Способ регулирования авиационного турбореактивного двигателя

Иллюстрации

Показать все

Изобретение относится к способам регулирования турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета. Способ регулирования авиационного турбореактивного двигателя включает управление суммарным расходом топлива в форсажной камере сгорания по измеренным температуре воздуха на входе в двигатель и давлению воздуха за компрессором, измерение расхода топлива для первого и второго форсажных коллекторов при поддержании одинакового суммарного расхода топлива в зависимости от давления воздуха за компрессором и температуры воздуха на входе в двигатель, измерение значения тяги и определения удельного расхода топлива, построение зависимости удельного расхода топлива от тяги при разных соотношениях топлива, подаваемого в первый и второй форсажный коллекторы, и установление соотношения топлива, подаваемого в первый и второй форсажный коллекторы, обеспечивающего минимальный удельный расход топлива при заданных значениях тяги. Изобретение позволяет повысить экономичность двигателя на форсированном сверхзвуковом режиме, режимах перегона самолета, а также увеличить дальность и продолжительность полета самолета. 1 табл., 4 ил.

Реферат

Изобретение относится к способам регулирования турбореактивного двигателя (ТРД) в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета.

Известен способ регулирования авиационного турбореактивного двигателя, включающий в себя поддержание суммарного расхода топлива через топливные коллекторы форсажной камеры в зависимости от давления за компрессором на максимальном форсированном режиме работы двигателя (Ю.Н. Нечаев «Законы управления и характеристики авиационных силовых установок», Москва, Машиностроение, 1995, с. 287-288).

Наиболее близким к данному изобретению по технической сущности является известный способ управления газотурбинным двигателем с форсажной камерой сгорания, где по измеренным температуре воздуха на входе в двигатель, давлению воздуха за компрессором, положению рычага управления двигателем (РУД) и расходу топлива в основную камеру сгорания управляют расходом топлива в форсажной камере сгорания. Дополнительно на установившихся форсажных режимах измеряют давление и температуру газов в форсажной камере сгорания, подают возрастающее по частоте пульсирующее воздействие на расход воздуха через двигатель с помощью направляющих аппаратов компрессора и створок реактивного сопла двигателя. В момент увеличения полноты сгорания форсажного топлива, определяемый по скачкообразному росту давления и температуры газов в форсажной камере сгорания, фиксируют частоту пульсирующего воздействия на расход воздуха через двигатель и уменьшают расход форсажного топлива до тех пор, пока температура газов в форсажной камере сгорания не снизится до исходной /RU 2386837 C2, Открытое акционерное общество "СТАР", 20.04.2010/.

Данный способ не является оптимальным во всей области эксплуатации газотурбинного двигателя в силу того, что он не обеспечивает наибольшую дальность полета на форсированном сверхзвуковом режиме полета самолета (режимах перегона).

Задача изобретения заключается в повышении экономичности двигателя на форсированном сверхзвуковом режиме, режимах перегона самолета, а также в увеличении дальности и продолжительности полета самолета.

Ожидаемый технический результат заключается в снижении расхода топлива и увеличении дальности полета.

Ожидаемый технический результат достигается тем, что управляют суммарным расходом топлива в форсажной камере сгорания по измеренным температуре воздуха на входе в двигатель и давлению воздуха за компрессором, по предложению проводят измерение расхода топлива для первого и второго форсажных коллекторов при поддержании одинакового суммарного расхода топлива в зависимости от давления воздуха за компрессором и температуры воздуха на входе в двигатель, измеряют значения тяги и определяют удельный расход топлива, после чего строят зависимости удельного расхода топлива от тяги при разных соотношениях топлива, подаваемого в первый и второй форсажный коллекторы, и устанавливают соотношение топлива, подаваемого в первый и второй форсажный коллекторы, обеспечивающее минимальный удельный расход топлива при заданных значениях тяги.

Способ согласно изобретению иллюстрируется рисунками 1-4. На рис. 1 и 2 представлены графики, отражающие зависимость Gт.ф1/Р*к от Тв для 1 форсажного коллектора и Gт.ф2/Р*к от Тв для 2 форсажного коллектора соответственно. На рис. 3 представлен график, отражающий зависимость удельного расхода топлива (CR) от тяги (R). На рис. 4 схематично представлена система управления ТРД.

Gт.ф1 - расход топлива через 1 топливный коллектор форсажной камеры;

Gт.ф2 - расход топлива через 2 топливный коллектор форсажной камеры;

Р*к - измеренное давление воздуха за компрессором двигателя;

Тв - измеренная температура воздуха на входе в двигатель;

CR - удельный расход топлива;

R - тяга.

Способ регулирования авиационного турбореактивного двигателя реализуется следующим образом. При проведении испытаний на стенде с имитацией полетных условий в регулятор двигателя задают предварительно сформированные алгоритмы управления подачей топлива для 1 и 2 форсажных коллекторов при поддержании суммарного расхода топлива в зависимости от степени повышения давления за компрессором. По измеренным расходам топлива через 1 и 2 коллекторы форсажной камеры, давлению воздуха за компрессором двигателя и температуре воздуха на входе в двигатель строят зависимости Gт.ф./Р*к от Тв.

Рассмотрим графики, представленные на рис. 1 (зависимость Gт.ф1/Р*к от Тв для 1 форсажного коллектора) и рис. 2 (Gт.ф2/Р*к от Тв для второго форсажного коллектора).

кривая 1 - штатный 1 алгоритм управления, обеспечивающий заданные тяговые характеристики (расход топлива в первом и втором коллекторах форсажной камеры одинаковый, т.е. на первый и второй коллекторы подают по 50% от суммарного расхода топлива);

кривая 2 - дополнительный 2 алгоритм управления подачей топлива (на первый коллектор подают 40% от суммарного расхода топлива, а на второй - 60% от суммарного расхода топлива);

кривая 3 - дополнительный 3 алгоритм управления подачей топлива (на первый коллектор подают 60% от суммарного расхода топлива, а на второй - 40% от суммарного расхода топлива).

Суммарный расход топлива через 1 и 2 топливный коллекторы форсажной камеры постоянен, что можно выразить следующими уравнениями:

, где

Gт.ф1 по 1 алг. - расход топлива через 1 топливный коллектор форсажной камеры по первому алгоритму управления,

Gт.ф2 по 1 алг - расход топлива через 2 топливный коллектор форсажной камеры по первому алгоритму управления,

Gт.ф1 по 2 алг. - расход топлива через 1 топливный коллектор форсажной камеры по второму алгоритму управления,

Gт.ф2 по 2 алг. - расход топлива через 2 топливный коллектор форсажной камеры по второму алгоритму управления,

Gт.ф1 по 3 алг.- - расход топлива через 1 топливный коллектор форсажной камеры по третьему алгоритму управления,

Gт.ф2 по 3 алг. - расход топлива через 2 топливный коллектор форсажной камеры по третьему алгоритму управления.

Для каждого алгоритма управления при требуемых условиях полета выполняют измерения тяги (R) и суммарного расхода топлива (Gт.ф), после чего определяют удельный расход топлива CR=Gт.ф/R и строят зависимость CR=f(R) (рис. 3), где

CR - удельный расход топлива;

R - тяга;

кривая 1 - зависимость CR=f(R) для 1 алгоритма управления (штатного);

кривая 2 - зависимость CR=f(R) для 2 алгоритма управления;

кривая 3 - зависимость CR=f(R) для 3 алгоритма управления.

По заданному значению тяги определяют наименьший удельный расход топлива CR и соответствующий данному расходу алгоритм управления поддержания заданного перепада давления на турбинах. Алгоритм управления с наименьшим удельным расходом топлива вводят в регулятор двигателя. В соответствии с выбранным алгоритмом управления расход топлива, подаваемого в первый и второй коллекторы, может быть разным.

Система управления ТРД (рис. 4) включает: ТРД 1 как объект управления, датчик 2 расхода топлива, характеризующий подачу топлива в 1 форсажный коллектор, датчик 3 расхода топлива, характеризующий подачу топлива во 2 форсажный коллектор, датчик 4 давления воздуха за компрессором, датчик 5 температуры воздуха на входе в двигатель, датчик 6 тяги, программный блок 7 управления ТРД.

В таблице 1 отражены удельные расходы топлива CR для алгоритмов управления 1-3 при заданных значениях тяги R=2000 кгс, R=3500 кгс, R=4500 кгс.

Пример 1.

На рис. 3 видно, что при заданном значении тяги R=3500 кгс, соответствующем крейсерскому режиму - режиму максимальной дальности и продолжительности полета, наименьший удельный расход топлива CR=1,260 кг/ч кгс, что соответствует 3 алгоритму управления подачей топлива. Переход с штатного алгоритма управления 1 на алгоритм управления 3 дает снижение удельного расхода топлива CR на 8% и, следовательно, увеличение дальности и продолжительности полета на эту же величину - 8%.

Пример 2.

При заданном значении тяги R=2000 кгс (рис. 3) наименьший удельный расход топлива CR=1,515 кг/ч кгс, что соответствует 3 алгоритму управления подачей топлива. Переход с штатного алгоритма управления 1 на алгоритм управления 3 дает снижение удельного расхода топлива CR на 6% и, следовательно, увеличение дальности и продолжительности полета на эту же величину - 6%.

Пример 3.

При заданном значении тяги R=4500 кгс (рис. 3) наименьший удельный расход топлива CR=1,365 кг/ч кгс, что соответствует 3 алгоритму управления подачей топлива. Переход с штатного алгоритма управления 1 на алгоритм управления 3 дает снижение удельного расхода топлива CR на 7% и, следовательно, увеличение дальности и продолжительности полета на эту же величину - 7%.

Способ регулирования авиационного турбореактивного двигателя, включающий управление суммарным расходом топлива в форсажной камере сгорания по измеренным температуре воздуха на входе в двигатель и давлению воздуха за компрессором, отличающийся тем, что проводят измерение расхода топлива для первого и второго форсажных коллекторов при поддержании одинакового суммарного расхода топлива в зависимости от давления воздуха за компрессором и температуры воздуха на входе в двигатель, измеряют значения тяги и определяют удельный расход топлива, после чего строят зависимости удельного расхода топлива от тяги при разных соотношениях топлива, подаваемого в первый и второй форсажный коллекторы, и устанавливают соотношение топлива, подаваемого в первый и второй форсажный коллекторы, обеспечивающее минимальный удельный расход топлива при заданных значениях тяги.