Способ определения вида двигательной активности человека и устройство для его осуществления

Иллюстрации

Показать все

Группа изобретений относится к области измерений для исследования или анализа движения тела человека или его частей для диагностических целей, в частности определения вида двигательной активности человека. При осуществлении способа регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека, на их основе вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы. Далее последовательно от экстремума к экстремуму, отсчитывая число экстремумов, равное эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности, определяют длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определяют значения разности соседних экстремумов модуля вектора ускорения, которые затем сравнивают с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона. По результатам сравнения принимают решение о совершении двигательного акта определенного вида двигательной активности. Устройство для определения вида двигательной активности включает трехкомпонентный акселерометр, выполненный с возможностью закрепления на теле человека и формирования сигналов, соответствующих проекциям вектора ускорения, которое испытывает акселерометр по трем ортогональным осям в пространстве, и подсоединенное к выходам акселерометра вычислительное устройство, выполненное с возможностью принятия решения о совершении двигательного акта определенного вида двигательной активности в соответствии с алгоритмом способа. Использование группы изобретений позволяет повысить надежность определения вида двигательной активности человека. 2 н. и 15 з.п. ф-лы, 10 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области измерений для исследования или анализа движения тела человека или его частей для диагностических целей, в частности определения вида двигательной активности человека.

УРОВЕНЬ ТЕХНИКИ

Определение вида двигательной активности человека, то есть определение (или распознавание, идентификация) того, стоит, идет, бежит, плывет или как-то иначе двигается человек в данный момент времени, является важным средством получения диагностической информации, в частности для оценки физического состояния человека, испытываемой им физической нагрузки, расходуемой организмом энергии.

Известны различные способы определения вида двигательной активности человека, осуществляемые с использованием датчиков ускорения, расположенных на теле человека.

Так, в заявке JP 2013143996 (публ. 25.07.2013; МПК A61B 5/103, A61B 5/55) описан способ определения вида двигательной активности человека, основанный на регистрации сигналов трехкомпонентного акселерометра, размещенного на запястье, выявлении в зарегистрированных сигналах ускорения пиков, связанных с касанием ног и движением руки пользователя, определению амплитуды этих пиков. Вид двигательной активности, такой как бег или ходьба, определяют путем решения соответствующих уравнений и последующего сравнения результатов вычислений с заданным пороговым значением. Данный способ не обеспечивает надежного определения вида двигательной активности, ввиду того, что не учитывает особенностей движений конкретного человека, которые достаточно индивидуальны.

В заявке US 20130245470 (публ. 19.09.2013; МПК A61B 5/11) описан способ определения вида двигательной активности человека с использованием трехкомпонентного акселерометра, закрепленного на груди человека. Определение вида двигательной активности основано на том факте, что в некоторые промежутки времени, когда человек бежит и его обе ноги оторваны от земли, вектор ускорения, регистрируемого акселерометром, имеет направление, противоположное направлению силы тяжести. В эти промежутки времени значение производной модуля вектора ускорения имеет другой знак, чем в случае, когда хотя бы одна из ног касается земли. В итоге вид движения определяется по производной модуля вектора ускорения. Данный способ также не обеспечивает надежного определения вида двигательной активности, так как не учитывает особенностей движений конкретного человека, и, кроме того, его возможности по определению различных видов двигательной активности ограничены только возможностью отличать бег от ходьбы.

Наиболее близким к настоящему изобретению является способ определения вида двигательной активности человека, описанный в заявке JP 2012065749 (публ. 05.04.2012; МПК A61B 5/103, A43B 5/22). Способ включает регистрацию сигналов трехкомпонентного акселерометра, установленного на теле человека, и вычисление на их основе модуля вектора ускорения. Далее вычисляют разность экстремумов модуля вектора ускорения и по этим значениям выносят решение о виде двигательной активности человека. Однако данный способ, как и вышеописанные, не обеспечивает надежного определения вида двигательной активности, поскольку не учитывает особенностей движений конкретного человека, которые достаточно индивидуальны даже при одном и том же виде движения.

Технической задачей, на решение которой направлено настоящее изобретение, является создание более надежного способа и устройства для определения вида двигательной активности, что обеспечивается за счет формирования эталонных значений амплитудных и временных параметров модуля ускорения для конкретного человека при различных видах двигательной активности, так называемых эталонов, и использования их при осуществлении способа.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В настоящем описании изобретения использованы следующие термины.

Двигательная активность человека - совокупность двигательных актов, движений человека; основная функция мышечной системы человека.

Вид двигательной активности человека - ходьба, бег, приседание, махи руками, ногами, плавание и другие совершаемые человеком виды движения.

Двигательный акт - как правило, повторяемые движения, типа отдельного шага при ходьбе или беге, отдельного приседания, взмаха рукой и т.п.

Трехкомпонентный акселерометр - техническое средство, которое, будучи установленным на движущемся объекте, способно формировать три электрических сигнала, соответствующих проекциям вектора ускорения движущегося объекта по трем ортогональным осям трехмерного пространства.

Модуль вектора ускорения - абсолютное значение ускорения, регистрируемого трехкомпонентным акселерометром в виде трех сигналов, соответствующих проекциям ускорения движущегося объекта по трем ортогональным осям трехмерного пространства.

Временной массив значений модуля вектора ускорения - массив значений модуля вектора ускорения за определенный (заданный) промежуток времени.

Временные границы или длительность двигательного акта - промежуток времени от начала до окончания отдельного двигательного акта, промежуток времени между одними и теми же фазами периодически повторяемых двигательных актов.

Экстремум модуля вектора ускорения - локальный экстремум модуля вектора ускорения во временном массиве его значений.

Число экстремумов модуля вектора ускорения - число локальных экстремумов в пределах временных границ или длительности отдельного двигательного акта.

Эталон - набор параметров, характеризующих определенный вид двигательной активности человека как совокупности двигательных актов определенного вида, включает:

эталонное значение числа экстремумов, приходящихся на один двигательный акт (например, шаг при ходьбе, шаг во время бега, взмах рукой и т.п.);

эталонное значение длительности двигательного акта, представленное минимальным и максимальным значениями;

эталонное значение разности соседних экстремумов, представленное минимальным и максимальным значениями для каждого экстремума относительно последующего экстремума, приходящихся на один двигательный акт.

Подмножество эталонов - множество эталонов, относящихся к одному виду двигательной активности и отличающихся эталонным значением числа экстремумов, приходящихся на один двигательный акт.

Указанные наборы параметров (эталоны) получают предварительно на этапе настройки для различных видов двигательной активности, которые могут быть определены (идентифицированы) путем осуществления способа в соответствии с настоящим изобретением.

Одним объектом изобретения является способ определения вида двигательной активности человека, характеризующийся тем, что:

регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека с возможностью формирования сигналов, вызванных двигательной активностью человека,

на основе упомянутых сигналов трехкомпонентного акселерометра вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы,

последовательно от экстремума к экстремуму модуля вектора ускорения, отсчитывая число экстремумов, равное эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности и характеризуемого эталонным значением числа экстремумов модуля вектора ускорения, эталонным значением длительности двигательного акта и эталонными значениями разности соседних экстремумов модуля вектора ускорения, определяют длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определяют значения разности соседних экстремумов модуля вектора ускорения,

упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения сравнивают с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона,

при этом решение о совершении двигательного акта определенного вида двигательной активности принимают при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, по меньшей мере, одного эталона.

Как экспериментально установили изобретатели, исследуя последовательность сигналов, регистрируемых трехкомпонентным акселерометром, закрепленным на теле человека, отдельные двигательные акты при различных видах двигательной активности характеризуются такими информативными параметрами, как

число экстремумов модуля вектора ускорения,

длительность двигательного акта и

значения разности соседних экстремумов модуля вектора ускорения.

Соответственно, предложено сформировать ряд эталонов, характеризуемых эталонными значениями числа экстремумов модуля вектора ускорения, длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, с которыми будут сравниваться соответствующие параметры модуля вектора ускорения, регистрируемого при осуществлении способа в соответствии с настоящим изобретением. При этом, учитывая естественную девиацию таких параметров, как длительность двигательного акта и разность соседних экстремумов модуля вектора ускорения, соответствующие эталонные значения представлены в виде диапазонов значений - минимального и максимального. Следует отметить, что в зависимости от задач эталонов может быть несколько, как на разные виды двигательной активности, так и на один вид двигательной активности, и в частности может быть использован один эталон, например, когда стоит задача распознавания только конкретного вида двигательной активности человека.

В процессе осуществления способа на основе упомянутых сигналов трехкомпонентного акселерометра вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы.

Затем, начиная с первого экстремума модуля вектора ускорения, отсчитывают число экстремумов, равное эталонному значению числа экстремумов первого эталона, определяют длительность предполагаемого двигательного акта, в пределах которого также определяют значения разности соседних экстремумов. Подобную процедуру выполняют последовательно от экстремума к экстремуму модуля вектора ускорения, повторяя ее для каждого эталона. При этом всякий раз производят сравнение определенных описанным образом значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона.

Описанная процедура позволяет проанализировать последовательно все фрагменты массива значений модуля вектора ускорения, сравнивая его параметры с эталонными, при этом длина анализируемого фрагмента каждый раз определяется эталонным значением числа экстремумов соответствующего эталона.

В итоге решение о совершении двигательного акта определенного вида двигательной активности принимают при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, которые характеризуют анализируемый фрагмент массива значений модуля вектора ускорения, укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона.

Использование предложенной изобретателями модели двигательного акта, характеризуемого числом экстремумов модуля вектора ускорения, длительностью двигательного акта, измеряемой в пределах этого числа экстремумов, и разностью соседних экстремумов, вместе с описанной последовательностью выделения фрагментов зарегистрированного временного массива значений модуля вектора ускорения и сравнения параметров этих фрагментов с соответствующими эталонными параметрами (значениями) обеспечивает возможность надежного определения, к какому виду двигательной активности относится совершенный двигательный акт, и соответственно - определения вида двигательной активности в целом. Под надежностью понимается вероятность ошибок первого и второго рода, то есть вероятность как ложного определения вида совершенного двигательного акта, так и неопределения, к какому именно виду он относится.

Также надежность принимаемого решения о совершении двигательного акта определенного вида двигательной активности может быть повышена, если при принятии данного решения учитывать дисперсию разности соседних экстремумов модуля вектора ускорения относительно соответствующих эталонных значений.

Учитывая, что руки человека участвуют в большинстве видов движения, акселерометр может быть закреплен на руке человека, в частности на запястье, что обеспечивает возможность определения наибольшего числа разнообразных видов двигательной активности человека. Кроме того, ношение подобных технических средств на запястье привычно и удобно для человека.

В частном случае в качестве трехкомпонентного акселерометра могут быть использованы три датчика ускорения, конструктивно соединенные между собой с образованием трех ортогональных осей измерения ускорения.

Для устранения высокочастотных скачкообразных изменений сигналов акселерометра, характерных для такого использования, до формирования временного массива значений модуля вектора ускорения, регистрируемые сигналы трехкомпонентного акселерометра или вычисляемый модуль вектора ускорения может быть подвергнут процедуре сглаживания. Это дополнительно повышает надежность определения вида двигательной активности и уменьшает объем вычислительных операций, производимых при осуществлении способа.

Процесс формирования эталона, например, может быть осуществлен следующим образом. Регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека с возможностью формирования сигналов, вызванных двигательной активностью человека, при этом упомянутые сигналы регистрируют во время совершения человеком серии двигательных актов определенного вида, для которого формируют эталон. Далее на основе упомянутых сигналов трехкомпонентного акселерометра вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы. Затем в пределах выбранного числа двигательных актов определяют для каждого из них число экстремумов модуля вектора ускорения, длительность двигательного акта и разность соседних экстремумов. Наконец в качестве эталонных значений, по меньшей мере, одного эталона принимают повторяющееся число экстремумов, минимальное и максимальное значения длительности двигательных актов с этим числом экстремумов и минимальные и максимальные значения разности соседних экстремумов двигательных актов с этим числом экстремумов.

Дополнительно в случае обнаружения двигательных актов с иным повторяющимся числом экстремумов формируют, по меньшей мере, один дополнительный эталон, при этом в качестве эталонных значений дополнительного эталона также принимают повторяющееся число экстремумов, минимальное и максимальное значения длительности двигательных актов с этим числом экстремумов и минимальные и максимальные значения разности соседних экстремумов двигательных актов с этим числом экстремумов. При этом сформированные в итоге эталоны образуют подмножество эталонов одного вида двигательной активности.

Дополнительно для устранения высокочастотных скачкообразных изменений сигналов акселерометра, до формирования временного массива значений модуля вектора ускорения, регистрируемые сигналы трехкомпонентного акселерометра или вычисляемый модуль вектора ускорения подвергают процедуре сглаживания.

В общем случае формирование эталонов может быть не связано с конкретным человеком, вид двигательной активности которого определяется при осуществлении способа. Однако для достижения наилучшего результата трехкомпонентный акселерометр при формировании эталонов следует закреплять на теле того же человека и так же, как он будет в последующем закреплен на теле человека при осуществлении способа. В этом случае могут быть сформированы эталоны, отражающие индивидуальные особенности человека, проявляющиеся во время движения.

В частности, число двигательных актов, совершаемых человеком при формировании эталона, составляет от 50 до 300.

Другим объектом изобретения является устройство для определения вида двигательной активности, включающее трехкомпонентный акселерометр, выполненный с возможностью закрепления на теле человека и способный формировать сигналы, соответствующие проекциям вектора ускорения, которое испытывает акселерометр, по трем ортогональным осям в пространстве, и вычислительное устройство, подсоединенное к выходам акселерометра.

При этом вычислительное устройство выполнено с возможностью выполнения всех описанных выше вычислительных процедур, используемых при осуществлении способа. А именно:

вычисления на основе упомянутых сигналов акселерометра модуля вектора ускорения, формирования временного массива значений модуля вектора ускорения и выделения его экстремумов,

определения длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определения значения разности соседних экстремумов модуля вектора ускорения, при этом границы двигательных актов определяются последовательно от экстремума к экстремуму модуля вектора ускорения по числу экстремумов, равному эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности и характеризуемого эталонным значением числа экстремумов модуля вектора ускорения, эталонным значением длительности двигательного акта и эталонными значениями разности соседних экстремумов модуля вектора ускорения,

сравнения упомянутых определенных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона, и

принятия решения о совершении двигательного акта определенного вида двигательной активности при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, по меньшей мере, одного эталона.

В частном случае вычислительное устройство может быть выполнено с возможностью принятия решения о совершении двигательного акта определенного вида двигательной активности дополнительно с учетом дисперсии разности соседних экстремумов модуля вектора ускорения относительно соответствующих эталонных значений.

Упомянутый акселерометр может быть выполнен с возможностью закрепления на запястье.

В качестве упомянутого акселерометра могут быть использованы три датчика ускорения, конструктивно соединенные между собой с образованием трех ортогональных осей измерения ускорения.

В частном случае для временного согласования потока сигналов, поступающих с выходов акселерометра, и их последующей обработки вычислительное устройство может быть подсоединено к выходам акселерометра через циклические буферы.

Дополнительно устройство для определения вида двигательной активности человека может быть снабжено приемопередатчиком, обеспечивающим беспроводную передачу во внешнее устройство данных о текущем виде двигательной активности человека.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение поясняется чертежами.

На Фиг. 1 представлена блок-схема примерного устройства, предназначенного для осуществления способа определения вида двигательной активности человека в соответствии с настоящим изобретением.

На Фиг. 2 показан пример размещения устройства для определения вида двигательной активности человека, включающего трехкомпонентный акселерометр, на запястье человека.

На Фиг. 3 представлена блок-схема примерного алгоритма осуществления способа в соответствии с настоящим изобретением, при этом алгоритм представлен в общем виде для иллюстрации основных операций способа.

На Фиг. 4 представлена блок-схема примерного алгоритма формирования эталонов для различных видов двигательной активности человека.

На Фиг. 5 приведен пример графического представления изменения во времени модуля вектора ускорения, регистрируемого трехкомпонентным акселерометром. Пример иллюстрирует определение локальных экстремумов модуля вектора ускорения, характеризующих двигательную активность различного вида.

На Фиг. 6 показан в увеличенном масштабе фрагмент «с» представленного на Фиг. 5 графика модуля вектора ускорения, иллюстрирующий изменение модуля вектора ускорения в пределах одного двигательного акта и определение разности соседних экстремумов модуля вектора ускорения.

На Фиг. 7 приведены примерные графики, иллюстрирующие дисперсию сигналов трехкомпонентного акселерометра, регистрируемых при осуществлении способа в соответствии с настоящим изобретением.

На Фиг. 8а и Фиг. 8b (как продолжение) представлена блок-схема примерного алгоритма определения вида двигательной активности человека, раскрывающая более детально способ, блок-схема алгоритма которого в общем виде представлена на Фиг. 3.

На Фиг. 9 представлена блок-схема примерного алгоритма корректировки эталонов, соответствующих определенному виду двигательной активности человека и используемых при осуществлении способа в соответствии с настоящим изобретением.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Способ в соответствии с настоящим изобретением может быть осуществлен, например, с помощью устройства 1, блок-схема которого представлена на Фиг. 1. Устройство 1 включает трехкомпонентный акселерометр 2, имеющий три датчика ускорения 3, 4, 5, формирующих сигналы, соответствующие проекциям (составляющим) вектора ускорения, которое испытывает акселерометр 2, по трем ортогональным осям в пространстве X, Y и Z. Выходы датчиков ускорения 3, 4 и 5 через соответствующие циклические буферы 6, 7 и 8, накапливающие за определенный период времени значения сигналов с датчиков ускорения 3, 4 и 5, подключены к входам вычислительного устройства 9. Устройство 1 может быть размещено на теле человека с таким расчетом, чтобы вследствие его двигательной активности формировались устойчивые сигналы датчиков ускорения 3, 4, 5. Наиболее удобное место установки устройства 1, по меньшей мере, той его части, которая включает акселерометр 2, - на запястье, как это показано на Фиг. 2, что обеспечивает возможность определения наибольшего числа разнообразных видов двигательной активности человека, иначе - видов движения.

Трехкомпонентный акселерометр 2 (см. Фиг. 1) непрерывно во времени формирует сигналы xi, yi и zi (где i - порядковый номер отсчета), соответствующие проекциям по трем ортогональным осям X, Y и Z вектора ускорения, которое испытывает акселерометр 2. Указанные сигналы через соответствующие циклические буферы 6, 7 и 8 поступают в вычислительное устройство 9 для последующей обработки. Циклический (или кольцевой) буфер является разновидностью буфера FIFO, First Input First Output (первый вошел - первый вышел), используемого обычно для согласования потоков данных между асинхронными процессами, в данном случае - между непрерывно поступающими сигналами xi, yi, zi и их обработкой вычислительным устройством 9. Таким образом, в циклических буферах 6, 7, 8 хранятся последовательные значения сигналов xi, yi, zi, число которых определяется емкостью циклических буферов 6, 7, 8 и которые непрерывно обновляются с каждым очередным отсчетом. Вычислительное устройство 9 осуществляет операции по определению того или иного вида двигательной активности на основе алгоритмов, блок-схемы которых представлены: в общем виде - на Фиг. 4, и более детально - на Фиг. 8а, 8b. Емкость циклических буферов 6, 7, 8 определяется в совокупности такими факторами, как быстродействие вычислительного устройства 9, сложность выполняемых вычислительных процедур, требуемая точность вычислений.

Устройство 1 может быть дополнено приемопередатчиком 10, обеспечивающим беспроводную передачу данных о текущем виде двигательной активности человека во внешнее автономное устройство, например персональный компьютер или смартфон 11, где эти данные могут накапливаться. Также могут быть реализованы схемы, при которых данные со смартфона 11 посредством сетевых технологий, например сети Интернет, передаются во внешнее хранилище, где может быть организовано их накопление, последующая обработка и анализ с учетом упомянутых выше задач оценки физического состояния человека, испытываемой им физической нагрузки, расходуемой организмом энергии и пр.

Блок-схема алгоритма осуществления способа в объеме основных операций представлена на Фиг. 3. На выходах трехкомпонентного акселерометра 2 (обозначены позицией 101), входящего в состав устройства 1, закрепленного на запястье, с заданной частотой дискретизации одновременно формируются сигналы xi, yi, zi, где i - порядковый номер отсчета. Эти сигналы, как было указано, соответствуют проекциям вектора ускорения по трем ортогональным осям в пространстве X, Y, Z.

Вначале (шаг 102) на основе сигналов xi, yi, zi вычисляют модуль вектора ускорения как

формируя тем самым последовательность значений Ai.

Для устранения высокочастотных скачкообразных изменений вычисленных значений Ai эта последовательность может быть подвергнута процедуре сглаживания (шаг 103), например, с использованием метода экспоненциального взвешенного скользящего среднего. При этом формируется новый массив значений A ˜ i , свободный от высокочастотной составляющей. Специалистам в данной области техники известны различные методы сглаживания, которые могут быть использованы с учетом частотного спектра сигналов xi, yi, zi акселерометра 2.

Как вариант, последовательность выполнения процедур сглаживания и вычисления модуля вектора ускорения может быть иная: вначале выполняют сглаживание сигналов xi, yi, zi, а затем вычисляют модуль вектора ускорения.

Из полученных значений A ˜ i формируют временной массив модуля вектора ускорения (шаг 104) для его последующего анализа. Временной массив модуля вектора ускорения хранится в оперативной памяти вычислительного устройства 9.

Значения модуля вектора ускорения A ˜ i представлены на Фиг. 5 в виде графика, отражающего изменение значения A ˜ i во времени. Представленная кривая имеет характерную зубчатую форму. В данном примере амплитудные и временные соотношения для A ˜ i в области «a» характерны для случая, когда человек, по крайней мере, не идет и не бежит, а в области «b» - когда человек идет, то есть при ходьбе.

На следующем шаге 105 (см. Фиг. 3) определяют локальные экстремумы модуля вектора ускорения A ˜ i , которые на графике Фиг. 5 отмечены точками. Затем на шаге 106 по выделенным локальным экстремумам определяют временные границы отдельных двигательных актов. Это определение проводят на основе сравнения последовательности локальных экстремумов модуля вектора ускорения A ˜ i с эталонными значениями числа экстремумов модуля вектора ускорения для одного двигательного акта при различных видах двигательной активности человека. Данные эталонных значений обозначены на Фиг. 3 позицией 107.

Эталон, как было сказано выше, представляет собой набор параметров - эталонных значений, характеризующих определенный вид двигательной активности человека. При этом может быть использовано множество эталонов, относящихся к определенному виду двигательной активности, каждый из которых, в свою очередь, может быть представлен подмножеством эталонов данного вида двигательной активности. Например, для распознавания ходьбы, бега и прыжков множество эталонов S будет включать

где: SW - подмножество эталонов для ходьбы;

SR - подмножество эталонов для бега;

SJ - подмножество эталонов для прыжков.

При этом каждое из подмножеств SW, SR или SJ может включать несколько эталонов. Например, подмножество эталонов для ходьбы SW, включающее w эталонов (w - натуральное число), может быть представлено как

где: S W ( 1 ) - 1-й эталон для ходьбы;

S W ( 2 ) - 2-й эталон для ходьбы;

S W ( w ) - w-й эталон для ходьбы.

В качестве критерия для различения эталонов, относящихся к одному подмножеству, может быть использовано число локальных экстремумов, приходящихся на один двигательный акт данного вида двигательной активности.

Наконец, каждый эталон включает набор следующих эталонных значений:

где: Е - число экстремумов, приходящихся на один двигательный акт (например, шаг при ходьбе, шаг во время бега, прыжок, взмах рукой и т.п.);

Tmin - минимальное значение длительности двигательного акта;

Tmax - максимальное значение длительности двигательного акта;

h(1)min - минимальное значение разности первого и второго экстремумов;

h(1)max - максимальное значение разности первого и второго экстремумов;

h(E-1)min - минимальное значение разности предпоследнего и последнего экстремумов;

h(E-1)max - максимальное значение разности предпоследнего и последнего экстремумов.

Эти эталоны получают предварительно на этапе настройки или «обучения» устройства 1, что будет описано ниже, и в виде указанных эталонных значений хранятся в памяти, в данном случае упомянутого вычислительного устройства 9.

Определение на шаге 106 (см. Фиг. 3) временных границ отдельных двигательных актов производят последовательно от первого обнаруженного локального экстремума модуля вектора ускорения для всех имеющихся эталонов. Вначале от первого локального экстремума, принимая его условно за начало двигательного акта, отсчитывают число экстремумов, равное числу экстремумов Е первого эталона, определяя тем самым длительность T данного условного двигательного акта. Если определенная таким образом длительность T не попадает в заданный первым эталоном диапазон Tmin-Tmax, ту же процедуру проводят для следующего эталона. Если относительно упомянутого первого локального экстремума модуля вектора ускорения не было выявлено ни одного эталона с диапазоном длительности Tmin-Tmax, в который укладывается длительность T, подобную процедуру проводят относительно следующего локального экстремума модуля вектора ускорения. И так - до нахождения в массиве модуля вектора ускорения локального минимума, относительно которого есть подходящий эталон, то есть когда длительность T, приходящаяся на число экстремумов Е этого эталона, укладывается в заданный этим эталоном диапазон значений Tmin-Tmax. Число эталонов, как было упомянуто выше, определяется сложностью задачи распознавания различных видов двигательной активности человека, хотя, вообще говоря, эталон может быть единственным, если ставится простая задача распознавания конкретного вида двигательной активности, которая характеризуется определенными эталонными значениями.

Далее в пределах определенных на шаге 106 временных границ двигательного акта определяют (шаг 108) разности соседних экстремумов, например, от h1 до h4 при числе экстремумов, равном пяти, как это показано на примере Фиг. 6, которые затем сравнивают (шаг 109) с соответствующими эталонными значениями разности соседних экстремумов: h(1)min, h(1)max, …, h(4)min, h(4)max. Результаты сравнения запоминают. И так для всех эталонов. Если по результатам сравнения все разности соседних экстремумов модуля вектора ускорения укладываются в заданный диапазон эталонных значений для определенного вида двигательной активности, выносят решение о совершении двигательного акта, соответствующего данному эталону или виду двигательной активности.

Для формирования эталонов устройство 1 закрепляется на теле человека так же, как оно будет в последующем использоваться для определения вида двигательной активности, например, на запястье, как показано на Фиг. 2. Устройство 1 пользователь переводит в 1 режим настройки и выполняет заданный вид движения, например, идет или бежит. Блок-схема примерного алгоритма формирования эталонов для различных видов двигательной активности человека представлена на Фиг. 4. Число циклических движений ходьбы или бега - двигательных актов, требуемых для получения эталонных значений, составляет от 50 до 300. При необходимости процесс настройки устройства 1 может быть повторен, для чего предусмотрен режим обновления или корректировки эталонных значений, который будет описан ниже со ссылкой на Фиг. 9.

В режиме формирования эталонов (см. Фиг. 4), так же как и в режиме определения вида двигательной активности, используют сигналы xi, yi, zi акселерометра 2 (обозначены позицией 201), по которым вычисляют модуль вектора ускорения (шаг 202), значения которого затем последовательно подвергаются описанным выше процедурам сглаживания (шаг 203), формирования временного массива значений модуля вектора ускорения (шаг 204) и определения локальных экстремумов модуля вектора ускорения (шаг 205).

Затем с учетом числа совершенных двигательных актов одного вида (обозначено позицией 206) определяют среднюю длительность двигательного акта данного вида (шаг 207). В частности, на графике Фиг. 5, полученном в процессе формирования эталонов для ходьбы, точками отмечены экстремумы модуля вектора ускорения, а вертикальными пунктирными линиями - временные границы одного двигательного акта, на которые приходятся периодически повторяющиеся примерно через одинаковые промежутки времени локальные минимумы модуля вектора ускорения. Позиция этих локальных минимумов принята за начало очередного двигательного акта. Как можно видеть, длительность одного двигательного акта, в данном случае одного шага при ходьбе, составляет примерно от 0,4 с до 0,6 с.

Затем определяют число экстремумов, приходящихся на один двиг