замещенные атомы дейтерия в выбранных положениях внутри и вокруг молекулы.

Термин «алкил», используемый в настоящем описании сам по себе или в составе другой группы, обозначает необязательно замещенные насыщенные углеводородные группы с прямой или разветвленной цепочкой, предпочтительно имеющие от 1 до 10 атомов углерода в нормальной цепочке, более предпочтительно низшие алкильные группы. Типичные незамещенные группы включают метил, этил, пропил, изопропил, н-бутил, трет-бутил, изобутил, пентил, гексил, изогексил, гептил, 4,4-диметилпентил, октил, 2,2,4-триметилпентил, нонил, децил, ундецил, додецил и им подобные. Типичные заместители могут включать, но не ограничиваются, одну или большее количество следующих групп: галоген, алкоксигруппа, алкилтиогруппа, алкенил, алкинил, арил (напр., для образования бензильной группы), циклоалкил, циклоалкенил, гидроксигруппа или защищенная гидроксигруппа, карбоксильная группа (--COOH), алкилоксикарбонил, алкилкарбонилоксигруппа, алкилкарбонил, карбамоил (NH2--CO--), замещенный карбамоил ((R10)(R11)N--CO--, где R10 или R11 являются такими, как определено ниже, за исключением того, что как минимум один из R10 или R11 не является водородом), аминогруппа, гетероциклогруппа, моно- или диалкиламиногруппа, или тиол (--SH).

Термин «гетероалкил», который может быть взаимозаменяемо использован с термином «алкил», обозначает необязательно замещенные насыщенные углеводородные группы с прямой или разветвленной цепочкой, предпочтительно имеющие от 1 до 10 атомов углерода в нормальной цепочке, более предпочтительно низшие алкильные группы. Типичные незамещенные группы включают метил, этил, пропил, изопропил, н-бутил, трет-бутил, изобутил, пентил, гексил, изогексил, гептил, 4,4-диметилпентил, октил, 2,2,4-триметилпентил, нонил, децил, ундецил, додецил и им подобные. Типичные заместители могут включать, но не ограничиваются, одну или большее количество следующих групп: галоген, алкоксигруппа, алкилтиогруппа, алкенил, алкинил, арил (напр., для образования бензильной группы), циклоалкил, циклоалкенил, гидроксигруппа или защищенная гидроксигруппа, карбоксильная группа (--COOH), алкилоксикарбонил, алкилкарбонилоксигруппа, алкилкарбонил, карбамоил (NH2--CO--).

Термин «низший алкил», используемый в настоящем описании, обозначает необязательно замещенные группы, как описано выше для алкила, имеющие от 1 до 4 атомов углерода в нормальной цепочке.

Термин «алкоксигруппа» обозначает алкильную группу, как описано выше, связанную через кислородную связь (--O--).

Термин «алкенил», используемый в настоящем описании сам по себе или в составе другой группы, обозначает необязательно замещенные углеводородные группы с прямой или разветвленной цепочкой, содержащие в цепочке, по крайней мере, одну двойную связь углерод-углерод и предпочтительно имеющие от 2 до 10 атомов углерода в нормальной цепочке. Типичные незамещенные группы включают этенил, пропенил, изобутенил, бутенил, пентенил, гексенил, гептенил, октенил, ноненил, деценил и им подобные. Типичные заместители могут включать, но не ограничиваются, одну или большее количество следующих групп: галоген, алкоксигруппа, алкилтиогруппа, алкил, алкинил, арил, циклоалкил, циклоалкенил, гидроксигруппа или защищенная гидроксигруппа, карбоксильная группа (--COOH), алкилоксикарбонил, алкилкарбонилоксигруппа, алкилкарбонил, карбамоил (NH2--CO-), замещенный карбамоил.

Термин «алкинил», используемый в настоящем описании сам по себе или в составе другой группы, обозначает необязательно замещенные углеводородные группы с прямой или разветвленной цепочкой, содержащие в цепочке как минимум одну тройную связь углерод-углерод и предпочтительно имеющие от 2 до 10 атомов углерода в нормальной цепочке. Типичные незамещенные группы включают, но не ограничиваются, этинил, пропинил, бутинил, пентинил, гексинил, гептинил, октинил, нонинил, децинил, и им подобные. Типичные заместители могут включать, но не ограничиваются, одну или большее количество следующих групп: галоген, алкоксигруппа, алкилтиогруппа, алкил, алкенил, арил, циклоалкил, циклоалкенил, гидроксигруппа или защищенная гидроксигруппа, карбоксильная группа (--COOH), алкилоксикарбонил, алкилкарбонилоксигруппа, алкилкарбонил, карбамоил (NH2--CO--), замещенный карбамоил.

Термин «циклоалкил», используемый в настоящем описании сам по себе или в составе другой группы, обозначает необязательно замещенные насыщенные циклические углеводородные кольцевые системы, в том числе системы колец с внутренним мостиком, предпочтительно содержащие от 1 до 3 колец и от 3 до 9 атомов углерода. Типичные незамещенные группы включают, но не ограничиваются, циклопропил, циклобутил, циклопентил, циклогексил, циклогептил, циклооктил, циклодецил и циклододецил и адамантил. Типичные заместители включают, но не ограничиваются, одну или большее количество алкильных групп, как описано выше, или одну или большее количество групп, описанных выше в качестве алкильных заместителей.

Термин «арил», используемый в настоящем описании сам по себе или в составе другой группы, обозначает необязательно замещенные гомоциклические ароматические группы, предпочтительно содержащие 1 или 2 кольца и от 6 до 12 атомов углерода на каждое кольцо. Типичные незамещенные группы включают, но не ограничиваются, фенил, бифенил и нафтил. Типичные заместители включают, но не ограничиваются, одну или большее количество нитрогрупп, алкильных групп, как описано выше, или групп, описанных выше в качестве алкильных заместителей.

Термин «гетероцикл» или «гетероциклическая система» обозначает гетероциклил, гетероцикленил или гетероарильную группу, как описано в настоящем изобретении, которые содержат атомы углерода и от 1 до 4 гетероатомов, независимо выбранных из N, O и S и включающих любую бициклическую или трициклическую группу, в которой любое из определенных выше гетероциклических колец является конденсированным с одним или большим количеством гетероциклических, арильных или циклоалкильных групп. Гетероатомы азота и серы могут быть необязательно окислены. Гетероциклическое кольцо может быть присоединено к его подвешенной группе по любому гетероатому или атому углерода, что обеспечивает стабильную структуру. Гетероциклические кольца, описанные в настоящем изобретении, могут быть замещены по атому углерода или по атому азота.

Примеры гетероциклов включают, но не ограничиваются, 1H-индазол, 2-пирролидонил, 2H,6H-1,5,2-дитиазинил, 2H-пирролил, 3H-индолил, 4-пиперидонил, 4аH-карбазол, 4H-хинолизинил, 6H-1,2,5-тиадиазинил, акридинил, азоцинил, бензимидазолил, бензофуранил, бензотиофуранил, бензотиофенил, бензоксазолинил, бензоксазолил, бензтиазолил, бензтриазолил, бензтетразолил, бензизоксазолил, бензизотиазолил, бензимидазалонил, карбазолил, 4aH-карбазолил, b-карболинил, хроманил, хроменил, циннолинил, декагидрохинолинил, 2H,6H-1,5,2-дитиазинил, дигидрофуро[2,3-b]тетрагидрофуран, фуранил, фуразанил, имидазолидинил, имидазолинил, имидазолил, 1Н-индазолил, индоленил, индолинил, индолизинил, индолил, изатиноил, изобензофуранил, изохроманил, изоиндазолил, изоиндолинил, изоиндолил, изохинолинил, изотиазолил, изоксазолил, морфолинил, нафтиридинил, октагидроизохинолинил, оксадиазолил, 1,2,3-оксадиазолил, 1,2,4-оксадиазолил, 1,2,5-оксадиазолил, 1,3,4-оксадиазолил, оксазолидинил, оксазолил, оксазолидинилперимидинил, оксиндолил, фенантридинил, фенантролинил, фенарсазинил, феназинил, фенотиазинил, феноксатиинил, феноксазинил, фталазинил, пиперазинил, пиперидинил, птеридинил, пиперидонил, 4-пиперидонил, птеридинил, пуринил, пиранил, пиразинил, пиразолидинил, пиразолинил, пиразолил, пиридазинил, пиридооксазол, пиридоимидазол, пиридотиазол, пиридинил, пиридил, пиримидинил, пирролидинил, пирролинил, пирролил, хиназолинил, хмнолинил, 4Н-хинолизинил, хиноксалинил, хинуклидинил, карболинил, тетрагидрофуранил, тетрагидроизохинолинил, тетрагидрохинолинил, тетразолил, 6H-1,2,5-тиадиазинил, 1,2,3-тиадиазолил, 1,2,4-тиадиазолил, 1,2,5-тиадиазолил, 1,3,4-тиадиазолил, тиантренил, тиазолил, тиенил, тиенотиазолил, тиенооксазолил, тиеноимидазолил, тиофенил, триазинил, 1,2,3-триазолил, 1,2,4-триазолил, 1,2,5-триазолил, 1,3,4-триазолил, ксантенил.

Термин «гетероцикленил» обозначает неароматическую моноциклическую или полициклическую углеводородную кольцевую систему, содержащую приблизительно от 3 до 10 атомов, желательно содержащую приблизительно от 4 до 8 атомов, в которой один или большее количество атомов углерода в кольцевой системе являются гетероэлементами, отличными от углерода, например, атомами азота, кислорода или серы, и которая содержит как минимум одну двойную связь углерод-углерод или двойную связь углерод-азот. Размеры колец кольцевой системы могут включать от 5 до 6 атомов в кольце. Обозначение аза-, окса- или тиа- в качестве приставки перед гетероцикленилом, говорит о том, что как минимум один атом азота, кислорода или серы присутствует соответственно как атом кольца. Гетероцикленил может быть необязательно замещен одним или большим количеством заместителей, как определено в настоящем описании. Атом азота или серы гетероцикленил а также может быть необязательно окислен до соответствующего N-оксида, S-оксида или S,S-диоксида. Термин «гетероцикленил», используемый в настоящем описании, включает в качестве примера и не ограничиваясь соединения, описанные в следующих работах: Пакетт Лео А.; «Основы современной гетероциклической химии» (У.А. Бенджамин, Нью-Йорк, 1968), в частности, в главах 1, 3, 4, 6, 7 и 9; «Химия гетероциклических соединений». Серия монографий (Джон Уайли и сыновья, Нью-Йорк, от 1950 г. по настоящее время), в частности тома 13, 14, 16, 19 и 28; Журнал американского химического общества, 82: 5566 (1960) - все содержания которых включены в качестве ссылки в настоящее описание. Типичные моноциклические азагетероцикленильные группы включают, но не ограничиваются, 1,2,3,4-тетрагидрогидропиридин, 1,2-дигидропиридил, 1,4-дигидропиридил, 1,2,3,6-тетрагидропиридин, 1,4,5,6-тетрагидропиримидин, 2-пирролинил, 3-пирролинил, 2-имидазолинил, 2-пиразолинил, и им подобные. Типичные оксагетероцикленильные группы включают, но не ограничиваются, 3,4-дигидро-2Н-пиран, дигидрофуранил и фтордигидрофуранил. Типичной полициклической оксагетероцикленильной группой является 7-оксабицикло[2.2.1]гептенил.

Термин «гетероциклил» обозначает неароматическую насыщенную моноциклическую или полициклическую кольцевую систему, содержащую приблизительно от 3 до 10 атомов углерода, желательно содержащую от 4 до 8 атомов углерода, в которой один или большее количество атомов углерода в кольцевой системе являются гетероэлементами, отличными от углерода, например, атомами азота, кислорода или серы. Размеры колец кольцевой системы могут включать от 5 до 6 атомов в кольце. Обозначение аза-, окса- или тиа- в качестве приставки перед гетероциклилом, говорит о том, что как минимум один атом азота, кислорода или серы присутствует соответственно как атом кольца. Гетероциклил может быть необязательно замещен одним или большим количеством заместителей, которые могут быть одинаковыми или различными, как определено в настоящем описании. Атом азота или серы гетероциклила также может быть необязательно окислен до соответствующего N-оксида, S-оксида или S,S-диоксида.

Термин «гетероциклил», используемый в настоящем описании, включает в качестве примера и не ограничиваясь соединения, описанные в следующих работах: Пакетт Лео А.; «Основы современной гетероциклической химии» (У.А. Бенджамин, Нью-Йорк, 1968), в частности, в главах 1, 3, 4, 6, 7 и 9; «Химия гетероциклических соединений». Серия монографий (Джон Уайли и сыновья, Нью-Йорк, от 1950 г. по настоящее время), в частности то