Способ изготовления и устройство для изготовления бесшовной металлической трубы

Иллюстрации

Показать все

Изобретение относится к области прокатки бесшовных труб на оправке в группе прокатных клетей. Способ включает прокатку в группе клетей предварительной прокатки и в группе клетей последующей прокатки. Увеличение ресурса используемого оборудования обеспечивается за счет того, что определяют, используется ли группа клетей предварительной ступени в уменьшении наружного диаметра или в уменьшении толщины полой трубной заготовки, и выполняют удлинение полой трубной заготовки, в которую введен стержень оправки. В процессе удлинения с уменьшением наружного диаметра полой трубной заготовки в группе клетей предварительной ступени полую трубную заготовку прокатывают без контакта ее внутренней поверхности со стержнем оправки в группе клетей предварительной ступени и в контакте ее внутренней поверхности со стержнем оправки в группе клетей последующей ступени, а в процессе удлинения с уменьшением толщины полой трубной заготовки в группе клетей предварительной ступени полую трубную заготовку прокатывают в контакте ее внутренней поверхности со стержнем оправки в группе клетей предварительной ступени и в группе клетей последующей ступени. Устройство содержит соответствующее оборудование. 2 н. и 1 з.п. ф-лы, 25 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение относится к способу изготовления и устройству для изготовления бесшовной металлической трубы и, в частности, к способу изготовления и устройству для изготовления бесшовной металлической трубы с использованием стана для прокатки бесшовных труб на оправке.

Испрашивается приоритет заявки на патент Японии №2012-163436, поданной 24 июля 2012, содержание которой включается в данное описание.

УРОВЕНЬ ТЕХНИКИ

В способе изготовления бесшовной металлической трубы с использованием стана для прокатки бесшовных труб на оправке сначала нагретую круглую заготовку прошивают с помощью прошивного прокатного стана, а затем изготавливают полую трубную заготовку. Стержень оправки вводят в изготовленную полую трубную заготовку. Полую трубную заготовку, в которую введен стержень оправки, удлиняют с помощью стана для прокатки бесшовных труб на оправке. Удлиненную полую трубную заготовку при необходимости нагревают и подвергают обжатию с помощью калибровочного прокатного стана или редукционного стана для прокатки труб с натяжением. В соответствии с указанными выше способами изготавливают бесшовную металлическую трубу.

В способе изготовления бесшовной металлической трубы изготавливаются бесшовные металлические трубы, имеющие различные сорта стали и размеры (наружный диаметр и толщину). В соответствии с этим, требуется увеличение эффективности изготовления.

В патентном документе 1 предлагается повышение эффективности изготовления посредством увеличения степени удлинения в стане для прокатки бесшовных труб на оправке. В стане для прокатки бесшовных труб на оправке, раскрытом в патентном документе 1, диаметры валков первой и второй клети устанавливают больше заданной величины. В соответствии с этим, может быть увеличена степень удлинения бесшовной металлической трубы.

Патентный документ 1: нерассмотренная заявка на патент Японии, первая публикация № 2008-296250.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Однако эффективность изготовления зависит также от режима прокатки прошивного прокатного стана и стана для прокатки бесшовных труб на оправке. В частности, если увеличивается частота смены наклонного валка прошивного прокатного стана и валка стана для прокатки бесшовных труб на оправке в соответствии с типом стали и размером изготавливаемой бесшовной металлической трубы, то может быть уменьшен коэффициент использования производственной линии. За счет уменьшения коэффициента использования производственной линии, уменьшается эффективность изготовления.

ПРОБЛЕМЫ, ПОДЛЕЖАЩИЕ РЕШЕНИЮ С ПОМОЩЬЮ ИЗОБРЕТЕНИЯ

Целью данного изобретения является создание способа изготовления и устройства для изготовления бесшовной металлической трубы, способного увеличить эффективность изготовления за счет повышения коэффициента использования производственной линии.

СРЕДСТВА ДЛЯ РЕШЕНИЯ ПРОБЛЕМЫ

Для решения указанных выше проблем, в данном изобретении используются следующие меры.

(1) Согласно первому аспекту данного изобретения, способ изготовления бесшовной металлической трубы из полой трубной заготовки с использованием стана для прокатки бесшовных труб на оправке, имеющего группу клетей предварительной ступени, включающую несколько клетей, расположенных с начала вдоль линии прокатки, и группу клетей последующей ступени, включающую несколько клетей после группы клетей предварительной ступени, при этом способ изготовления включает: введение стержня оправки в полую трубную заготовку; определение, используется ли группа клетей предварительной ступени в уменьшении наружного диаметра или в уменьшении толщины полой трубной заготовки; и выполнение удлинения полой трубной заготовки, в которую введен стержень оправки, на основе определения, в котором при удлинении, когда группа клетей предварительной ступени используется для уменьшения наружного диаметра, прокатывается полая трубная заготовка в состоянии, в котором внутренняя поверхность полой трубной заготовки не приходит в контакт со стержнем оправки в группе клетей предварительной ступени, и полая трубная заготовка прокатывается в состоянии, в котором внутренняя поверхность полой трубной заготовки приходит в контакт со стержнем оправки в группе клетей последующей ступени и в котором при удлинении, когда используется группа клетей предварительной ступени в уменьшении толщины, полая трубная заготовка прокатывается в состоянии, в котором внутренняя поверхность полой трубной заготовки входит в контакт со стержнем оправки как в группе клетей предварительной ступени, так и в группе клетей последующей ступени.

(2) Указанный выше способ (1) изготовления дополнительно включает определение количества клетей, когда группа клетей предварительной ступени используется для уменьшения наружного диаметра, в соответствии по меньшей мере с типом стали бесшовной металлической трубы или размером бесшовной металлической трубы.

(3) Согласно второму аспекту данного изобретения устройство для изготовления бесшовной металлической трубы включает: группу клетей прокатный стан, которая включает группу клетей предварительной ступени, включающую несколько клетей, расположенных от начала вдоль линии прокатки, и группу клетей последующей ступени, включающую клети, расположенные после группы клетей предварительной ступени; установочный блок, который устанавливает, используется ли группа клетей предварительной ступени группы клетей прокатного стана для уменьшения наружного диаметра или для уменьшения толщины полой трубной заготовки; и удерживающую систему, которая вводит стержень оправки в полую трубную заготовку, при этом, когда группа клетей предварительной ступени установлена с помощью установочного блока для использования в уменьшении наружного диаметра, группа клетей предварительной ступени прокатывает полую трубную заготовку в состоянии, в котором внутренняя поверхность полой трубной заготовки не приходит в контакт со стержнем оправки, и группа клетей последующей ступени прокатывает полую трубную заготовку в состоянии, в котором внутренняя поверхность полой трубной заготовки приходит в контакт со стержнем оправки, и при этом, когда группа клетей предварительной ступени установлена с помощью установочного блока для использования в уменьшении толщины, группа клетей предварительной ступени и группа клетей последующей ступени прокатывают полую трубную заготовку в состоянии, в котором внутренняя поверхность полой трубной заготовки приходит в контакт со стержнем оправки.

ЭФФЕКТЫ ИЗОБРЕТЕНИЯ

Согласно каждому аспекту возможно повышение эффективности изготовления бесшовной металлической трубы посредством уменьшения коэффициента использования производственной линии.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

НА ЧЕРТЕЖАХ СХЕМАТИЧНО ИЗОБРАЖЕНО:

фиг. 1 - функциональная блок-схема оборудования для изготовления бесшовной металлической трубы;

фиг. 2 - основная часть прошивного прокатного стана из фиг. 1;

фиг. 3 - функциональная блок-схема стана для прокатки бесшовных труб на оправке из фиг. 1;

фиг. 4 -группа клетей прокатного стана для прокатки бесшовных труб на оправке согласно фиг. 3 на виде сбоку;

фиг. 5 - клеть согласно фиг. 4 на виде спереди и в разрезе по линии А-А на фиг. 4;

фиг. 6 - клеть, отличная от клети на фиг. 5, на виде спереди и в разрезе по линии В-В на фиг. 4;

фиг. 7 - удлинение полой трубной заготовки с помощью стана для прокатки бесшовных труб на оправке;

фиг. 8 - вертикальный разрез удерживающей системы на фиг. 3;

фиг. 9 - опорный элемент на фиг. 8, на виде спереди;

фиг. 10А - удерживающий элемент и стержень оправки удерживающей системы, на виде сверху;

фиг. 10В - вертикальный разрез удерживающего элемента и стержня оправки, показанных на фиг. 10А;

фиг. 10С - состояние, в котором стержень оправки установлен на удерживающем элементе согласно фиг. 10А на виде сверху;

фиг. 10D - вертикальный разрез удерживающего элемента и стержня оправки, показанных на фиг. 10С;

фиг. 11 -группа клетей прокатного стана, показанная на фиг. 3, и оправкоизвлекатель;

фиг. 12 - полное уменьшение толщины в стане для прокатки бесшовных труб на оправке;

фиг. 13 - частичное уменьшение наружного диаметра в стане для прокатки бесшовных труб на оправке;

фиг. 14 - блок-схема способа изготовления бесшовной металлической трубы согласно варианту выполнения данного изобретения;

фиг. 15 - стержень оправки, на виде сбоку;

фиг. 16 - состояние стержня оправки во время полного уменьшения толщины;

фиг. 17 - состояние стержня оправки во время частичного уменьшения наружного диаметра;

фиг. 18 - удлинение в стане для прокатки бесшовных труб на оправке, когда используется вспомогательный инструмент;

фиг. 19 - вертикальный разрез вспомогательного инструмента на фиг. 18;

фиг. 20 - вспомогательный инструмент согласно фиг. 19 на виде спереди и в разрезе по линии С-С на фиг. 19;

фиг. 21 - вспомогательный инструмент согласно фиг. 19 на виде сверху;

фиг. 22 - модификация вспомогательного инструмента согласно фиг. 19 и вертикальный разрез вспомогательного инструмента, имеющего несколько канавок;

фиг. 23 - вспомогательный инструмент, на виде сверху;

фиг. 24 - удлинение в стане для прокатки бесшовных труб на оправке, когда используется вспомогательный инструмент, показанный на фиг. 19, и опорный валок;

фиг. 25 - блок-схема работы управляющего устройства на фиг. 24.

ВАРИАНТЫ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ

Ниже приводится подробное описание вариантов выполнения данного изобретения со ссылками на прилагаемые чертежи. Одинаковыми позициями обозначены одинаковые части или соответствующие друг другу части на чертежах и в последующем описании.

ОБОРУДОВАНИЕ ДЛЯ ИЗГОТОВЛЕНИЯ БЕСШОВНОЙ МЕТАЛЛИЧЕСКОЙ ТРУБЫ

На фиг. 1 показана блок-схема оборудования для изготовления бесшовной металлической трубы. В оборудовании для изготовления бесшовной металлической трубы бесшовная металлическая труба изготавливается с помощью так называемого способа Маннесманна в стане для прокатки бесшовных труб на оправке. Как показано на фиг. 1, производственное оборудование согласно данному изобретению включает нагревательную печь 1, прошивной прокатный стан 2 и стан 3 для прокатки бесшовных труб на оправке. Каждое транспортировочное средство 10 расположено вдоль нагревательной печи 1, прошивного прокатного стана 2 и стана 3 для прокатки бесшовных труб на оправке. Например, каждое транспортировочное средство 10 включает множество транспортировочных роликов и транспортирует заготовку или полую трубную заготовку.

НАГРЕВАТЕЛЬНАЯ ПЕЧЬ 1 И ПРОШИВНОЙ ПРОКАТНЫЙ СТАН 2

В нагревательной печи 1 расположена для нагревания сплошная круглая заготовка в качестве материала для бесшовной металлической трубы. Как показано на фиг. 2, прошивной прокатный стан 2 включает пару наклонных валков 21 и оправку 22. Оправка 22 расположена между парой наклонных валков 21 и на линии PL прокатки (оси прокатки). В прошивном прокатном стане 2 с помощью обоих наклонных валков 21 круглая заготовка BL толкается на оправку 22 при одновременном вращении в окружном направлении, круглая заготовка BL прошивается, и изготавливается полая трубная заготовка HS.

СТАН 3 ДЛЯ ПРОКАТКИ БЕСШОВНЫХ ТРУБ НА ОПРАВКЕ

В стане 3 для прокатки бесшовных труб на оправке стержень оправки вводится в полую трубную заготовку HS, и полая трубная заготовка HS, в которую введен стержень оправки, удлиняется с помощью группы клетей прокатного стана. После извлечения стержня оправки из полой трубной заготовки HS, которая удлинена с помощью стана 3 для прокатки бесшовных труб на оправке, полая трубная заготовка транспортируется к обжимному стану (не изображен). Например, обжимной стан является калибровочным прокатным станом или редукционным станом для прокатки труб с натяжением. Калибровочный прокатный стан выполняет калибровочную прокатку полой трубной заготовки HS и изготавливает бесшовную металлическую трубу.

На фиг. 3 показана блок-схема конфигурации стана 3 для прокатки бесшовных труб на оправке. Как показано на фиг. 3, стан 3 для прокатки бесшовных труб на оправке включает удерживающую систему 3, группу клетей 32 прокатного стана и оправкоизвлекатель 33. Удерживающая система 31, группа клетей 32 прокатного стана и оправкоизвлекатель 33 расположены на одной линии. Удерживающая система 31 вводит стержень оправки в полую трубную заготовку HS, прежде чем группа клетей 32 прокатного стана выполняет удлинение полой трубной заготовки HS, или извлекает стержень оправки из полой трубной заготовки HS после удлинения. Группа клетей 32 прокатного стана выполняет удлинение полой трубной заготовки HS. Оправкоизвлекатель 33 используется для извлечения стержня оправки из полой трубной заготовки HS после удлинения. Ниже приводится подробное описание каждого устройства.

ГРУППА КЛЕТЕЙ 32 ПРОКАТНОГО СТАНА

На фиг. 4 показан на виде сбоку группа клетей 32 прокатного стана для прокатки бесшовных труб на оправке. Как показано на фиг. 4, группа клетей 32 прокатного стана включает несколько клетей ST1-STm (m является натуральным числом), которые расположены последовательно вдоль линии PL прокатки. Общее количество m клетей особо не ограничивается. Например, полное количество m клетей составляет 4-8.

На фиг. 5 и 6 показаны поперечные сечения клети STi (i=2-m) и клети STi-1. Как показано на фиг. 5 и 6, в данном примере выполнения каждая из клетей ST1-STm включает три валка RO, которые расположены на угловом расстоянии 120° друг от друга вокруг линии PL прокатки. Каждый валок RO включает канавку GR, в которой формируется поперечное сечение дуговой формы, при рассматривании по центральной оси поперечного сечения, и с помощью канавок GR трех валков RO образуется матрица РА для прессования труб.

Как показано на фиг. 5 и 6, при рассматривании вдоль линии PL прокатки, три валка RO, включенных в клеть STi (i=2 … m) последующей ступени, расположены с отклонением на 60° вокруг линии PL прокатки относительно трех валков RO, включенных в клеть STi-1 предварительной ступени.

Три валка RO каждой из клетей ST1-STm приводятся во вращение с помощью трех двигателей (не изображены).

В зоне поперечного сечения матрицы РА для прессования труб, образованной тремя валками RO в каждой клети ST, площадь поперечного сечения матрицы для прессования труб меньше, чем в клети последующей ступени.

Как показано на фиг. 7, полая трубная заготовка HS, в которую введен стержень 40 оправки, удлиняется с помощью клетей ST1-STm вдоль линии PL прокатки, и осуществляется обработка наружного диаметра и обработка толщины полой трубной заготовки.

В группе клетей 32 прокатного стана, показанной на фиг. 4-7, каждая клеть STi включает три валка RO. Однако количество валков не ограничено тремя. Количество валков каждой клети STi может составлять 2 или 4. Клеть STi включает n (n является натуральным числом, равным 2 или больше) валков, расположенных вокруг линии PL прокатки, и n валков последующей ступени смещены на 180º/n вокруг линии PL прокатки относительно n валков, включенных в клеть STi-1 предшествующей ступени.

УДЕРЖИВАЮЩАЯ СИСТЕМА 31

На фиг. 8 показана в вертикальном разрезе удерживающая система 31. Удерживающая система 31 перемещает стержень 40 оправки вперед с удерживанием заднего конца стержня 40 оправки и вводит стержень 40 оправки в полую трубную заготовку HS. Дополнительно к этому, удерживающая система 31 перемещает полую трубную заготовку HS, в которую введен стержень 40 оправки, вперед вдоль пути PL прокатки во время удлинения.

Как показано на фиг. 8, удерживающая система 31 включает приводной источник 311, включающий электродвигатель и редуктор, приводное колесо 312, ведомое колесо 313, цепь 314, множество опорных элементов 315 и удерживающий элемент 316.

Приводной источник 311 приводит во вращение приводное колесо 312 в переднем направлении (в направлении по часовой стрелке на фиг. 8) и в заднем направлении (в направлении против часовой стрелки на фиг. 8). Ведомое колесо 313 расположено на расстоянии от приводного колеса 312 на передней стороне приводного колеса 312. Цепь 314 опирается на приводное колесо 312 и ведомое колесо 313 и образует бесконечную дорожку. Приводной источник 311, приводное колесо 312, ведомое колесо 313 и цепь 314 образуют приводное устройство, которое перемещает стержень 40 оправки вперед или назад на опорное расстояние Dref.

Множество опорных элементов 315 расположены последовательно на наружной поверхности цепи 314. На фиг. 9 показан опорный элемент 315 на виде спереди. Дополнительно к этому, штрихпунктирной линией на фиг. 9 показан стержень 40 оправки. Опорный элемент 315 включает перевернутую треугольную канавку 317. Ширина канавки 317 постепенно уменьшается от верхнего конца опорного элемента 315 в направлении нижнего конца. Множество опорных элементов 315 обеспечивают опору стержня 40 оправки, так что ось стержня 40 оправки постоянно совпадает с линией PL прокатки во время перемещения вперед стержня 40 оправки с помощью удерживающей системы 31.

На фиг. 10А и 10В показаны на виде сверху и в вертикальном разрезе удерживающий элемент 316 и стержень 40 оправки. На фиг. 10С и 10D показан на виде сверху и в вертикальном разрезе удерживающий элемент 316, который удерживает задний конец стержня 40 оправки.

Как показано на фиг. 8, 10А и 10В, удерживающий элемент 316 закреплен на верхней поверхности цепи 314. Удерживающий элемент 316 перемещается вперед или назад (см. фиг. 8) на опорное расстояние Dref (между начальным положением Pstart и конечным положением Pend) за счет приведения в действие (вращения) цепи 314.

Как показано на фиг. 10А и 10В, удерживающий элемент 316 включает канавку 319 и крюк 318. Канавка 319 образована на верхней поверхности удерживающего элемента 316 и проходит перпендикулярно осевому направлению стержня 40 оправки. Крюк 318 образован дальше спереди, чем канавка 319, и включает выпуклую вверх форму.

Стержень 40 оправки имеет форму прутка с круглым поперечным сечением в перпендикулярной оси плоскости. Стержень 40 оправки включает шейку 410 и фланец 420 на заднем конце. Шейка 410 имеет форму прутка с круглым поперечным сечением в перпендикулярной оси плоскости, и наружный диаметр шейки 410 меньше наружного диаметра основного тела стержня 40 оправки. Фланец 420 расположен на заднем конце шейки 410. Фланец 420 имеет форму диска и имеет наружный диаметр больше диаметра шейки 410.

Ширина канавки 319 приблизительно равна или несколько больше ширины фланца 420. Дополнительно к этому, нижняя поверхность канавки 319 изогнута в форме вогнутой дуги. Вогнутая часть 320, с которой согласована шейка 410, образована на верхней поверхности крюка 318.

Как показано на фиг. 10С и 10D, фланец 316 входит в канавку 319 удерживающего элемента 316. В соответствии с этим, удерживающий элемент 316 удерживает стержень 40 оправки. Удерживающий элемент 316 перемещается вперед на опорное расстояние Dref, показанное на фиг. 8, с удерживанием заднего конца (шейки 410 и фланца 420) стержня 40 оправки, расположенного в полой трубной заготовке HS во время удлинения с помощью группы клетей 32 прокатного стана. В это время приводное устройство (приводной источник 311), приводное колесо 312, ведомое колесо 313 и цепь 314 удерживающей системы 31 перемещают удерживающий элемент 316 вперед на опорное расстояние Dref. Таким образом, удерживающая система 31 управляет скоростью движения вперед стержня 40 оправки во время удлинения с помощью группы клетей 32 прокатного стана. Дополнительно к этому, удерживающая система 31 вводит стержень 40 оправки в полую трубную заготовку HS перед выполнением удлинения. Кроме того, удерживающая система 31 перемещает стержень 40 оправки назад после выполнения удлинения и извлекает стержень 40 оправки из удлиненной полой трубной заготовки HS.

Удерживающая система 31 перемещает удерживающий элемент 316 вперед или назад с помощью приводного устройства, которое образует бесконечную дорожку с помощью цепи 314. Однако приводное устройство удерживающей системы 31 может иметь другие конфигурации. Например, приводное устройство удерживающей системы 31 может иметь зубчатую рейку и шестерню и тем самым перемещать удерживающий элемент 316 вперед и назад. Дополнительно к этому приводное устройство может включать электрический или гидравлический цилиндр с установленным на вершине цилиндра удерживающим элементом 316 и тем самым перемещать вперед и назад удерживающий элемент 316.

ОПРАВКОИЗВЛЕКАТЕЛЬ 33

Как показано на фиг. 11, оправкоизвлекатель 33 включает несколько клетей SA1-SAr (r является натуральным числом), которые расположены последовательно вдоль линии PL прокатки. Каждая из клетей SA1-SAr включает несколько валков, которые расположены с равными интервалами вокруг линии PL прокатки. Количество валков в каждой из клетей SA1-SAr может составлять два, три или четыре. Например, общее количество r оправкоизвлекателя 33 составляет 2-4.

Оправкоизвлекатель 33 захватывает вершинную часть полой трубной заготовки HS и выполняет легкую обжимку вершинной части полой трубной заготовки HS, когда полая трубная заготовка HS удлиняется с помощью группы клетей 32 прокатного стана. После обжимки вершинной части полой трубной заготовки HS с помощью оправкоизвлекателя 33 удерживающая система 31 вращает в обратную сторону приводное колесо 312 и перемещает назад удерживающий элемент 316. В соответствии с этим, стержень 40 оправки извлекается из полой трубной заготовки HS назад. Таким образом, оправкоизвлекатель 33 является оборудованием для извлечения стержня 40 оправки.

В данном варианте выполнения оправкоизвлекатель 33 используется для извлечения стержня 40 оправки. Однако вместо оправкоизвлекателя 33 можно использовать обжимной стан, такой как калибровочный стан или редукционный стан для прокатки труб с натяжением. Аналогично оправкоизвлекателю 33 обжимной стан может также выполнять обжимную прокатку полой трубной заготовки. В соответствии с этим, аналогично случаю использования оправкоизвлекателя 33, стержень 40 оправки можно извлекать из полой трубной заготовки HS.

СПОСОБ ИЗГОТОВЛЕНИЯ БЕСШОВНОЙ МЕТАЛЛИЧЕСКОЙ ТРУБЫ

В способе изготовления бесшовной металлической трубы согласно данному изобретению количество клетей, используемых для уменьшения толщины в группе клетей 32 прокатного стана 3 для прокатки бесшовных труб на оправке изменяется в соответствии с типом стали бесшовной металлической трубы и коэффициентом удлинения бесшовной металлической трубы.

Например, когда полая трубная заготовка выполнена из сорта стали, требующего большого усилия прокатки, такого как высоколегированный сплав, или когда коэффициент удлинения бесшовной металлической трубы является большим, то, как показано на фиг. 12, уменьшение толщины выполняется с помощью всех клетей ST1-STm стана 3 для прокатки бесшовных труб на оправке. В данном случае «уменьшение толщины» означает, что полая трубная заготовка HS прокатывается при прихождении внутренней поверхности полой трубной заготовки HS в контакт с наружной поверхностью стержня 40 оправки, когда полая трубная заготовка HS приходит в контакт с наружной поверхностью стержня 40 оправки с валками RO в клети STi и обжимается. В этом случае полая трубная заготовка HS расположена между валками RO и стержнем 40 оправки и удлиняется, и тем самым изменяется толщина полой трубной заготовки. Поскольку уменьшение толщины осуществляется с помощью всех клетей ST1-STm, то этот случай применяется, когда изготавливается бесшовная металлическая труба, требующая большого усилия прокатки, или когда изготавливается бесшовная металлическая труба, имеющая большой коэффициент удлинения. В последующем удлинение, показанное на фиг. 12, называется «полным уменьшением толщины».

С другой стороны, когда удлиняется полая трубная заготовка, выполненная из сорта стали, требующего небольшого усилия прокатки, такой как обычная сталь, или когда коэффициент удлинения бесшовной металлической трубы является небольшим, то достаточно, что из клетей ST1-STm стана 3 для прокатки бесшовных труб на оправке лишь часть клетей ST выполняют уменьшение толщины. В соответствии с этим, в этом случае, как показано на фиг. 13, вместо уменьшения толщины выполняется уменьшение наружного диаметра в группе клетей (называемой в последующем группой FST клетей предварительной ступени), включающей несколько клетей ST1-STj (j является натуральным числом, при этом j<m), которые расположены непрерывно с начала нескольких клетей ST1-STm. С другой стороны, уменьшение толщины осуществляется в группе клетей (называемой в последующем группой RST клетей последующей ступени), включающей клети STj-1-STm. В данном случае «уменьшение наружного диаметра» означает, что полая трубная заготовка HS обжимается, в то время как внутренняя поверхность полой трубной заготовки HS не находится в контакте с наружной поверхностью стержня 40 оправки, когда полая трубная заготовка HS приходит в контакт с валками RO в клетях STi (i=1 … j) и обжимается. Другими словами, в группе FST клетей предварительной ступени выполняется обжимка. В последующем это удлинение называется «частичным уменьшением наружного диаметра».

При частичном уменьшении наружного диаметра диаметр полой трубной заготовки HS, изготовленной с помощью прошивного прокатного стана 2, может быть далее уменьшен. В соответствии с этим, например, уменьшение наружного диаметра осуществляется в полой трубной заготовке, которая должна прокатываться до заданного наружного диаметра в прошивном прокатном стане 2 согласно уровню техники с помощью группы FST клетей предварительной ступени и тем самым может достигаться заданный наружный диаметр. Для этого наружный диаметр полой трубной заготовки, который должен достигаться с помощью прошивного прокатного стана 2, может быть больше, чем в уровне техники. В этом случае может быть уменьшена частота замены наклонных валков 21 прошивного прокатного стана 2 в соответствии с наружным диаметром подлежащей изготовлению полой трубной заготовки. Это связано с тем, что размер, подлежащий уменьшению с помощью прошивного прокатного стана 2, можно обеспечивать с помощью группы FST клетей предварительной ступени. В соответствии с этим, посредством выполнения частичного уменьшения наружного диаметра, может быть уменьшена частота замены валков, и может быть повышена степень свободы в режиме прокатки прошивного прокатного стана 2 и стана 3 для прокатки бесшовных труб на оправке. Другими словами, в процессе изготовления бесшовной металлической трубы согласно данному варианту выполнения могут быть увеличены коэффициенты использования прошивного прокатного стана 2 и стана 3 для прокатки бесшовных труб на оправке, и тем самым может быть увеличена эффективность изготовления.

Когда выполняется частичное уменьшение наружного диаметра, то наружный диаметр полой трубной заготовки HS, изготовленной с помощью прошивного прокатного стана 2, может быть более единообразно подогнан с помощью группы FST клетей предварительной ступени. В соответствии с этим, может быть дополнительно увеличена точность размеров бесшовной металлической трубы.

В данном варианте выполнения, клети ST1-STm стана 3 для прокатки бесшовных труб на оправке разделены на группу FST клетей предварительной ступени и группу RST клетей последующей ступени в зависимости от потребности, и осуществляется полное уменьшение толщины или частичное уменьшение наружного диаметра. Ниже приводится подробное описание процесса.

На фиг. 14 показана блок-схема способа изготовления бесшовной металлической трубы согласно данному изобретению. Как показано на фиг. 14, сначала устанавливают расстояние прокатки Droll (расстояние от центра линии PL прокатки до канавки GR валка RO) каждой из клетей STi-STm стана 3 для прокатки бесшовных труб на оправке в соответствии с типом стали подлежащей изготовлению бесшовной металлической трубы и размером бесшовной металлической трубы (стадия S1).

В соответствии с установками на стадии S1, когда выполняется частичное уменьшение наружного диаметра, определяют клети STi-STj, включаемые в группу FST клетей предварительной ступени. То есть общее количество клетей, включаемых в группу FST клетей предварительной ступени, можно изменять в соответствии с установками на стадии S1. Например, общее количество j клетей, включаемых в группу FST клетей предварительной ступени, определяют на основании сорта стали и/или размера (наружного диаметра и толщины) изготавливаемой бесшовной металлической трубы.

Например, расстояние Droll прокатки каждой клети STi определяют заранее в соответствии с типом стали и размером (наружным диаметром и толщиной) изготавливаемой бесшовной металлической трубы. Дополнительно к этому, расстояние Droll прокатки, определяемое в соответствии с типом стали и размером бесшовной металлической трубы, заносят в запоминающее устройство (HDD или память) компьютера (не изображен). Посредством считывания величины расстояния Droll прокатки, соответствующего сорту стали и размеру изготавливаемой бесшовной металлической трубы из компьютера, расстояние Droll прокатки каждой из клетей STi-STm регулируется на подлежащую установке величину расстояния Droll прокатки.

Дополнительно к этому, выбирается стержень оправки в соответствии с размером (размером наружного диаметра и размером толщины) подлежащей изготовлению бесшовной металлической трубы (стадия S2). В предпочтительном варианте выполнения заранее подготавливают множество стержней оправки, имеющих различные наружные диаметры, в соответствии с размером бесшовной металлической трубы. На стадии S2 выбирают стержень оправки, имеющий подходящий наружный диаметр, из подготовленных стержней оправки.

Затем нагревают круглую заготовку в нагревательной печи 1 (стадия S3). Круглая заготовка может быть изготовлена способом непрерывной разливки или может быть изготовлена посредством прокатки слитка или сляба. Нагретую круглую заготовку прошивают с помощью прошивного прокатного стана 2 и тем самым изготавливают полую трубную заготовку HS.

Затем стержень 40 оправки, выбранный на стадии S2, вводят в полую трубную заготовку HS (стадия S5). В данном варианте выполнения удерживающая система 31 вводит стержень 40 оправки в полую трубную заготовку HS.

Затем полую трубную заготовку HS удлиняют с помощью стана 3 для прокатки бесшовных труб на оправке (стадия S6). Стан 3 для прокатки бесшовных труб на оправке выполняет полное уменьшение толщины или частичное уменьшение наружного диаметра полой трубной заготовки HS в соответствии с установленным на стадии S1 расстоянием Droll прокатки. После выполнения удлинения с помощью стана 3 для прокатки бесшовных труб на оправке полую трубную заготовку 3 подвергают обжимной прокатке с помощью калибровочного прокатного стана или редукционного стана для прокатки труб с натяжением и тем самым изготавливают бесшовную металлическую трубу (стадия S7).

В соответствии с указанным выше процессом, в способе изготовления бесшовной металлической трубы согласно данному варианту выполнения полное уменьшение толщины или частичное уменьшение наружного диаметра выполняется с помощью стана 3 для прокатки бесшовных труб на оправке в соответствии с типом стали и размером изготавливаемой бесшовной металлической трубы. В соответствии с этим, при бесшовной металлической трубе, выполненной из сорта стали, требующей большого усилия прокатки, и бесшовной металлической трубе, имеющей большой коэффициент удлинения, осуществляется полное уменьшение толщины с помощью стана 3 для прокатки бесшовных труб на оправке. Дополнительно к этому, при бесшовной металлической трубе, выполненной из сорта стали, требующей небольшого усилия прокатки, и бесшовной металлической трубе, имеющей небольшой коэффициент удлинения, осуществляется частичное уменьшение наружного диаметра, уменьшается частота смены валков в прошивном прокатном стане 2 и группы клетей 32 стана 3 для прокатки бесшовных труб на оправке, и может быть увеличена степень свободы при выборе режима прокатки. В соответствии с этим, увеличиваются коэффициенты использования прошивного прокатного стана 2 и стана 3 для прокатки бесшовных труб на оправке, и может быть повышена эффективность изготовления.

Количество клетей в стане для прокатки бесшовных труб на оправке и производительность прокатки (производительность оборудования) каждой клети выбираются так, что даже сорт стали, требующей большого усилия прокатки, такой как высокопрочный сплав, можно обрабатывать до желаемой толщины. В соответствии с этим, когда удлиняется тип стали, требующий небольшого усилия прокатки, такой как обычная сталь, образуется избыток производительности прокатки (производительности оборудования). То есть при типе стали, требующем небольшого усилия прокатки, необходимая прокатка осуществляется с использованием лишь части клетей, а не всех клетей. Согласно данному изобретению, когда удлиняется тип стали, который не требует использования всех клетей, то уменьшение наружного диаметра можно осуществлять с использованием группы FST клетей предварительной ступени, которая становится избыточной. Поэтому диаметр полой трубной заготовки HS, изготавливаемой с помощью прошивного прокатного стана 2, может быть далее уменьшен с помощью группы FST клетей предварительной ступени. В соответствии с этим, как указывалось выше, может быть уменьшена частота смены наклонных валков 21 прошивного прокатного стана 2.

ВТОРОЙ ВАРИАНТ ВЫПОЛНЕНИЯ

Как указывалось выше, стан 3 для прокатки бесшовных труб на оправке выполняет полное уменьшение толщины и частичное уменьшение наружного диаметра. В соответствии с этим, количество клетей, выполняющих уменьшение толщины на группе клетей стана 3 для прокатки бесшовных труб на оправке, изменяется в соответствии с типом стали и размером полой трубной заготовки HS. Поэтому можно выбирать стержень 40 оправки в соответствии с количеством клетей, выполняющих уменьшение толщины.

На фиг. 15 показан на виде сбоку стержень 40 оправки. Как показано на фиг. 15, стержень 40 оправки включает рабочую часть 401 и хвостовик 402. Рабочая часть 401 и хвостовик 402 изготовлены из отдельных материалов и соединены коаксиально друг с другом. Например, на заднем конце рабочей части 401 и на передней части хвостовика 402 выполнена резьба, задний конец и передний конец скрепляются друг с другом, и тем самым соединяются друг с другом рабочая часть и хвостовик.

Рабочая часть 401 расположена на передней части стержня 40 оправки. Рабочая часть 401 приходит в контакт с внутренней поверхностью полой трубной заготовки HS, когда выполняется удлинение. То есть рабочая часть 401 является частью, которая используется в стержне 40 оправки для уменьшения толщины. Поскольку рабочая часть 401 принимает тепло из полой трубной заготовки HS и воспринимает давление сжатия при уменьшении толщины и напряжение растяжения в осевом направлении, то в рабочей части 401 могут легко возникать износ и трещины. Поэтому для рабочей части 401 используется дорогостоящий материал, имеющий улучшенную температурную стойкость, сопротивление возникновению трещин, стойкость к износу, такой как инструментальная сталь (SKD) в соответствии со стандартом JIS. Дополнительно к этому, точность толщины бесшовной металлической трубы зависит от формы (точности наружного диаметра) рабочей части 401, и чистота внутренней поверхности бесшовной металлической трубы зависит от чистоты наружной поверхности рабочей части 401. В соответствии с этим, для рабочей части 401 требуется материал, имеющий улучшенные механические характеристики, высокая точность наружного диаметра и большая чистота наружной поверхности.

Хвостовик 402 установлен на заднем конце рабочей части 401 коаксиально с рабочей частью 401. На заднем конце хвостовика 402 образованы шейка 410 и фланец 420. Хвостовик 402 не приходит в контакт с внутренней поверхностью полой трубной заготовки HS во время удлинения. В соответствии с этим, по сравнению с рабочей частью 401, хвостовик 402 не требует высоких механических характеристик (прочности, стойкости к образованию трещин при нагревании и стойкости к износу) и чистоты наружной поверхности. Поэтому для хвостовика 402 можно использовать более дешевый материал, чем для рабочей части 401, и тем самым может быть уменьшена стоимость изготовления. Дополнительно к этому наружный диаметр хвостовика 402 может быть меньше наружного диаметра рабочей части 401