Геотермальная теплонасосная система

Иллюстрации

Показать все

Предлагается устройство, содержащее теплонасосное оборудование и систему сбора низкопотенциальной теплоты грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более вертикальных герметичных грунтовых теплообменников коаксиального типа с внутренней трубой, покрытой теплоизолирующим слоем пористого материала с замкнутыми порами. Каждая из зон грунтового теплообменника имеет гидравлически обособленный циркуляционный контур, соединенный с содержащим запас теплоносителя баком через питательный насос с обратным клапаном и байпасной линией, содержащей электроуправляемый сбросной вентиль. В каждой зоне питательный насос и сбросной клапан для автоматического управления подключены к контроллеру, соединенному с датчиком температуры на выходе из соответствующей зоны термоскважин. Кроме того, для повышения эффективности термоскважин эластичный материал с замкнутыми порами имеет профилированную наружную поверхность с кольцевыми или спиральными выступами. Использование изобретения позволяет повысить эффективность грунтового теплообменника. 1 з.п. ф-лы, 2 ил.

Реферат

Геотермальная теплонасосная система относится к области энергосберегающего теплохладоснабженя с использованием нетрадиционных возобновляемых источников энергии, в данном случае - теплоемкости грунтового массива.

Известна геотермальная теплонасосная система (патент РФ №120196), содержащая систему сбора низкопотенциального тепла грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более герметичный вертикальный грунтовый теплообменник (термоскважину), а при эксплуатации теплонасосной системы теплоснабжения зоны включаются в работу поочередно, причем в режиме теплоснабжения приоритетом пользуются зоны с наивысшим температурным потенциалом грунта и наименьшим числом отработанных часов, а в режиме кондиционирования зоны - с наименьшим температурным потенциалом грунта.

Недостатком такого решения является то, что зоны теплообменников включаются поочередно в зависимости от теплового состояния грунтового массива данной зоны, то есть периодически та или иная зона исключается из работы.

Известна термоскважина для извлечения или сброса в грунт тепловой энергии (патент РФ №2560867), состоящая из герметизированной скважины с циркулирующим теплоносителем, в герметичную полость которой встроена внутренняя труба, образующая с полостью термоскважины единый гидравлический контур, причем внутренняя труба дополнительно теплоизолирована слоем пористого материала с замкнутыми порами.

Целью предлагаемого технического решения является обеспечение постоянной работы двух и более зон посредством автоматического регулирования теплосъема в зависимости от теплового состояния соответствующих участков грунтового массива путем автоматического регулирования расхода теплоносителя через термоскважины различных зон, причем в качестве регулирующего органа используется слой теплоизоляционного материала с закрытыми порами, нанесенный на внутреннюю трубу вертикального коаксиального грунтового теплообменника (термоскважины) и выполненный из эластичного материала.

Устройство поясняется фигурами 1 и 2.

Две и более зоны вертикальных коаксиальных грунтовых теплообменников 1 параллельно через теплообменники подключены к теплонасосной системе 2, конкретнее к испарительной ее части, гидравлически независимыми циркуляционными контурами, к каждому из которых подключен через обратный клапан 3 и питательный насос 4 бак 5, заполненный теплоносителем (антифризом). Питательный насос 4 и обратный клапан 3 имеют байпас с электроуправляемым сбросным вентилем 6. Питательный насос 4 и сбросной вентиль 3 подключены к контроллеру 7, соединенному с датчиком температуры теплоносителя 8. Количество зон зависит от степени неоднородности грунтового массива и определяется при проектировании конкретных объектов на основании инженерно-геологических изысканий.

Грунтовый теплообменник (см. фиг. 2) коаксиального типа содержит наружную 9 и внутреннюю 10 трубы, причем наружная труба находится в контакте с грунтовым массивом 11. На внутреннюю трубу 10 нанесен эластичный слой 12 вспененной тепловой изоляции, имеющей закрытые поры. Толщина слоя 12 тепловой изоляции выбирается из расчета формирования расчетного зазора кольцевого канала 13 между наружным диаметром тепловой изоляции и внутренним диаметром наружной трубы 9.

Наружная поверхность тепловой изоляции имеет кольцевые или спиральные выступы 14.

Устройство работает следующим образом.

При изменении теплового режима грунтового массива, причем различного для разных зон грунтовых теплообменников, при расчетном расходе теплоносителя изменяется температура теплоносителя на выходе из зон. Датчик температуры 8 дает сигнал в контроллер 7, который выдает управляющий сигнал. Если тепловой ресурс грунтового массива 11 (см. фиг. 2) данной зоны выше расчетного, температура теплоносителя на выходе из зоны повышается, датчик 8 дает через контроллер 7 сигнал включения питательного насоса 4 и базовое давление теплоносителя в контуре повышается. Как следствие, повышается давление в кольцевом канале 13 грунтового теплообменника, эластичный слой 12 теплоизоляционного материала сжимается, увеличивая зазор кольцевого канала 13, что приводит к увеличению расхода теплоносителя. При истощении теплового потенциала грунта и понижении его температуры температура на выходе из зоны грунтовых теплообменников снижается, датчик 8 дает через контроллер 7 сигнал на открытие сбросного вентиля 6 и базовое давление теплоносителя в контуре понижается. Как следствие, понижается давление в кольцевом канале 13 (см. фиг. 2) грунтового теплообменника, эластичный слой 12 теплоизоляционного материала расширяется, уменьшая зазор кольцевого канала 13, что приводит к уменьшению расхода теплоносителя.

Таким образом, предлагаемое устройство автоматически адаптируется к изменяющимся условиям теплового состояния грунтового массива.

Профилированная наружная поверхность эластичного слоя 12 с кольцевыми или спиральными выступами обеспечивает турбулизацию потока теплоносителя, что повышает тепловую эффективность грунтового теплообменника.

Предлагаемое техническое решение обеспечивает непрерывное использование теплового ресурса грунтового массива и повышает эффективность грунтового теплообменника.

1. Геотермальная теплонасосная система теплохладоснабжения, содержащая теплонасосное оборудование и систему сбора низкопотенциальной теплоты грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, содержит один и более вертикальных герметичных грунтовых теплообменников коаксиального типа с внутренней трубой, покрытой теплоизолирующим слоем пористого материала с замкнутыми порами, отличающаяся тем, что пористый материал имеет эластичные свойства, а каждая из зон системы сбора имеет гидравлически обособленный циркуляционный контур, соединенный с содержащим запас теплоносителя баком через питательный насос с обратным клапаном и байпасной линией, содержащей электроуправляемый сбросной вентиль, причем в каждой зоне питательный насос и сбросной клапан для автоматического управления подключены к контроллеру, соединенному с датчиком температуры на выходе из соответствующей зоны термоскважин.

2. Геотермальная теплонасосная система теплохладоснабжения по п. 1, отличающаяся тем, что эластичный материал с замкнутыми порами, встроенный в качестве теплоизоляции внутренней трубы грунтового теплообменника коаксиального типа, имеет профилированную наружную поверхность с кольцевыми или спиральными выступами.