Резиновая смесь

Иллюстрации

Показать все

Изобретение относится к резиновым смесям. Предложена резиновая смесь, содержащая: (А) каучуковый компонент, содержащий 10% по массе или более по меньшей мере одного типа каучука, выбранного из синтезированного эмульсионной полимеризацией диенового каучука и натурального каучука и 90% по массе или менее другого типа диенового каучука; (В) диоксид кремния, имеющий удельную площадь поверхности по адсорбции н-гексадецилтриметиламмоний бромида (СТАВ), составляющую не менее 180 м2/г при определении методом, описанным в ASTM D3765-92; (С) по меньшей мере один силановый полисульфидный связывающий агент; и (D) ускоритель вулканизации, выбранный из гуанидинового, сульфенамидного и тиазольного соединений. Технический результат - предложенная резиновая смесь обладает улучшенной характеристикой низкого тепловыделения по сравнению с известными аналогами. 4 з.п. ф-лы, 4 ил., 10 табл., 45 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к резиновой смеси, содержащей диоксид кремния, которая обладает улучшенной характеристикой низкого тепловыделения.

Уровень техники

В последние годы на фоне движения за глобальный контроль выбросов углекислого газа в сочетании с возросшей озабоченностью проблемами загрязнения окружающей среды увеличивается спрос на автомобили с низким расходом топлива. Для удовлетворения этого требования желательно снизить сопротивление качению, связанное с характеристиками шин. В этой связи, в качестве средства для снижения сопротивления качению шин был исследован способ оптимизации структуры шин; однако в настоящее время наиболее широкое распространение получил способ использования резиновой смеси для шин с низким тепловыделением.

Для получения такой резиновой смеси с низким тепловыделением существует известный метод использования неорганического наполнителя, такого как диоксид кремния или тому подобного.

Однако в резиновой смеси, содержащей диоксид кремния, образуются агрегаты диоксида кремния (за счет гидроксильной группы на поверхности диоксида кремния), и по этой причине для предотвращения агрегации используют силановый связывающий агент.

Соответственно, для успешного решения вышеназванной проблемы включением силанового связывающего агента были проведены различные опыты с целью усиления связывающей функции силанового связывающего агента.

Например, PTL 1 предлагает резиновую смесь, содержащую в качестве базовых компонентов по меньшей мере (i) один диеновый эластомер, (ii) светлый наполнитель в качестве армирующего наполнителя и (iii) полисульфид алкоксилана в качестве связывающего агента (светлый наполнитель/диеновый эластомер) вместе с (iv) энамином и (v) производным гуанидина.

PTL 2 раскрывает резиновую смесь, содержащую в качестве базовых компонентов по меньшей мере (i) один диеновый эластомер, (ii) светлый наполнитель в качестве армирующего наполнителя и (iii) полисульфид алкоксилана в качестве связывающего агента (светлый наполнитель/диеновый эластомер) вместе с (iv) дитиофосфатом цинка и (v) производным гуанидина.

PTL 3 описывает резиновую смесь содержащую в качестве базовых компонентов по меньшей мере (i) один диеновый эластомер, (ii) неорганический наполнитель в качестве армирующего наполнителя и (iii) полисульфид алкоксилана (PSAS) в качестве связывающего агента (неорганический наполнитель/диеновый эластомер) в сочетании с (iv) альдимином (R-CH=N-R) и (v) производным гуанидина.

Кроме того, PTL 4 предлагает резиновую смесь, в основном содержащую по меньшей мере (i) один диеновый эластомер, (ii) неорганический наполнитель в качестве армирующего наполнителя и (iii) полисульфид алкоксилана в качестве связывающего агента, в сочетании с (iv) 1,2-дигидропиридином и (v) производным гуанидина.

PTL 5 предлагает способ повышения активности связывающей функции силанового связывающего агента с учетом условий вымешивания.

PTL 6 описывает изобретение, в котором средний диаметр частиц диоксида кремния составляет 10 мкм или менее, и к резиновой смеси добавлен конкретный силановый связывающий агент, что обеспечивает подавление агрегации диоксида кремния.

PTL 7 предлагает способ, в котором к резиновой смеси добавляют диоксид кремния, у которого удельная площадь поверхности по адсорбции н-гексадецилтриметиламмоний бромида (СТАВ) предпочтительно составляет от 60 до 250×102 м2/кг, и чайный экстракт, содержащий катехин, добавляют в резиновую смесь, что препятствует присутствию крупных агрегатов диоксида кремния в резиновой смеси.

Кроме того, PTL 8 и PTL 9 описывают резиновую смесь, которая находится в таком состоянии дисперсии наполнителя в каучуковом компоненте, что соотношение площади, занимаемой агрегатами наполнителя, диаметр эквивалентного круга которых составляет 10 мкм или более, и общей площади наблюдаемой зоны по результатам оценки дисперсии исследованием поверхности среза образца темнопольным методом составляет 2,0% или менее.

Однако существует потребность в способе дополнительного улучшения характеристики низкого тепловыделения резиновой смеси, содержащей диоксид кремния. Перечень цитируемых документов

Патентная литература

PTL 1: JP-T 2002-521515

PTL 2: JP-T 2002-521516

PTL 3: JP-T 2003-530443

PTL 4: JP-T 2003-523472

PTL 5: WO 2008/123306

PTL 6: JP-A 2009-256576

PTL 7: JP-A 2010-031260

PTL 8: JP-A 2010-248422

PTL 9: JP-A 2010-248423

Раскрытие изобретения

Техническая задача

При сложившихся обстоятельствах цель настоящего изобретения заключается в предоставлении резиновой смеси, обладающей улучшенной характеристикой низкого тепловыделения.

Решение задачи

Авторы настоящего изобретения обратили внимание на состояние дисперсии диоксида кремния в резиновой смеси и попытались оценить состояние дисперсии диоксида кремния различными методами измерения. В результате было обнаружено, что характеристику низкого тепловыделения можно улучшить за счет снижения гистерезисных свойств (более конкретно, tanδ) резиновой смеси доведением средней площади агрегированных агрегатов по результатам измерения конкретным методом до определенного уровня или ниже, и таким образом, настоящее изобретение было создано.

Так, настоящее изобретение относится к резиновой смеси, содержащей: (А) каучуковый компонент, содержащий 10% по массе или более по меньшей мере одного типа каучука, выбранного из синтезированного эмульсионной полимеризацией диенового каучука и натурального каучука, и 90% по массе или менее другого типа диенового каучука; (В) диоксид кремния, имеющий удельную площадь поверхности по адсорбции н-гексадецилтриметиламмоний бромида (СТАВ), составляющую не менее 180 м2/г при определении методом, описанным в ASTM D3765-92; (С) по меньшей мере один силановый связывающий агент, выбранный из полисульфидного соединения и сложного тиоэфирного соединения; и (D) ускоритель вулканизации, причем резиновая смесь после вулканизации имеет среднюю площадь агрегированных агрегатов (нм2) диоксида кремния, составляющую 1900 или менее, при этом метод измерения средней площади агрегированных агрегатов является следующим:

верхнюю поверхность образца резиновой смеси после вулканизации разрезают сфокусированным ионным пучком в направлении, составляющем угол 38° по отношению к верхней поверхности образца; затем с помощью сканирующего электронного микроскопа получают изображение гладкой поверхности образца, образовавшейся при разрезе, при ускоряющем напряжении 5 кВ в направлении, перпендикулярном гладкой поверхности; полученное изображение преобразуют в бинаризованное изображение резиновой части и кремнийдиоксидной части как наполнителя образца по методу Оцу; на основании полученного бинаризованного изображения получают площадь агрегированных агрегатов кремнийдиоксидной части; и вычисляют среднюю площадь агрегированных агрегатов кремнийдиоксидной части как среднее значение (среднее арифметическое) на единицу площади (3 мкм × 3 мкм) на основании общей площади поверхности кремнийдиоксидной части и числа агрегированных агрегатов, при условии, что при расчетах частица, соприкасающаяся с краем изображения, не учитывается, а частица размером 20 пикселей или менее считается помехой («шумом») и не учитывается.

Полезные эффекты изобретения

По настоящему изобретению может быть предоставлена резиновая смесь, обладающая улучшенной характеристикой низкого тепловыделения.

Краткое описание чертежей

Фигура 1 представляет собой фотографию, показывающую пример изображения FIB-SEM, полученного технической визуализацией агрегированных агрегатов диоксида кремния в резиновой смеси по настоящему изобретению методом измерения средней площади агрегированных агрегатов по настоящему изобретению.

Фигура 2 представляет собой фотографию, показывающую пример бинаризованного изображения, представленного на Фиг.1.

Фигура 3 представляет собой фотографию, показывающую исходный пример изображения FIB-SEM, полученного технической визуализацией агрегированных агрегатов диоксида кремния тем же методом, что и на Фиг.1.

Фигура 4 представляет собой фотографию, показывающую пример бинаризованного изображения, представленного на Фиг.3.

Осуществление изобретения

Ниже приведено более подробное описание настоящего изобретения.

Резиновая смесь по настоящему изобретению содержит: (А) каучуковый компонент, содержащий 10% по массе или более, по меньшей мере, одного типа каучука, выбранного из синтезированного эмульсионной полимеризацией диенового каучука и натурального каучука, и 90% по массе или менее другого типа диенового каучука; (В) диоксид кремния, имеющий удельную площадь поверхности по адсорбции н-гексадецилтриметиламмоний бромида (СТАВ), составляющую не менее 180 м2/г при определении методом, описанным в ASTM D3765-92; (С) по меньшей мере один силановый связывающий агент, выбранный из полисульфидного соединения и сложного тиоэфирного соединения; и (D) ускоритель вулканизации, причем резиновая смесь после вулканизации имеет среднюю площадь агрегированных агрегатов (нм2) диоксида кремния, составляющую 1900 или менее. Для дополнительного улучшения характеристики низкого тепловыделения резиновой смеси средняя площадь (нм2) агрегированных агрегатов диоксида кремния предпочтительно составляет 1800 или менее и более предпочтительно 1700 или менее. Средняя площадь (нм2) агрегированных агрегатов диоксида кремния предпочтительно составляет 300 или более, более предпочтительно от 300 до 1900, более предпочтительно от 300 до 1800 и наиболее предпочтительно от 300 до 1700.

Определение средней площади агрегированных агрегатов проводится следующим образом. Верхнюю поверхность образца резиновой смеси после вулканизации разрезают сфокусированным ионным пучком в направлении, составляющем угол 38° по отношению к верхней поверхности образца; затем с помощью сканирующего электронного микроскопа получают изображение гладкой поверхности образца, образовавшейся при разрезе, при ускоряющем напряжении 5 кВ в направлении, перпендикулярном гладкой поверхности. Полученное изображение преобразуют в бинаризованное изображение резиновой части и кремнийдиоксидной части как наполнителя образца по методу Оцу; на основании полученного бинаризованного изображения получают площадь агрегированных агрегатов кремнийдиоксидной части; и вычисляют среднюю площадь агрегированных агрегатов кремнийдиоксидной части как среднее значение (среднее арифметическое) на единицу площади (3 мкм × 3 мкм) на основании общей площади поверхности кремнийдиоксидной части и числа агрегированных агрегатов. При расчетах частица, соприкасающаяся с краем изображения, не учитывается, а частица размером 20 пикселей или менее считается помехой и не учитывается.

При измерении средней площади агрегированных агрегатов в рамках настоящего изобретения предпочтительно используют агрегат FIB-SEM, который представляет собой комплексное оборудование, состоящее из устройства для наблюдения и обработки сфокусированным ионным пучком (FIB) и сканирующего электронного микроскопа (SEM). Предпочтительно используемый сканирующий электронный микроскоп (SEM) является сканирующим электронным микроскопом со сверхнизким ускоряющим напряжением.

Примеры агрегата FIB-SEM включают "NOVA 200", торговое наименование (зарегистрированный товарный знак), выпускаемый компанией FEI, и "SMI-3050MS2", торговое наименование (зарегистрированный товарный знак), выпускаемый компанией SII Nano Technology Inc., и предпочтительно используют "NOVA 200", торговое наименование (зарегистрированный товарный знак), выпускаемый компанией FEI.

Для преобразования в бинаризованное изображение можно использовать устройство для обработки изображений по методу Оцу.

При измерении средней площади агрегированных агрегатов в рамках настоящего изобретения верхнюю поверхность образца резиновой смеси после вулканизации разрезают сфокусированным ионным пучком в направлении, составляющем угол 38° по отношению к верхней поверхности образца; затем с помощью сканирующего электронного микроскопа получают изображение гладкой поверхности образца, образовавшейся при разрезе, при ускоряющем напряжении 5 кВ в направлении, перпендикулярном гладкой поверхности. Этот метод позволяет получить изображение гладкой поверхности поперечного среза образца высокой четкости, на котором присутствует только информация о поверхности поперечного среза без обычных оказывающих влияние факторов колебания яркости, изображения не в фокусе и тому подобных, какие бывают в соответствующей отрасли техники. Соответственно, на основании полученного изображения высокой четкости можно оцифровать состояние дисперсии наполнителя в полимерном материале и количественно оценить среднюю площадь агрегированных агрегатов резиновой смеси, содержащей диоксид кремния, после вулканизации. Если образец разрезают с помощью FIB, поверхность среза, формирующаяся в направлении, параллельном направлению пучка FIB, становится гладкой, а поверхность среза, формирующаяся в направлении, перпендикулярном направлению пучка FIB, становится шероховатой, имеющей неровности. Соответственно, гладкая поверхность, содержание которой получают в настоящем изобретении, означает поверхность среза, сформировавшуюся в направлении, параллельном направлению пучка FIB.

Затем, по методу Оцу определяют пороговое значение для бинаризации полученного изображения. Используя пороговое значение, полученное изображение преобразуют в бинаризованное изображение резиновой части и кремнийдиоксидной части как наполнителя образца, на основании полученного бинаризованного изображения получают площадь агрегированных агрегатов кремнийдиоксидной части, и вычисляют среднюю площадь агрегированных агрегатов кремнийдиоксидной части как среднее значение (среднее арифметическое) на единицу площади (3 мкм × 3 мкм) на основании общей площади поверхности кремнийдиоксидной части и числа агрегированных агрегатов. При расчетах частица, соприкасающаяся с краем изображения, не учитывается, а частица размером 20 пикселей или менее считается помехой и не учитывается.

Фигура 1 представляет собой фотографию, показывающую пример изображения FIB-SEM, полученного технической визуализацией агрегированных агрегатов диоксида кремния в резиновой смеси по настоящему изобретению методом измерения средней площади агрегированных агрегатов по настоящему изобретению, и фигура 2 представляет собой фотографию, показывающую пример бинаризованного изображения изображения, представленного на Фиг.1.

Фигура 3 представляет собой фотографию, показывающую исходный пример изображения FIB-SEM, полученного технической визуализацией агрегированных агрегатов диоксида кремния тем же методом, что и на Фиг.1, и фигура 4 представляет собой фотографию, показывающую пример бинаризованного изображения изображения, представленного на Фиг.3.

Агрегированный агрегат в настоящем изобретении означает агломерированное вещество нескольких агрегатов, и это понятие охватывает одиночный агрегат. Агрегат (т.е. первично агрегированное вещество) в настоящем документе означает комплексную агрегированную форму диоксида кремния, образовавшуюся спеканием первичных частиц диоксида кремния с формированием линейных или асимметрично ветвящихся цепей, размер частиц агрегата может составлять от нескольких десятков до нескольких сотен нанометров.

Агрегированный агрегат в настоящем изобретении гораздо меньше, чем агломерат (т.е. вторично агрегированное вещество), размер которого обычно составляет от нескольких десятков до нескольких сотен микрометров, и эти понятия совершенно отличаются друг от друга.

Удельную площадь поверхности адсорбции по н-гексадецилтриметиламмоний бромида (СТАВ) (которая в документе ниже может быть сокращенно названа «удельной площадью поверхности по адсорбции СТАВ») диоксида кремния измеряют согласно методу, описанному в ASTM D3765-92, в соответствии с описанием выше. Однако в этот метод были внесены некоторые измерения в связи с тем, что метод, описанный в ASTM D3765-92, является методом измерения удельной площади поверхности по адсорбции СТАВ сажи. Более конкретно, в качестве стандартного образца сажи не используют IRB #3 (83,0 м2/г), а отдельно готовят стандартный раствор н-гексадецилтриметиламмоний бромида (СТАВ), с помощью которого калибруют раствор Aerosol ОТ (натрий ди-2-этилгексил сульфосукцината), и удельную площадь поверхности (м2/г) рассчитывают по величине адсорбции СТАВ при допущении, что сечение адсорбции на одну молекулу СТАВ на поверхности гидратированной кремниевой кислоты составляет 0,35 нм2. Изменения были внесены в связи с тем, что считается, что поверхности сажи и гидратированной кремниевой кислоты отличаются друг от друга, и, следовательно, существует различие в величине адсорбции СТАВ на той же площади поверхности.

Каучуковый компонент (А)

Каучуковый компонент (А), используемый в резиновой смеси по настоящему изобретению, содержит 10% по массе или более по меньшей мере одного типа каучука, выбранного из синтезированного эмульсионной полимеризацией диенового каучука и натурального каучука, и 90% по массе или менее другого типа диенового каучука, и предпочтительно содержит более 10% по массе по меньшей мере одного типа каучука, выбранного из синтезированного эмульсионной полимеризацией диенового каучука и натурального каучука и менее 90% по массе другого типа диенового каучука.

Синтезированный эмульсионный полимеризацией диеновый каучук по настоящему изобретению может быть синтезирован обычным способом эмульсионной полимеризации. Пример этого способа включают способ, в котором предписанное количество мономера, описанного ниже, эмульгируют в водной среде в присутствии эмульгатора и полимеризуют в эмульсии с использованием инициатора радикальной полимеризации.

Примеры используемого эмульгатора включают соль длинноцепочечной жирной кислоты, содержащей 10 или более атомов углерода и/или соль канифольной кислоты. Конкретные примеры эмульгатора включают калиевые соли и натриевые соли каприновой кислоты, лауриновой кислоты, миристиновой кислоты, пальмитиновой кислоты, олеиновой кислоты и стеариновой кислоты.

Примеры используемого инициатора радикальной полимеризации включают соль персульфата, такую как персульфат аммония и персульфат калия; и окислительно-восстановительный инициатор, такой как сочетание персульфата аммония и сульфида железа, сочетание органического пероксида и сульфида железа, и сочетание пероксида водорода и сульфида железа.

Для управления молекулярным весом диенового каучука можно добавлять регулятор степени полимеризации. Примеры используемого регулятора степени полимеризации включают меркаптановое соединение, такое как трет-додецилмеркаптан и н-додецилмеркаптан, α-метилстироловый димер, тетрахлорид углерода, тиогликолевую кислоту, дитерпеновое соединение, терпинолен и γ-терпиненовое соединение.

Температуру эмульсионной полимеризации можно соответствующим образом выбрать в зависимости от типа используемого инициатора радикальной полимеризации, и, как правило, она составляет от 0 до 100°C, и предпочтительно от 0 до 60°C. Режим полимеризации может быть любым: непрерывной полимеризацией, периодической полимеризацией и тому подобным.

Если в ходе эмульсионной полимеризации конверсия полимеризации высока, может отмечаться тенденция к гелеобразованию. Соответственно, конверсию полимеризации предпочтительно сдерживают на уровне 90% или менее, и более конкретно предпочтительно полимеризацию прекращают, когда конверсия составляет от 50 до 80%. Обычно полимеризацию можно прекратить добавлением агента прекращения полимеризации к системе полимеризации в момент, когда достигается предписанная степень конверсии. Примеры используемого агента прекращения полимеризации включают аминное соединение, такое как диэтилгидроксиламин и гидроксиламин, хиноновое соединение, такое как гидрохинон и бензохинон, нитрит натрия, дитиокарбамат натрия.

После прекращения реакции полимеризации непрореагировавший мономер удаляют по необходимости из полученного полимерного латекса, и затем после корректировки pH латекса до предписанного уровня добавлением кислоты, такой как азотная кислота и серная кислота, добавляют соль, такую как хлорид натрия, хлорид кальция и хлорид калия в качестве коагулирующего агента и перемешивают для обеспечения коагуляции полимера в комок, который затем извлекают. Комок прополаскивают и обезвоживают, а затем высушивают удобным устройством для сушки или тому подобным с получением целевого диенового каучука.

Примеры сопряженного диена, использованного в качестве мономера в синтезированном эмульсионной полимеризацией диеновом каучуке по настоящему изобретению, включают 1,3-бутадиен, 2-метил-1,3-бутадиен, 2,3-диметил-1,3-бутадиен, 2-хлоро-1,3-бутадиен и 1,3-пентадиен. Из перечисленных более предпочтительными являются 1,3-бутадиен, 2-метил-1,3-бутадиен и тому подобные, и наиболее предпочтительным является 1,3-бутадиен. Сопряженный диен может быть использован отдельно или в виде сочетания двух или более его типов. Примеры ароматического винильного соединения включают стирол, а-метилстирол, 2-метилстирол, 3-метилстирол, 4-метилстирол, 2,4-диизопропилстирол, 2,4-диметилстирол, 4-трет-бутилстирол и 5-трет-бутил-2-метилстирол. Из перечисленных предпочтительным является стирол. Ароматическое винильное соединение может быть использовано отдельно или в виде сочетания двух или более его типов.

Синтезированный эмульсионной полимеризацией диеновый каучук по настоящему изобретению предпочтительно является бутадиен-стирольным сополимерным каучуком (который может именоваться в документе ниже как «синтезированный эмульсионной полимеризацией SBR»).

Синтезированный эмульсионной полимеризацией SBR предпочтительно содержит стирольный компонент в количестве от 5 до 50% по массе, более предпочтительно в количестве от 10 до 50% по массе, и наиболее предпочтительно в количестве от 15 до 45% по массе.

Другой тип диенового каучука в каучуковом компоненте (А), используемом в резиновой смеси по настоящему изобретению, предпочтительно является по меньшей мере одним типом каучука, выбранным из синтезированного полимеризацией в растворе бутадиен-стирольного сополимерного каучука (который может именоваться в документе ниже как «синтезированный полимеризацией в растворе SBR»), полибутадиенового каучука (который может именоваться в документе ниже как «BR») и синтетического полиизопренового каучука (который может именоваться в документе ниже как «IR»). Синтезированный полимеризацией в растворе SBR предпочтительно является бутадиен-стирольным сополимерным немодифицированным каучуком (который может именоваться в документе ниже как «синтезированный полимеризацией в растворе немодифицированный SBR») и/или бутадиен-стирольным сополимерным модифицированным каучуком, у которого концы молекулярной цепи модифицированы соединением олова (который может именоваться в документе ниже как «синтезированный полимеризацией в растворе модифицированный оловом SBR»).

Другой тип диенового каучука может быть использован отдельно или в виде сочетания двух или более его типов.

Синтезированный полимеризацией в растворе немодифицированный SBR может быть получен анионной полимеризацией или координационной полимеризацией, и предпочтительно его получают анионной полимеризацией.

Инициатор полимеризации, используемый при анионной полимеризации, может представлять собой соединение щелочного металла, и предпочтительно соединение лития. Соединение лития может быть не только простым соединением лития (таким как гидрокарбиллития и литийамидное соединение), но также соединением лития, содержащим атом олова (таким как соединение лития с оловом с тремя органическими группами, например трибутилолово-литий и триоктилолово-литий), который можно использовать для получения синтезированного полимеризацией в растворе модифицированного оловом SBR.

Синтезированный полимеризацией в растворе модифицированный оловом SBR может быть получен таким образом, что после завершения реакции полимеризации синтезированного полимеризацией в растворе немодифицированного SBR, полученного согласно описанию выше, перед прекращением полимеризации проводят реакцию соединения олова в качестве модификатора с активным концом бутадиен-стирольного сополимера.

Примеры соединений олова включают тетрахлорид олова, трибутил хлорид олова, триоктил хлорид олова, диоктил дихлорид олова, дибутил дихлорид олова и трифенил хлорид олова.

Диоксид кремния (В)

Диоксид кремния (В), используемый в резиновой смеси по настоящему изобретению, может быть любым из имеющихся в продаже продуктов, в числе которых предпочтительно используют диоксид кремния, полученный мокрым способом, диоксид кремния, полученный сухим способом, и коллоидный диоксид кремния, причем наиболее предпочтительно используют диоксид кремния, полученный мокрым способом. Диоксид кремния, полученный мокрым способом, подразделяют на диоксид кремния, полученный способом осаждения, и диоксид кремния, полученный гель-способом, особенно предпочтительным является диоксид кремния, полученный способом осаждения, поскольку его легко диспергировать в резиновой смеси при сдвигающем усилии во время вымешивания, и поскольку он оказывает прекрасное армирующее действие за счет поверхностной реакции после диспергирования.

Характерно, что диоксид кремния (В) обладает удельной площадью поверхности по адсорбции СТАВ не менее 180 м2/г, предпочтительно от 180 до 300 м2/г. Если удельная площадь поверхности по адсорбции СТАВ не превышает 300 м2/г, перерабатываемость невулканизированной резиновой смеси может быть повышена.

Предпочтительные примеры диоксида кремния, полученного способом осаждения, удельная площадь поверхности по адсорбции СТАВ которого находится в пределах этого диапазона, включают «Zeosil HRS 1200», торговое наименование (зарегистрированный товарный знак), выпускаемый компанией Rhodia, Inc. (удельная площадь поверхности по адсорбции СТАВ: 200 м2/г).

При необходимости резиновая смесь по настоящему изобретению может содержать сажу в дополнение к диоксиду кремния (В). Использование сажи оказывает такое действие, что при этом уменьшается электрическое сопротивление, что предупреждает накопление статического заряда. Сажа конкретно не ограничивается, и ее примеры включают высоко-, средне- или низкоструктурную сажу, такую как сажа марок SAF, ISAF, IISAF, N339, HAF, FEF, GPF и SRF, причем более конкретно предпочтительным является использование марок сажи SAF, ISAF, IISAF, N339, HAF и FEF. Используемая сажа предпочтительно обладает удельной площадью поверхности по адсорбции азота (N2SA измеряют согласно JIS K6217-2 (2001)) от 30 до 250 м2/г. Сажу можно использовать отдельно или в виде сочетания двух или более ее типов.

Резиновая смесь по настоящему изобретению предпочтительно содержит диоксид кремния (В) в количестве от 25 до 150 частей по массе на 100 частей по массе каучукового компонента (А). Количество 25 частей по массе или более является предпочтительным с точки зрения гарантии характеристик на мокром грунте, а количество 150 частей по массе или менее является предпочтительным с точки зрения снижения сопротивления качению. Более предпочтительно диоксид кремния (В) содержится в количестве от 25 до 120 частей по массе и наиболее предпочтительно в количестве от 30 до 85 частей по массе.

Предпочтительно резиновая смесь по настоящему изобретению содержит наполнитель, такой как диоксид кремния (В) и сажа, которую при необходимости добавляют дополнительно к диоксиду кремния (В) в количестве от 25 до 170 частей по массе на 100 частей по массе каучукового компонента (А). Количество 25 частей по массе или более является предпочтительным с точки зрения повышения армирующих свойств резиновой смеси, и количество 170 частей по массе или менее является предпочтительным с точки зрения снижения сопротивления качению.

Количество диоксида кремния (В) в наполнителе предпочтительно составляет 40% по массе или более и более предпочтительно 70% по массе или более для обеспечения одновременно характеристик на мокром грунте и сопротивления качению.

Силановый связывающий агент (С)

Силановый связывающий агент (С), используемый в резиновой смеси по настоящему изобретению, является по меньшей мере одним силановым связывающим агентом, который обязательно выбирают из полисульфидного соединения и сложного тиоэфирного соединения. Предпочтительными являются полисульфидное соединение и сложное тиоэфирное соединение, поскольку они препятствуют преждевременной вулканизации (подвулканизации), происходящей во время вымешивания, улучшая тем самым перерабатываемость.

По меньшей мере один силановый связывающий агент (С), выбранный из полисульфидного соединения и сложного тиоэфирного соединения, предпочтительно является по меньшей мере одним соединением, выбранным из соединений, представленных следующими общими формулами с (I) по (IV).

За счет использования силанового связывающего агента (С), перерабатываемость резиновой смеси по настоящему изобретению дополнительно улучшается в плане обработки резины, и позволяет получить пневматическую шину с более высокой износоустойчивостью.

Предпочтительные примеры полисульфидного соединения включают соединения, представленные общими формулами (I) или (III), и предпочтительные примеры сложного тиоэфирного соединения включают соединения, представленные общими формулами (II) или (IV).

Общие формулы (I)-(IV) последовательно описаны ниже.

где R1, которые могут быть одинаковыми или различными, каждый представляет собой линейную, циклическую или разветвленную алкильную группу, содержащую от 1 до 8 атомов углерода, или линейную или разветвленную алкоксилалкильную группу, содержащую от 2 до 8 атомов углерода; R2, которые могут быть одинаковыми или различными, каждый представляет собой линейную, циклическую или разветвленную алкильную группу, содержащую от 1 до 8 атомов углерода; R3, которые могут быть одинаковыми или различными, каждый представляет собой линейную или разветвленную алкиленовую группу, содержащую от 1 до 8 атомов углерода; а имеет величину от 2 до 6 в качестве среднего значения; р и r, которые могут быть одинаковыми или различными, каждый имеет величину от 0 до 3 в качестве среднего значения, при условии, что оба индекса р и r одновременно не равны 3.

Конкретные примеры силанового связывающего агента (С), представленного приведенной выше общей формулой (I), включают бис(3-триэтоксисилилпропил)тетрасульфид, бис(3-триметоксисилилпропил)тетрасульфид, бис(3-метилдиметоксисилилпропил)тетрасульфид, бис(2-триэтоксисилилэтил)тетрасульфид, бис(3-триэтоксисилилпропил)дисульфид, бис(3-триметоксисилилпропил)дисульфид, бис(3-метилдиметоксисилилпропил)дисульфид, бис(2-триэтоксисилилэтил)дисульфид, бис(3-триэтоксисилилпропил)трисульфид, бис(3-триметоксисилилпропил)трисульфид, бис(3-метилдиметоксисилилпропил)трисульфид, бис(2-триэтоксисилилэтил)трисульфид, бис(3-моноэтоксидиметилсилилпропил)тетрасульфид, бис(3-моноэтоксидиметилсилилпропил)трисульфид, бис(3-моноэтоксидиметилсилилпропил)дисульфид, бис(3-монометоксидиметилсилилпропил)тетрасульфид, бис(3-монометоксидиметилсилилпропил)трисульфид, бис(3-монометоксидиметилсилилпропил)дисульфид, бис(2-моноэтоксидиметилсилилэтил)тетрасульфид, бис(2-моноэтоксидиметилсилилэтил)трисульфид, бис(2-моноэтоксидиметилсилилэтил)дисульфид.

где R4 представляет собой одновалентную группу, выбранную из -Cl, -Br, R9O-, R9C(=O)O-, R9R10C=NO-, R9R10CNO-, R9R10N-, и -(OSiR9R10)h(OSiR9R10R11) (где R9, R10 и R11, которые могут быть одинаковыми или различными, каждый представляет собой атом водорода или одновалентную углеводородную группу, содержащую от 1 до 18 атомов углерода; и h имеет величину от 1 до 4 в качестве среднего значения); R5 представляет собой R4 атом водорода, или одновалентную углеводородную группу, содержащую от 1 до 18 атомов углерода; и h имеет величину от 1 до 4 в качестве среднего значения); R5 представляет собой R4, атом водорода, или одновалентную углеводородную группу, содержащую от 1 до 18 атомов углерода; R6 представляет собой R4, R5, атом водорода, или группу -[O(R12O)j]0,5 (где R12 представляет собой алкиленовую группу, содержащую от 1 до 18 атомов углерода; и j является целым числом от 1 до 4); R7 представляет собой двухвалентную углеводородную группу, содержащую от 1 до 18 атомов углерода; R8 представляет собой одновалентную углеводородную группу, содержащую от 1 до 18 атомов углерода; x, y и z каждый являются числами, удовлетворяющими зависимости x+y+2z=3,0≤x≤3,0≤у≤2,0≤z≤1.

В общей формуле (II), R8, R9, R10 и R11, которые могут быть одинаковыми или различными, каждый предпочтительно представляет собой группу, выбранную из группы, включающей линейную, циклическую или разветвленную алкильную, алкенильную, арильную или аралкильную группу, содержащую от 1 до 18 атомов углерода. Если R5 представляет собой одновалентную углеводородную группу, содержащую от 1 до 18 атомов углерода, эту группу предпочтительно выбирают из группы, состоящей из линейной, циклической или разветвленной алкильной, алкенильной, арильной или аралкильной группы. Предпочтительно R12 представляет собой линейную, циклическую или разветвленную алкиленовую группу, и более предпочтительно представляет собой линейную группу. R7 представляет собой, например, алкиленовую группу, содержащую от 1 до 18 атомов углерода, алкениленовую группу, содержащую от 2 до 18 атомов углерода, циклоалкиленовую группу, содержащую от 5 до 18 атомов углерода, циклоалкилалкиленовую группу, содержащую от 6 до 18 атомов углерода, ариленовую группу, содержащую от 6 до 18 атомов углерода, или аралкиленовую группу, содержащую от 7 до 18 атомов углерода. Алкиленовая группа и алкениленовая группа могут быть линейными или разветвленными; а циклоалкиленовая группа, циклоалкилалкиленовая группа, ариленовая группа и аралкиленовая группа может иметь заместитель, такой как низшая алкильная группа или тому подобная на своем кольце. Предпочтительно R7 представляет собой алкиленовую группу, содержащую от 1 до 6 атомов углерода, более предпочтительно линейную алкиленовую группу, например, метиленовую группу, этиленовую группу, триметиленовую группу, тетраметиленовую группу, пентаметиленовую группу или гексаметиленовую группу.

Конкретные примеры одновалентной углеводородной группы, содержащей от 1 до 18 атомов углерода, радикалов R5, R8, R9, R10 и R11 в общей формуле (II) включают метильную группу, этильную группу, н-пропильную группу, изопропильную группу, н-бутильную группу, изобутильную группу, втор-бутильную группу, трет-бутильную группу, пентильную группу, гексильную группу, октильную группу, децильную группу, додецильную группу, циклопентильную группу, циклогексильную группу, винильную группу, пропенильную группу, аллильную группу, гексенильную группу, октенильную группу, циклопентенильную группу, циклогексенильную группу, фенильную группу, толильную группу, ксилильную группу, нафтильную группу, бензильную группу, фенэтильную группу, нафтилметильную группу и тому подобные.

Примеры R12 в общей формуле (II) включают метиленовую группу, этиленовую группу, триметиленовую группу, тетраметиленовую группу, пентаметиленовую группу, гексаметиленовую группу, октаметиленовую группу, декаметиленовую группу, додекаметиленовую группу и тому подобные.

Конкретные примеры силанового связывающего агента (С), представленного общей формулой (II), включают 3-гексаноилтиопропилтриэтоксисилан, 3-октаноилтиопропилтриэтоксисилан, 3-деканоилтиопропилтриэтоксисилан, 3-лауроилтиопропилтриэтоксисилан, 2-гексаноилтиоэтилтриэтоксисилан, 2-октаноилтиоэтилтриэто