Создание подходящей модели для оценки дозы облучения пациента в результате сканирований для медицинской визуализации

Иллюстрации

Показать все

Группа изобретений относится к медицине и может быть использована для оценки дозы облучения, поглощенной индивидуумом при прохождении томографического сканирования. Группа изобретений представлена способом и системой для определения оценки дозы облучения, поглощенной индивидуумом при прохождении томографического сканирования. Система содержит процессор и память, хранящую прикладную программу, сконфигурированную для выполнения операции. Получают набор параметров, описывающих томографическое сканирование и устройство томографии. Получают деформированный томографический фантом, соответствующий индивидууму. Проводят оценку множества ранее выполненных моделирований. После определения, что два или более моделирований соответствуют полученному набору параметров и деформированному томографическому фантому, проводят интерполяцию оценки дозы облучения. После определения, что множество моделирований не включает по меньшей мере два или более моделирования, соответствующие полученному набору параметров и деформированному томографическому фантому, выполняют моделирование томографического сканирования, оценку количества облучения и добавление выполненного моделирования. Группа изобретений обеспечивает повышение точности оценки дозы облучения, поглощенной индивидуумом при прохождении томографического сканирования за счет получения деформированного томографического фантома, оценки соответствия множества моделирований по меньшей мере двум или более моделированиям, соответствующим полученному набору параметров и деформированному томографическому фантому. 2 н. и 4 з.п. ф-лы, 11 ил.

Реферат

ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Варианты осуществления изобретения относятся, в общем, к способам оценки лучевой нагрузки пациента при сканированиях методом компьютерной томографии (KT).

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0002] Как известно, сканирующая система компьютерной томографии использует ионизирующее излечение (рентгеновское излучение) для формирования изображений тканей, органов и иных структур в теле человека. Рентгеновские данные, полученные с KT-скана, могут преобразовываться в изображения на экране дисплея компьютера. Например, KT-скан дает набор данных, используемых для создания трехмерного (3D) объема, соответствующего сканированной части тела пациента. 3D объем затем послойно срезается для создания изображений ткани тела через небольшие промежутки по оси тела пациента. Эти срезы могут включать как боковые, так и поперечные срезы (равно как и другие срезы) в зависимости от визуализируемых тканей или структур.

[0003] За последнее десятилетие использование KT-сканов и ионизирующего излучения для медицинской визуализации растет в геометрической профессии. И современные методы, такие, как KT-сканирование, дают намного более детальную и ценную диагностическую информацию, чем обычные рентгеновские изображения. Однако вместе с этим пациенты получают значительно большие дозы облучения. Например, при обычной KT грудной клетки пациент получает дозу облучения, в 100-250 раз выше дозы при обычном рентгеновском исследовании грудной клетки в зависимости от напряжения и тока сканирующей системы KT, протокола, соблюдаемого при выполнении процедуры и величины и формы сканируемого пациента.

[0004] Несмотря на растущее использование KT-сканирования (и, как следствие, растущую лучевую нагрузку), количество облучения, которому подвергается пациент во время процедуры, и, что важно, кумулятивная доза за несколько процедур, не являются параметрами, регулярно отслеживаемыми для пациента, равно как эти параметры не являются легко доступной частью истории болезни пациента. Это происходит частично потому, что у живых пациентов количество ионизирующего излучения, поглощенное внутренними органами и тканями, нельзя измерить непосредственно как часть KT-обследования, а результаты, полученные на трупах, хотя и более точные, не соответствуют поглощению дозы в живых тканях.

[0005] Аналогичным образом, методы оценки дозы, используемые в настоящее время, также дают неточные результаты. Например, в одном подходе для представления данного пациента используют ограниченное число физических фантомов для представления данного пациента. Однако имеющиеся фантомы не представляют адекватно широкое разнообразие размера и массы людей в популяции индивидуумов, проходящих KT-сканирование. Как результат, в большинстве случаев, если доза вообще оценивается, все, что проделывается в настоящее время, - это поверхностные измерения в отдельных точках. Однако это приводит как к неточным, так и варьирующим в широких пределах результатам в зависимости от того, где измеряется доза в отдельной точке. В более широком отношении, поверхностные измерения воздействия излучения не дают точный показатель фактического поглощения для внутренних тканей, органов и структур.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0006] В различных вариантах осуществления предлагаются способы оценки облучения пациента при компьютерной томографии (KT). В соответствии с одним вариантом осуществления, предлагается реализуемый с помощью компьютерной техники способ создания модели визуализации, соответствующей индивидууму. Этот способ может, как правило, включать стадию, на которой выбирают первоначальный томографический фантом для индивидуума, проходящего томографическое сканирование, причем томографический фантом имеет одно или несколько связанных изображений локализатора, и стадию, на которой получают одно или несколько предварительных изображений индивидуума. Кроме того, этот способ может включать стадию, на которой определяют преобразование по меньшей мере между одним из изображений локализатора, связанных с томографическим фантомом, и стадию, на которой первоначальный томографический фантом деформируют на основании этого преобразования.

[0007] В одном конкретном варианте осуществления томографическое сканирование представляет собой сканирование методом компьютерной томографии (KT); в других случаях томографическое сканирование представляет собой рентгеноскопию, сканирование методом позитронной эмиссионной томографии (ПЭТ), сканирование методом ангиографии и т.д. Кроме того, этот способ может включать стадию, на которой получают набор параметров, описывающих томографическое сканирование и сканирующее устройство компьютерной томографии, используемое для выполнения KT-сканирования, стадию, на которой моделируют томографическое сканирование, используя деформированный томографический фантом и полученный набор параметров, и стадию, на которой оценивают на основании моделирования количества облучения, поглощенного индивидуумом в результате выполнения томографического сканирования. В одном конкретном варианте осуществления моделирование представляет собой моделирование по методу Монте-Карло.

[0008] В еще одном варианте осуществления предлагается способ создания модели визуализации, соответствующей индивидууму. Этот способ может, как правило, включать стадию, на которой выбирают первоначальный фантом для индивидуума, проходящего процедуру сканирования методом компьютерной томографии (KT), и стадию, на которой осуществляют сегментирование эталонного KT-скана, связанного с индивидуумом, для идентификации трехмерного (3D) объема нескольких анатомических ориентиров индивидуума, присутствующих на эталонном KT-скане. Кроме того, этот способ может включать стадию, на которой один или несколько идентифицированных анатомических ориентиров в сегментированном эталонном KT-скане сопоставляют с соответствующими анатомическими ориентирами у первоначального томографического фантома, и стадию, на которой первоначальный фантом деформируют на основании сопоставленных анатомических ориентиров.

[0009] В соответствии с дополнительными вариантами осуществления предлагается считываемая компьютером запоминающая среда, хранящая приложение, которое при выполнении в процессоре осуществляет вышеупомянутый способ, а также система, имеющая процессор и память, хранящую прикладную программу управления информацией о деятельности, которая при выполнении в процессоре осуществляет вышеупомянутый способ.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[0010] Для того чтобы понять, как достигаются вышеупомянутые аспекты, ниже приводится более конкретное описание вариантов изобретения, вкратце описанных выше, со ссылками на прилагаемый графических материал. Следует, однако, отметить, что прилагаемые чертежи иллюстрируют лишь типичные варианты осуществления настоящего изобретения и, следовательно, не ограничивают его объем, поскольку изобретение может иметь другие равно эффективные варианты осуществления.

[0011] Фиг.1 иллюстрирует пример сканирующей системы KT и связанных вычислительных систем, предназначенных для обеспечения оценки дозы облучения пациента в соответствии с одним вариантом осуществления изобретения.

[0012] Фиг.2 иллюстрирует пример системы визуализации, используемой для получения данных KT-сканирования в соответствии с одним вариантом осуществления.

[0013] Фиг.3 иллюстрирует пример системы оценки дозы, используемой для оценки и отслеживания кумулятивной дозы пациента в соответствии с одним вариантом осуществления.

[0014] Фиг.4 иллюстрирует способ создания подходящей модели для оценки дозы облучения пациента в результате KT-сканирования в соответствии с одним вариантом осуществления.

[0015] Фиг.5А иллюстрирует примерное изображение, представляющее деформируемый фантом, в соответствии с одним вариантом осуществления.

[0016] Фиг.5B иллюстрирует пример двухмерного (2D) эталонного изображения части человеческого тела, соответствующего фантому, показанному на фиг.5А, в соответствии с одним вариантом осуществления.

[0017] Фиг.6 иллюстрирует еще один способ создания подходящей модели для оценки дозы облучения в результате KT-сканирования, в соответствии с одним вариантом осуществления.

[0018] Фиг.7 иллюстрирует примерный срез фантома, наложенный поверх соответствующего KT-среза пациента, в соответствии с одним вариантом осуществления.

[0019] Фиг.8 иллюстрирует пример поперечного среза фантома, наложенного поверх соответствующего поперечного KT-среза пациента, в соответствии с одним вариантом осуществления.

[0020] Фиг.9 иллюстрирует пример сегментации изображений при компьютерной томографии и смещения объема органов для фантома в соответствии с одним вариантом осуществления.

[0021] Фиг.10 иллюстрирует способ для услуги оценки дозы для предоставления оценок дозы пациента нескольким провайдерам KT-сканов.

[0022] Фиг.11 иллюстрирует примерную вычислительную инфраструктуру для системы услуги оценки дозы пациента, конфигурированную для поддержки нескольких провайдеров KT-сканирования, в соответствии с одним вариантом осуществления.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0023] Варианты осуществления изобретения относятся, в общем, к способам оценки лучевой нагрузки на пациента при сканировании по методу компьютерной томографии (KT). В частности, в соответствии с вариантами осуществления изобретения предлагаются эффективные способы создания подходящей модели пациента, используемой для выполнения этой оценки, способы оценки дозы пациента путем интерполяции результатов несколько имитационных моделирований, и способы для провайдера услуги поддерживать услугу оценки дозы, сделанную доступной нескольким провайдерам KT-сканов. Как подробно описывается ниже, система управления дозой представляет собой отдельную систему для отслеживания дозы облучения для разных модальностей и представления информации практикующим врачам в содержательной и легко понятной форме. Регулярный анализ кумулятивной дозы при заказе диагностических томографических проверок может привести к более информированному процессу принятия решений и, в конечном итоге, обеспечению безопасности и здоровья пациента.

[0024] В одном варианте осуществления создают виртуальный фантом для моделирования данного пациента, проходящего KT-сканирование. Виртуальный фантом могут создавать путем деформирования существующего математического фантома, чтобы тот лучше соответствовал размеру, форме и/или положениям органов пациента, облучаемого при KT-сканировании. Изначально математический фантом могут выбирать, исходя, например, из возраста и пола пациента. Конкретной геометрии пациента могут достигать путем деформирования выбранного математического фантома, используя преобразования, полученные путем анализа локализаторов предварительного изображения этого пациента. В этом контексте, как понятно специалисту, «локализатор» означает, в общем, 2D проекцию изображения пациента (обычно переднее/заднее рентгеновское изображение и/или боковое рентгеновское изображение). В этом способе выбранный математический фантом может иметь свой собственный эталонный набор изображений локализатора. Эталонные изображения для данного виртуального фантома выбирают соответствующими геометрии, размеру и положению этого фантома (например, руки вверх или в сторону) и могут выбирать из визуализации, полученной от нескольких человек.

[0025] Затем используют методы регистрации изображений для отображения точек на изображении локализатора пациента в точках на эталонном изображении (или изображениях), связанном с виртуальным фантомом. В результате этих действий получают набор преобразований, который могут использовать для деформирования виртуального фантома, чтобы тот лучше соответствовал геометрии пациента. Подобный подход включает использование эталонного набора 3D-данных (выбранных KT-сканов) для фантома и использование методов регистрации 3D-изображений для отображения точек на KT-скане данного пациента в точках на эталонных KT-сканах, связанных с данным фантомом.

[0026] Аналогичным образом, для идентификации 3D-объема в KT-скане, соответствующего интересуемым органам, тканям или структурам в KT-скане пациента, могут использовать сегментацию изображений. 3D-объем может быть окном или более точным 3D-объемом, считающимся как представляющий орган, и т.д. После идентификации могут определять смещение между положением органа в фантоме и соответствующим положением в KT-скане пациента. Вместо использования отдельных точек изображения (как в методах регистрации 2D/3D изображений) метод сегментации изображений основывается на использовании больших 3D-объемов из KT-изображения как точек данных для определения преобразования из виртуального фантома и данного пациента.

[0027] В каждом из этих случаев результирующий гибридный фантом обеспечивает намного более точное математическое представление конкретного пациента для использования в моделировании дозы, чем одни неизмененные фантомы. После того как преобразования определены, гибридный виртуальный фантом могут использовать для имитационного моделирования данной KT-процедуры для пациента. Например, для оценки поглощенной органом дозы для виртуального фантома разработаны хорошо известные методы моделирования Монте-Карло. В этих методах моделирования используют виртуальный фантом (преобразованный относительно к данному пациенту) вместе с рядом настроек, связанных с моделью KT-сканнера и процедурой компьютерной томографии, которую необходимо выполнить, чтобы рассчитать точные оценки поглощенной органом дозы. Например, KT-сканнер могут моделировать, используя кВп, т.е., пиковое анодное напряжение, угол мишени генератора рентгеновского излучения, угол веерного пучка, коллимация, толщина среза, расстояние от фокуса до оси, плоские фильтры (материал и толщина) и фильтры формирования луча (материал и геометрия). Естественно, эти (и другие параметры) могут выбирать при доступности или при необходимости, чтобы отвечать потребностям каждого конкретного случая.

[0028] Следует, однако, отметить, что оценка поглощенной органом дозы с использованием моделирования по методу Монте-Карло может потребовать много времени на расчеты - намного дольше, чем требуется для выполнения фактического KT-сканирования. Учитывая высокий коэффициент использования сканирующих систем KT во многих центрах визуализации, в случаях, если оценка суммарной кумулятивной дозы не должна превышать предписанный максимум, эта задержка просто недопустима. Даже у случаях, если до выполнения данной процедуры эта оценка не используется, если только оценки дозы пациента нельзя определить за время относительно такого же порядка, что и требуется для выполнения процедуры, то ведение учета оценки дозы для данной сканирующей системы становится весьма затруднительным, поскольку моделирования будут просто длиться все дольше и дольше выполняемых операций сканирования. Эта проблема нарастает в геометрической прогрессии для поставщика программного обеспечения как услуги (SaaS), поддерживающего услугу оценки дозы в «облаке» для нескольких центров визуализации.

[0029] Соответственно, в одном варианте осуществления оценки дозы пациента, определенные для данной процедуры, могут создавать путем интерполяции между двумя (или более) ранее выполненными моделированиями. Если «близких» моделирований нет, то в очередь на выполнение полных моделирований по методу Монте-Карло могут быть добавлены данные гибридного виртуального фантома, KT-сканнера и процедуры. Со временем большая библиотека моделирований позволяет выдавать оценки дозы в реальном времени при планировании и выполнении процедур. Это позволяет собирать данные о количествах кумулятивной дозы для данного пациента, а также соблюдать пределы кумулятивной дозы.

[0030] Кроме того, в одном варианте осуществления для выполнения оценок дозы, ведения библиотеки рассчитанных моделирований, а также для выполнения моделирований по методу Монте-Карло, может использоваться модель провайдера программного обеспечения как услуги (SaaS) или ресурсов для облачных вычислений. В этом случае провайдер KT-скана может поставить провайдера SaaS с параметрами данной процедуры KT. Например, для поставки провайдера SaaS с выбранным виртуальным фантомом вместе с преобразованиями, используемыми для создания гибридного фантома, моделирующего конкретного пациента и оборудование и протокол, которые должны использоваться при выполнении процедуры KT, может использоваться клиентское программное обеспечение (или даже защищенный веб-портал) в центре визуализации. После получения провайдер услуги может выбирать из библиотеки соответствующие моделирования для интерполяции и возвращать оценку поглощенной органом пациента дозы в центр визуализации.

[0031] Важно отметить, что провайдеру SaaS не нужно получать какую-либо фактическую идентифицирующую информацию о данном индивидууме или пациенте, проходящем KT-сканирование. Вместо этого провайдер SaaS получает лишь информацию, касающуюся виртуального фантома и системы/процедуры KT. Как результат, операции провайдера услуг могут не требовать соблюдения требований различных законов и/или нормативно-правовых актов, связанных с конфиденциальностью персональной медицинской информации. Кроме того, предоставляя оценки дозы для нескольких центров визуализации, результирующая библиотека моделирований становится более разнообразной, в которой намного вероятней найти кандидатов для интерполяции, по сравнению с библиотекой моделирований, созданной исключительно по результатам процедур сканирования, выполненных одним центром визуализации. Кроме того, централизация библиотеки моделирований и моделирований по методу Монте-Карло позволяет всем центрам визуализации, пользующимся услугой облачных вычислений, совместно использовать усовершенствования фантомов, механизм моделирования по методу Монте-Карло и методы интерполяции. Наконец, этот подход оставляет центру визуализации ведение информации, привязывающей кумулятивную дозу к конкретным пациентам. Позволяя фактическим данным пациента оставаться у каждого отдельного провайдера. В то же время провайдер SaaS может, естественно, связываться с центрами визуализации, используя целый ряд стандартизированных протоколов для обмена изображениями и данными, включая, например, стандарт формирования, передачи и хранения медицинских изображений (DICOM), стандарт систем хранения и передачи изображений (PACS), стандарт добровольческой организации Health Level Seven International (HL7), кода диагностики и процедур ICD-9, ICD-10 и т.д.

[0032] Дополнительно, последующее описание ведется со ссылками на варианты осуществления изобретения. Следует, однако, понимать, что конкретными описанными вариантами осуществления настоящее изобретение не ограничивается. Напротив, в пределах объема изобретения любое сочетание описанных ниже отличительных признаков и элементов, независимо от того, связаны они с разными вариантами осуществления или нет. Кроме того, хотя варианты осуществления изобретения могут достигать преимуществ над другими возможными решениями и/или над известным уровнем техники, факт достижения или недостижения конкретного преимущества данным вариантом осуществления не является ограничивающим для объема настоящего изобретения. Таким образом, описанные ниже аспекты, отличительные признаки, варианты осуществления и преимущества являются чисто иллюстративными и не рассматриваются как элементы или ограничения прилагаемой формулы изобретения за исключением четко указанного в пункте (пунктах) формулы. Подобным образом, ссылка на «изобретение» не должна истолковываться как обобщение любого патентоспособного предмета, раскрытого в настоящем описании, и не должна рассматриваться как элемент или ограничение прилагаемой формулы изобретения за исключением четко указанного в пункте (пунктах) формулы.

[0033] Как будет ясно специалисту, аспекты настоящего изобретения могут быть воплощены как система, способ или компьютерный программный продукт. Соответственно, аспекты настоящего изобретения могут принимать вид варианта осуществления, полностью представляющего собой аппаратные средства, варианта осуществления, полностью представляющего собой программное обеспечение (включая программно-аппаратные средства, резидентное программное обеспечение, микрокод и т.д.) или варианта осуществления, сочетающего аспекты аппаратных средств и программного обеспечения, все из которых далее по тексту могут, в общем, именоваться как «схема», «модуль» или «система». Кроме того, аспекты настоящего изобретения могут принимать вид компьютерного программного продукта, реализованного на одном или несколько считываемых компьютером носителях, имеющих реализованную на них считываемую компьютером управляющую программу.

[0034] Может использоваться любое сочетание одного или нескольких считываемых компьютером носителей. Считываемым компьютером носителем может быть считываемая компьютером сигнальная среда или считываемая компьютером запоминающая среда. Считываемой компьютером запоминающей средой может быть, например, среди прочих электронная, магнитная, оптическая, электромагнитная, инфракрасная или полупроводниковая система, аппарат или устройство или любое подходящее сочетание их. Более конкретные примеры (не исчерпывающий перечень) считываемой компьютером запоминающей среды включали бы следующее: электрическое соединение, имеющее один или несколько проводов, компьютерная дискета, жесткий диск, оперативное запоминающее устройство (ОЗУ), постоянное запоминающее устройство (ПЗУ), стираемое программируемое постоянное запоминающее устройство (СППЗУ или флэш-память), оптоволокно, компакт-диск, предназначенный только для чтения (CD-ROM), оптическое запоминающее устройство, магнитное запоминающее устройство или любое подходящее сочетание их. В контексте этого документа считываемой компьютером запоминающей средой может быть любая осязаемая среда, которая может содержать или хранить программу для использования системой, аппаратом или устройством исполнения команд или в связи с ними.

[0035] Схемы последовательности операций и блок-схемы на фигурах иллюстрируют архитектуру, функциональность и работу возможных реализации систем, способов и компьютерных программных продуктов в соответствии с различными вариантами настоящего изобретения. В этом отношении каждый блок на схеме последовательности операции или блок-схемах может представлять модуль, сегмент или часть кода, который или которая содержит одну или несколько исполняемых команд для реализации оговоренной логической функции (функций). В некоторых альтернативных реализациях функции, отмеченные в блоке, могут выполняться не в том порядке, в каком они показаны на фигурах. Например, два блока, показанные последовательно, могут на самом деле исполняться практически одновременно, или эти блоки могут иногда исполняться в обратном порядке в зависимости от вовлеченной функциональности. Каждый блок блок-схем и/или иллюстраций схем последовательности операций и сочетания блоков на блок-схемах и/или иллюстрациях схем последовательности операций могут реализовываться специализированными системами на основе аппаратных средств, выполняющими оговоренные функции или действия, или сочетаниями специализированных аппаратных средств и компьютерных команд.

[0036] Варианты осуществления изобретения могут предоставляться конечным пользователям через инфраструктуру для облачных вычислений. Облачные вычисления обычно относятся к предоставлению масштабируемых вычислительных ресурсов как услуги по сети. Более формально, облачные вычисления можно определить как вычислительную способность, которая обеспечивает абстракцию между вычислительным ресурсом и лежащей в его основе технической архитектурой (например, серверы, запоминающие устройства, сети), обеспечивая удобный сетевой доступ по требованию к общему пулу конфигурируемых вычислительных ресурсов, которые могут быть оперативно предоставлены и освобождены с минимальными эксплуатационными затратами или обращениями к провайдеру услуг. Таким образом, облачные вычисления дают пользователю доступ к виртуальным вычислительным ресурсам (например, к устройствам хранения данных, данным, приложениям и даже полным виртуализированным вычислительным системам) в «облаке», какими бы ни были лежащие в их основе физические системы (или местонахождения этих систем), используемые для предоставления этих вычислительных ресурсов.

[0037] Обычно ресурсы облачных вычислений предоставляются пользователю по принципу оплаты по факту, по которому платежи начисляются пользователям только за вычислительные ресурсы, фактически используемые (например, объем памяти, потребленный пользователем, или число виртуализированных систем, реализованных пользователем). Пользователь может иметь доступ к любым ресурсам, находящимся в облаке в любое время, и из любого места в сети Интернет. В контексте настоящего изобретения провайдер услуг может предоставлять центрам визуализации оценки дозы пациента как в прогнозном, так и отчетном ракурсах. Например, для предоставления виртуального фантома и KT-данных провайдеру ресурсов для облачных вычислений может использоваться интерфейс оценок дозы.

[0038] Схемы последовательности операций и блок-схемы на фигурах иллюстрируют архитектуру, функциональность и работу возможных реализации систем, способов и компьютерных программных продуктов в соответствии с различными вариантами настоящего изобретения. В этом отношении каждый блок на схеме последовательности операции или блок-схемах может представлять модуль, сегмент или часть кода, который или которая содержит одну или несколько исполняемых команд для реализации оговоренной логической функции (функций). Следует также отметить, что в некоторых альтернативных реализациях функции, отмеченные в блоке, могут выполняться не в том порядке, в каком они показаны на фигурах. Например, два блока, показанные последовательно, могут на самом деле исполняться практически одновременно, или эти блоки могут иногда исполняться в обратном порядке в зависимости от вовлеченной функциональности. Следует также отметить, что каждый блок блок-схем и/или иллюстраций схем последовательности операций и сочетания блоков на блок-схемах и/или иллюстрациях схем последовательности операций могут реализовываться специализированными системами на основе аппаратных средств, выполняющими оговоренные функции или действия, или сочетаниями специализированных аппаратных средств и компьютерных команд.

[0039] Кроме того, конкретные варианты осуществления изобретения, описанные ниже, основаны на конкретном примере сканирующей системы компьютерной томографии (KT), использующей архитектуру клиент-сервер для предоставления оценки дозы в установку визуализации. Следует, однако, понимать, что способы, описанные в настоящем документе, можно адаптировать для использования с другой технологией медицинской визуализации, основанной на воздействии на индивидуумов облучением в ограниченных дозах как части процедуры визуализации (например, сканирования методом позитронной эмиссионной томографии (ПЭТ), получение обычных рентгеновских изображений, и флуороскопия и ангиография и т.д.).

[0040] Фиг.1 иллюстрирует пример среды сканирования 100 методом компьютерной томографии и связанных вычислительных систем, предназначенных для предоставления оценок дозы облучения пациента в соответствии с одним вариантом осуществления изобретения. Как показано, среда 100 KT-сканирования включает систему 105 KT-сканирования, систему 125 визуализации и систему 130 оценки дозы. Кроме того, система 130 оценки дозы включает базу данных фантомов 132 и библиотеку 134 моделирований.

[0041] Как известно, KT-сканнер 105 представляет собой устройство, используемое для бомбардировки субъекта 120 рентгеновским излучением из рентгеновского источника 110. Рентгеновское излучение, излучаемое из рентгеновского источника 110, проходит через ткани, органы и структуры субъекта 120 с разным ослаблением (часть его поглощается этими тканями, органами и структурами) в зависимости от плотности и типа вещества, через которое проходит рентгеновское излучение. Датчики, расположенные в кольце 115, обнаруживают количество излучения, проходящего через субъекта 120. Результирующая информация датчиков проходит в систему 125 визуализации. Система 125 визуализации представляет собой вычислительное устройство, предназначенное принимать, хранить и создавать изображения по данным датчиков, полученным из KT-сканнера.

[0042] Система 125 визуализации позволяет оператору выполнять данную KT-процедуру, а также принимать данные, полученные при выполнении KT-сканирования. Например, система 125 визуализации может быть конфигурирована для «размещения по окнам» различных структур организма в зависимости от их способности блокировать рентгеновское излучение, излучаемой из рентгеновского источника 110. Изображения KT-сканирования (часто именуемые «срезами») типично выполняются относительно аксиальной или поперечной плоскости, перпендикулярной большой оси тела. Однако KT-сканнер 105 может позволять переформатировать данные визуализации в различных плоскостях или как объемные (3D) представления структур. После выполнения KT-сканирования данные визуализации, сформированные KT-сканнером 105, могут храниться, что позволяет пересматривать или оценивать результирующие изображения сканирования другими путями. В одном варианте осуществления данные визуализации могут форматироваться с использованием хорошо известного стандарта DICOM и храниться в репозитории PACS.

[0043] В одном варианте осуществления система 130 оценки дозы представляет собой вычислительную систему и программные приложения, предназначенные для оценки количества поглощенной пациентом дозы для данного пациента, проходящего данное KT-сканирование. Следует отметить, что эта оценка может выполняться в прогнозном смысле (т.е., перед выполнением сканирования), но может выполняться и после факта.

[0044] В прогнозном случае система 130 оценки дозы может предоставлять оценку дозы пациента до выполнения KT-сканирования. Кроме того, в одном варианте осуществления система 130 оценки дозы может быть конфигурирована для автоматического формирования и выдачи предупреждений на основании конфигурируемых пороговых значений. Критерии для формирования и выдачи предупреждения могут использовать процессор правил, который может учитывать возраст, пол, кодирование ICD9/ICD10 и другую информацию о данном пациенте или процедуре (например, оговоренный предел кумулятивной дозы). В более широком отношении пороговые величины доз могут быть достаточно гибкими для отражения любых законодательных, институциональных или медицинских требований к контролю дозы. В одном варианте осуществления результирующие оценки дозы могут храниться как часть истории болезни пациента, которая ведется центром визуализации, госпиталем или иным провайдером.

[0045] Кроме того, пороговые величины доз могут факультативно использоваться для создания отчетов о событии, направляемых соответствующим практикующим врачам. Отчеты о событии могут включать описание процедуры и любые оценки дозы, превышающие правило или пороговое значение, вместе с любой дополнительной информацией, обеспечивающей контекст для вмешательства практикующего врача или принятия решения. В одном варианте осуществления этот отчет может распечатываться/отправляться электронной почтой с использованием кастомизируемого шаблона XML.

[0046] Фантомы 132 могут представлять собой принятые математические модели частей человеческой ткани, органов, структур и т.д. Например, фантомы 132 могут представлять собой рациональную совокупность неоднородных сложнопрофильных кривых (NURBS), используемую для создания трехмерной (3D) модели человеческого тела (или его части). Альтернативно, фантомы могут быть представлены с использованием конструктивной блочной геометрии (CSG) или иного математического представления. Разные фантомы 132 могут использоваться для моделирования индивидуумов на основании возраста и пола. Однако, как уже отмечалось, виртуальная геометрия и форма тела фантома, выбранного на основании лишь возраста и/или пола может (или может не) соответствовать размеру, форме и положениям органов реального пациента, проходящего процедуру компьютерной томографии. Соответственно, в одном варианте осуществления система 130 оценки дозы может конфигурироваться для деформирования виртуального фантома с целью лучшего моделирования конкретного пациента. Примерные варианты осуществления для деформирования виртуального фантома 122 более подробно рассмотрены ниже.

[0047] После того как фантом деформирован для моделирования конкретного индивидуума, система 130 оценки дозы может выполнять моделирование для оценки количества первого отложения прошедшей дозы в результате данной процедуры KT-сканирования. Например, в одном варианте осуществления может выполняться моделирование по методу Монте-Карло с использованием параметров KT-сканирования, параметров процедуры компьютерной томографии и деформированного фантома, чтобы получить оценку дозы. Однако могли бы использоваться и другие методы моделирования. Результаты данного моделирования для оценки дозы могут сохраняться в библиотеке 134 моделирований.

[0048] Например, KT-сканнер может параметризироваться для моделирования на основании тока и напряжения рентгеновской трубки, режима KT-сканнера, пикового анодного напряжения (кВп), угла мишени генератора рентгеновского излучения, угла веерного пучка, коллимации, толщины среза, расстояния от фокуса до оси, плоских фильтров (материал и толщина) и фильтров формирования луча (материал и геометрия). Хотя при моделировании процесса может использоваться целый ряд подходов, в одном варианте осуществления для моделирования рентгеновского спектра используются кВп, угол мишени и фильтрация, как описано в "Computation of bremsstrahlung X-ray spectra over an energy range 15 KeV to 300 KeV," W.J. lies, Regne Unit. National Radiological Protection Board, NRPB, 1987.

[0049] Кроме того, расстояние от фокуса до оси определяет расстояние от рентгеновского источника для оси вращения, а угол веерного пучка определяет, как широко расходится луч на плоскости среза. Естественно, эти (и другие параметры) могут выбирать при доступности или при необходимости, чтобы отвечать потребностям каждого конкретного случая. Однако обычно энергетическое воздействие хранится по срезам для каждой анатомической области, определенной в фантоме. Для каждой KT-модели может выполняться моделирование нормализации фантома CTDIvol. Эта информация о послойном энергетическом воздействии в сочетании с массами для каждой анатомической области достаточна для расчета поглощенной дозы в каждой области для данной области сканирования (используя подмножество нашего моделирования всего тела).

[0050] Следует, однако, отметить, что выполнение моделирования по методу Монте-Карло обычно требует много времени на обработку - намного дольше, чем требуется для выполнения самого KT-сканирования. Соответственно, в одном варианте осуществления система 130 оценки дозы оценивает дозу путем интерполяции между двумя (или более) моделированиями в библиотеке 134 моделирований. Например, первую прошедшую дозу пациента можно рассчитать, используя многомерную интерполяцию по рассеянным данным существующих данных моделирования. Информация о дозе пациента уточняется по мере добавления применимых моделирований. Аналогичным образом, в библиотеку 134 моделирований могут добавляться новые модели сканнеров по мере получения измерений калибровки и спецификаций этих сканнеров.

[0051] Библиотека 134 моделирований представляет собой баз данных результатов моделирования по методу Монте-Карло. В одном варианте осуществления библиотека 134 моделирований хранит информацию о дозе/энергетическом воздействии в набор фантомов, как поставленных, так и деформированных для отдельных пациентов, для коллекции поддерживаемых сканнеров м