Способ и устройство определения координат источника радиоизлучения

Иллюстрации

Показать все

Изобретения относятся к радиотехнике и могут быть использованы для определения координат источников радиоизлучений в ультракоротковолновом (УКВ) и сверхвысокочастотном (СВЧ) диапазонах радиоволн, использующих узкополосные сигналы. Достигаемый технический результат - обеспечение повышения точности определения координат источников радиоизлучений (ИРИ) в УКВ-СВЧ-диапазонах радиоволн. Указанный результат достигается за счет того, что используется алгоритм синтеза разностной апертуры, позволяющий устранить влияние нестабильности фазы передатчика, а также учесть модуляцию сигнала ИРИ. Указанный результат также достигается оптимизацией маршрута полета носителей основной (ОП) и выносной (ВП) позиций пассивного локатора, а также тем, что формируют наземный пункт управления (НПУ), по командам которого осуществляют одновременный синхронный прием сигналов ИРИ антенно-приемными модулями ОП и ВП и формирование квадратурных составляющих огибающих сигнала и передачу их на НПУ совместно с данными о времени приема сигнала и пространственном положении фазовых центров приемных антенн, формирование на их основе разностных траекторных значений S(ti) путем попарного перемножения квадратурных составляющих сигнала S1(ti), принятых на ОП в момент времени ti с соответствующими комплексно сопряженными значениями квадратурных составляющих сигнала принятыми в ВП в момент времени ti, нахождение на основе S(ti), полученных на интервале синтезирования I·Δt, местоположения ИРИ с применением метода согласованной обработки. Способ реализуется с помощью устройства, выполненного определенным образом. 2 н. и 3 з.п ф-лы, 14 ил., 1 табл.

Реферат

Заявляемые объекты объединены одним изобретательским замыслом, относятся к радиотехнике и могут быть использованы в навигационных, пеленгационных, локационных средствах для определения местоположения априорно неизвестного источника радиоизлучения (ИРИ).

Известен способ, реализованный в подвижном пеленгаторе, описанном в Пат. РФ №2124222, МПК G01S 13/46, опубл. 27.12.1998 г. Он включает прием сигналов источников радиоизлучений в заданной полосе частот AF перемещающимся в пространстве пеленгатором, измерение первичных пространственно-информационных параметров (ППИП) обнаруженных сигналов с одновременным измерением вторичных параметров: времени измерения ППИП, координат местоположения и ориентации (в азимутальной плоскости) антенной решетки подвижного пеленгатора, преобразование ППИП в пространственные параметры: азимутальный угол θ, θ=0, 1, …, 360° и угол места β, β=0, 1, …, 90°. Способ-аналог позволяет определить параметры криволинейных траекторий перемещения объекта.

Однако аналог обладает недостаточной точностью измерения координат ИРИ в силу того, что в нем реализована двухэтапная обработка результатов измерений. На первом этапе в каждой j-й точке, j=1, 2, …, J, измеряют пространственные параметры θj и βj, которые на втором этапе используют для вычисления местоположения ИРИ. В книге (Кондратьев B.C. и др. Многопозиционные радиотехнические системы / B.C. Кондратьев, А.Ф. Котов, Л.Н. Марков; Под ред. проф. В.В. Цветнова. - М.: Радио и связь, 1989 г., - 264 с. ) показано, что системы с двухэтапной обработкой дают худшие результаты, чем при оптимальной одноэтапной обработке.

Известен способ определения координат ИРИ, описанный в Пат. РФ №2536609, МПК G01S 5/04, опубл. 28.10.2014 г., бюл. №36. На подготовительном этапе аналог включает вычисление количества N=S/S0 элементарных зон привязки, где S и S0 соответственно площади зоны контроля и элементарной зоны привязки, присвоение каждой элементарной зоне привязки порядкового номера n, n=1, 2, …, N, определение координат местоположения центров элементарных зон привязки {X, Y}n, расчет и запоминание эталонных значений ППИП на выходах Am,l-ных антенных элементов, где m, l=1, 2, …, М, m≠l, М>2, относительно направлений прихода тестирующего сигнала с дискретностью Δθk, k=1, 2, …, К; К·Δθk=2π; причем ППИП рассчитываются для средних частот , а в процессе работы при обнаружении сигнала ИРИ на частоте способ-аналог включает измерения ППИП на выходах Am,l-ных антенных элементов (АЭ) решетки с одновременным измерением вторичных параметров, вычисление для каждого направления в горизонтальной плоскости разности между эталонными и измеренными значениями ППИП, возведение в квадрат полученных разностей и их суммирование, формирование матрицы измерений Rjc,n)ν из сумм , определение после выполнения J измерений ППИП минимальной суммы в элементах матрицы измерений Rjc,n)ν, принятие координат местоположения центра элементарной зоны привязки {X, Y}n, соответствующие min за координаты местоположения обнаруженного ИРИ.

Аналог позволяет повысить доступность и точность определения координат ИРИ за счет реализации одноэтапной обработки результатов измерений и размещения пеленгатора на летно-подъемном средстве (ЛПС), учета его пространственной ориентации.

Однако точность определения координат ИРИ с борта ЛПС в диапазоне волн 30-300 МГц остается низкой в силу несогласованных размеров пеленгаторной антенной системы.

Наиболее близким по своей технической сущности к заявляемому является способ определения координат источника радиоизлучения в Пат. РФ №2305851, МПК G01S 5/04, опубл. 10.09.2007 г. Прототип включает прием сигнала ИРИ на антенно-приемные модули (АПМ), установленные на двух движущихся механически связанных носителях и образующих узкобазисную систему основной позиции (ОП) и выносную позицию (ВП) пассивного локатора (ПЛ), обнаружение сигналов ИРИ и определение его несущей частоты, формирование во время движения ОП и ВП квадратурных составляющих огибающих сигнала ИРИ на выходах АПМ, неоднократное измерение на интервале дальности, являющимся интервалом синтезирования, этих квадратурных составляющих и их совместное запоминание с временем измерения и положением фазового центра приемной антенны АПМ в пространстве ОП и ВП в момент каждого такта измерения этих огибающих с последующим нахождением на основе данных, полученных на интервале синтезирования, местоположения ИРИ.

Способ-прототип позволяет повысить точность определения координат ИРИ за счет использования выносного пункта путем увеличения (согласования) базы пеленгования.

Однако прототип обладает недостатками, ограничивающими его применение. К их числу можно отнести:

относительно низкую точность оценивания пространственных параметров сигнала ИРИ из-за несогласованной (узкобазисной) антенны ОП и отсутствия учета пространственной ориентации (не учитывается угол сноса ЛПС) носителя ОП;

перемещение ОП и ВП в пространстве относительно ИРИ коррелировано и не может быть оптимизировано относительно точностных характеристик;

не учитывается неизвестная отстройка частоты между АПМ и ИРИ;

фазовая нестабильность в приемном и передающем трактах ограничивает способ по времени когерентного накопления оцениваемого сигнала;

относительная сложность и значительная себестоимость измерителя (предполагает использование в качестве носителя самолет со значительными габаритами для размещения пеленгаторной антенны и многоканального оборудования).

Известно устройство определения координат источника радиоизлучения по Пат. РФ №2536609, МПК 5/04, опубл. 27.12.2014 г., бюл. №36. Устройство-аналог содержит блок определения пространственных параметров, первый, второй, третий, четвертый и пятый вычислители-формирователи, первый и второй блоки памяти, радионавигатор, устройство угловой ориентации, блок измерения первичных пространственно-информационных параметров, генератор синхроимпульсов, блок оценивания, блок определения координат и блок индикации, определенным образом соединенные между собой. Устройство размещается на летно-подъемном средстве (самолет, вертолет) и обеспечивает повышение доступности сигналов ИРИ УКВ-СВЧ-диапазонов частот и точность их местоопределения. Однако в силу значительных габаритных размеров пеленгаторной антенной системы блока определения пространственных параметров и сложности реализации собственно устройства определения координат ИРИ (габаритно-весовых характеристик) делает невозможным его размещение на беспилотных летательных аппаратах среднего и малого классов. Кроме того, использование аналога ограничено из-за высокой себестоимости носителя и его эксплуатации.

Наиболее близким по своей технической сущности к заявляемому устройству определения координат ИРИ является устройство по Пат. РФ №2550811, МПК G01S 13/46, опубл. 20.05.2015 г., бюл. №14.

Устройство-прототип содержит два и более беспилотных летательных аппарата (БПЛА) и наземный пункт управления (НПУ), причем каждый из БПЛА содержит последовательно соединенные контроллер, рулевой привод и аэродинамические рули, автопилот, группа информационных входов которого соединена с второй группой информационных выходов контроллера, первая группа информационных входов которого соединена с группой информационных выходов автопилота, двигательную установку, группа информационных входов которой соединена с третьей группой информационных выходов контроллера, первый приемопередающий модуль, группа информационных входов которого соединена с четвертой группой информационных выходов контроллера, вторая группа информационных входов которого соединена с группой информационных выходов первого приемо-передающего модуля, последовательно соединенные блок видеонаблюдения, первое запоминающее устройство и передающий модуль, блок навигации БПЛА, группа информационных выходов которого соединена со второй группой информационных входов первого запоминающего устройства, а НПУ выполнен содержащим последовательно соединенные первый блок управления, предназначенный для управления взлетом, полетом и посадкой БПЛА, второй приемопередающий модель и первое устройство обработки и отображения информации, последовательно соединенные второе запоминающее устройство, выполненное L-канальным, устройство распознавания, выполненное L-канальным, второй блок управления, предназначенный для задания исходных данных и формирования команды на определение координат объектов, и второе устройство обработки и отображения информации, группа информационных выходов которого является первой выходной шиной НПУ, вторая группа информационных входов объединена со второй группой информационных входов второго блока управления и группой информационных выходов приемного модуля, выполненного L-канальным, группа информационных входов второго запоминающего устройства является входной шиной НПУ, вторая выходная шина которого соединена с второй группой информационных выходов устройства распознавания, третья группа информационных выходов которого соединена с группой адресных входов второго запоминающего устройства.

Устройство-прототип обеспечивает повышение пропускной способности за счет более эффективного обнаружения и распознавания заданных объектов на основе видеоизображений с борта нескольких БПЛА, путем реализации процедуры «компьютерного зрения».

Однако устройству-прототипу также присущ недостаток, связанный с низкой точностью определения координат объектов из-за неоптимальных габаритных размеров пеленгаторной антенны в рассматриваемом диапазоне частот, что в конечном счете существенно увеличивает временные затраты на обнаружение заданных объектов.

Целью заявленных технических решений является разработка способа и устройства определения координат ИРИ, обеспечивающих: повышение точности местоопределения ИРИ в УКВ-СВЧ-диапазонах частот благодаря использованию метода синтеза разностной апертуры (CPA) и оптимизации маршрутов полета носителей.

В заявленном способе поставленная цель достигается тем, что в известном способе определения координат источника радиоизлучения, состоящем в том, что принимают сигнал источника радиоизлучения на антенно-приемные модули, установленные на двух движущихся механически связанных носителях и образующих основную и выносную позиции пассивного локатора, обнаруживают сигнал ИРИ и определяют его несущую частоту, формируют во время движения с помощью ОП и ВП квадратурные составляющие огибающих сигнала ИРИ на выходах АПМ с частотой Fds, неоднократно измеряют на интервале дальности, являющемся интервалом синтезирования, эти квадратурные составляющие и их совместно запоминают с временем измерения в момент каждого такта оценивания этих огибающих с последующим следующим нахождением на основе данных, полученных на интервалах синтезирования, местоположения ИРИ. Используют N выносных позиций пассивных локаторов, N≥1, базирующихся на отдельных носителях, формируют наземный пункт управления (НПУ), по командам которого осуществляют одновременный синхронный прием сигнала ИРИ антенно-приемными модулями ОП и ВП и формирование квадратурных составляющих огибающих сигнала и передачу их по соответствующим каналам связи на НПУ совместно с данными о времени приема сигнала ti и пространственном положении фазовых центров приемных антенн АПМ ОП и ВП, совместное упорядоченное запоминание на НПУ значений квадратурных составляющих сигнала и их временных параметров, а также временных и пространственных параметров, соответствующих ОП и ВП, формирование на их основе разностных траекторных значений S(ti) путем попарного перемножения запомненных квадратурных составляющих сигнала S1(ti), принятых на ОП в момент времени ti, с соответствующими комплексно сопряженными значениями квадратурных составляющих сигнала S 2 * ( t i ) , принятыми на ВП в момент времени ti, ti=i·Δt, i=1, 2, …, I; Δt - шаг по времени, нахождение на основе данных S(ti), полученных на интервале синтезирования I·Δt, местоположения ИРИ с применением метода согласованной обработки.

На основном и выносных позициях используются только по одному антенно-приемному модулю.

Для согласованной обработки результатов измерений умножают принятый разностный траекторный сигнал на опорную функцию, представляющую собой комплексно сопряженный разностный траекторный сигнал от ИРИ, расположенного в элементе разрешения с заданными координатами, накапливают сигнал по модулю в течение времени синтеза, нормируют, получают величины, характеризующие элементы разрешения, находят местоположение ИРИ путем поиска элемента разрешения с наибольшей данной величиной.

Синхронизацию измерения параметров на ОП и ВП осуществляют автономно каждым носителем с использованием меток времени спутниковой системы навигации.

Благодаря новой совокупности существенных признаков в заявляемом способе за счет использования метода синтеза разностной апертуры устраняется отстройка по частоте АПМ и ИРИ, нестабильность фазы в передающем тракте ИРИ, а также фазовая модуляция сигнала, чем и обеспечивается повышение точности определения координат ИРИ.

Поставленная цель в заявляемом устройстве достигается тем, что в известном устройстве, состоящем из двух и более идентичных беспилотных летательных аппаратов и наземного пункта управления, причем каждый из БПЛА содержит последовательно соединенные котроллер, рулевой привод и аэродинамические рули, автопилот, группа информационных входов которого соединена с второй группой информационных выходов контроллера, первая группа информационных входов которого соединена с группой информационных выходов автопилота, двигательную установку, группа информационных входов которой соединена с третьей группой информационных выходов контроллера, первый L-канальный приемопередающий модуль, группа информационных входов которого соединена с четвертой группой информационных выходов контроллера, вторая группа информационных входов которого соединена с первой группой информационных выходов первого приемо-передающего модуля, последовательно соединенные первое запоминающее устройство и передающий модуль, блок навигации БПЛА, группа информационных выходов которого соединена со второй группой информационных входов первого запоминающего устройства, а НПУ выполнен содержащим последовательно соединенные первый блок управления, предназначенный для управления взлетом, полетом и посадкой БПЛА, второй L-канальный приемопередающий модель и первое устройство обработки и отображения информации, последовательно соединенные L-канальный приемный модуль, второй блок управления, предназначенный для задания исходных данных и формирования команды на определение координат источника радиосигнала и второе устройство обработки и отображения информации, группа информационных выходов которого является выходной шиной наземного пункта управления, дополнительно в каждый БПЛА введено по одному антенно-приемному модулю (АПМ), группа информационных выходов каждого из которых соединена с первой группой информационных входов соответствующего первого запоминающего устройства, а группа входов управления соединена со второй группой информационных выходов первого приемопередающего модуля, а в НПУ дополнительно введены коррелятор, группа информационных выходов которого соединена со второй группой информационных входов второго устройства обработки и отображения информации, а группа информационных входов объединена с первой группой входов второго блока управления, вторая группа выходов которого соединена со второй группой информационных входов второго приемо-передающего модуля, второе запоминающее устройство, группа информационных входов которого является второй установочной шиной наземного пункта управления, а группа информационных выходов соединена с третьей группой входов второго устройства обработки и отображения информации, а вторая группа информационных входов второго блока управления является первой установочной шиной наземного пункта управления.

Перечисленная новая совокупность существенных признаков за счет того, что вводятся новые элементы и связи, позволяет достичь цели изобретения: обеспечить повышение точности местоопределения ИРИ в УКВ-СВЧ-диапазонах частот благодаря реализации метода синтеза разностной апертуры в измерителе.

Заявляемые объекты поясняются чертежами, на которых показаны:

на фиг. 1 - обобщенный алгоритм определения координат источника радиоизлучения;

на фиг. 2 - обобщенный алгоритм синтеза разностной апертуры;

на фиг. 3 - обобщенная структурная схема устройства определения координат источника радиоизлучения;

на фиг. 4 - структурная схема антенно-приемного модуля;

на фиг. 5 - порядок настройки приемных трактов АПМ;

на фиг. 6 - структурная схема второго устройства обработки и отображения информации;

на фиг. 7 - результаты первого варианта формирования функции неопределенности при синтезе разностной апертуры:

а) траектории фазовых центров антенн 1 (ОП) и 2 (ВП) на интервале времени t1-t2;

б) сечение ФН на уровне 0,7 при синтезе разностной апертуры;

в) сечение ФН при синтезе апертуры для траектории 1 (ОП);

г) сечение ФР при синтезе апертуры для траектории 2 (ВП);

на фиг. 8 - результаты второго варианта формирования функции неопределенности при синтезе разностной апертуры:

а) траектории фазовых центров антенн 1 (ОП) и 2 (ВП) на интервале времени t1-t2;

б) сечение ФН на уровне 0,7 при синтезе разностной апертуры;

в) сечение ФН при синтезе апертуры для траектории 1 (ОП);

г) сечение ФН при синтезе апертуры для траектории 2 (ВП);

на фиг. 9 - результаты третьего варианта формирования функции неопределенности при синтезе разностной апертуры:

а) траектории фазовых центров антенн ОП и ВП на интервале времени t1-t2;

б) сечение ФН на уровне 0,7 при синтезе разностной апертуры;

в) сечение ФН при синтезе апертуры для траектории 1 (ОП);

г) сечение ФН при синтезе апертуры для траектории 2 (ВП);

на фиг. 10 - траектории движения БПЛА относительно ИРИ в фиксированной системе координат:

а) для экспериментов №№1-6;

б) для эксперимента №7;

на фиг. 11 (1-7) - суммарные функции неопределенности (шаг по х - 10 м, шаг по y - 5 м) и их элементы разрешения в ФСК для элементов 1-7 соответственно;

на фиг. 12 - результаты синтеза апертуры для несущей частоты 30,5 МГц:

а) траектории движения БПЛА 1 и 2 относительно ИРИ в ФСК;

б) путевые скорости БПЛА;

в) спектр сигнала, принятого на борту БПЛА 1;

г) спектр сигнала, принятого на борту БПЛА 2;

д) частота принятого разностного траекторного сигнала (1) и частота эталонного разностного траекторного сигнала (2);

е) разность фаз между эталонным и принятым разностным траекторным сигналом;

ж) функция неопределенности (шаг по х - 10 м, шаг по y - 5 м);

з) элемент разрешения по ФСК;

на фиг. 13 - результаты синтеза апертуры для несущей частоты 199,5 МГц:

а) траектория движения БПЛА относительно ИРИ в ФСК;

б) путевые скорости БПЛА;

в) спектр сигнала, принятого на борту БПЛА 1;

г) спектр сигнала, принятого на борту БПЛА 2;

д) частота принятого разностного траекторного сигнала (1) и частота эталонного разностного траекторного сигнала (2);

е) разность фаз между эталонным и принятым траекторными сигналами;

ж) функция неопределенности (шаг по х=10 м, шаг по y=5 м);

з) элемент разрешения в ФСК;

на фиг. 14 - результаты синтеза апертуры для несущей частоты 146 МГц:

а) траектория движения БПЛА относительно ИРИ в ФСК;

б) путевая скорость БПЛА;

в) спектр сигнала, принятого на борту БПЛА 1;

г) спектр сигнала, принятого на борту БПЛА 2;

д) частота принятого разностного траекторного сигнала (1) и частота эталонного разностного траекторного сигнала 2;

е) разность фаз между эталонным и принятым разностными траекторными сигналами;

ж) функция неопределенности (шаг по х=10 м, шаг по y=5 м);

з) элемент разрешения в ФСК.

Сущность изобретений состоит в следующем. В рамках предложенных материалов акцент сделан на определение местоположения ИРИ в УКВ-СВЧ-диапазонах частот (30-300 МГц) с использованием небольших летательных аппаратов, что является экономически обоснованным.

В настоящее время известны реализации фазоразностного и разностно-дальномерно-доплеровского способов определения координат, базирующихся на небольших беспилотных летательных аппаратах (БПЛА) (см. Рембовский A.M. и др. Радиомониторинг - задачи, методы, средства / Под ред. A.M. Рембовского. - М.: Горячая линия-Телеком, 2010. - 624 с. ). Фазоразностный способ предполагает использование на борту БПЛА не менее трех АПМ, что ограничивает его использование в метровом диапазоне волн из-за габаритных и весовых характеристик. Применение разностно-дальномерно-доплеровского способа ограничено классом широкополосных сигналов и сложностью реализации.

Для названных исходных данных предпочтительным является использование способа пассивного синтеза апертуры (ПСА), реализуемого перемещением одного АПМ в пространстве для построения виртуальной апертуры большого размера. При этом в отличие от радиолокатора с синтезированной апертурой при пассивном синтезе отсутствует опорный радиосигнал и используется одно радиоприемное устройство (см. Кондратенков Г.С. Радиовидение. Радиолокационные системы дистанционного зондирования Земли / Г.С. Кондратенков, А.Ю. Фролов. - М.: Радиотехника, 2005. - 368 с. ). Этот способ относится к одноканальным корреляционным интерферометрическим измерителям, где физическое разделение каналов заменено временным.

В предлагаемых способе и устройстве для повышения точности определения координат предложено использование пассивного синтеза разностной апертуры, позволяющего устранить отстройку по частоте между АПМ и передатчиком ИРИ, влияние нестабильности фазы передатчика, а также учесть модуляцию сигнала ИРИ. Дополнительно повышение точности измерений достигается оптимизацией маршрутов полета носителей ОП и ВП относительно ИРИ.

Реализация способа достигается следующей последовательностью действий. С помощью АПМ ОП и ВП, размещенных на подвижных ЛПС (БПЛА) (фиг. 1, 2), осуществляют прием сигнала ИРИ. При этом на каждом из ЛПС размещают по одному АПМ. Принятый на интервале времени [t0; tc] высокочастотный сигнал преобразуют в электрический сигнал промежуточной частоты, дискретизируют с частотой Fds и квантуют его, формируют две последовательности отсчетов квадратурных составляющих на нулевой частоте. Всего получают ISA=TSA·Fds комплексных отсчетов радиосигнала ИРИ за время синтеза апертуры TSA, TSA=tc-t0, измеренных в моменты времени ti, t=i·Δt, t=0, 1, …, TSA-1, Δt=1/FSA.

Одновременно в интервале времени [t0; tc] осуществляют определение местоположения фазовых центров антенн (ФЦА) АПМ. Частоту измерений Fd выбирают из условия получения однозначных результатов пеленгования. Для этого расстояние между отдельными элементами апертуры должно составлять менее половины длины принимаемой радиоволны. В качестве системы координат может быть использована земная гринвичская геоцентрическая система координат (Е) (см. Wang W.Q. Multi-Antennas Synthetic Aperture Radar, Boca Raton, FL; CRC Press, Taylor & Francis, cop., 2013. - 438 p.), или локальная (L) для данного носителя навигационная система координат (ЛСК). Центр последней совпадает с координатами ФЦА в начальный t0 момент синтеза. Ось Y совпадает с вектором путевой скорости носителя в момент времени t0, ось Z - по геофизической вертикали вверх, а ось X дополняет систему до правой. В результате имеем Nsa=TSA·Fd отсчетов траектории ФЦА за время синтеза апертуры, измеренных в моменты времени tn, tn=n/Fd, причем Fds>Fd, ISA>NSA.

Как правило, навигационные системы носителей измеряют местоположение в земной гринвичской геоцентрической системе координат (ЗСК), а в ЛСК удобно анализировать свойства антенны с синтезированной апертурой. Для пересчета координат ФЦА между ЗСК и ЛСК, примем, что ось Z ЗСК направлена в сторону опорного меридиана, ось Y направлена вдоль оси вращения Земли, ось X дополняет систему до правой, и введем матрицу

где сХ=cos(X), sX=sin(X). Тогда матрица направляющих косинусов для перехода из ЛСК в ЗСК примет вид:

где BL, Ll - геодезические координаты начала ЛСК, Ψν - путевой угол в момент времени t0.

Известно, что для синфазного сложения радиосигналов в элементах антенной системы допустимой является ошибка положения точек апертуры относительно заданного порядка λ/8, где λ - длина радиоволны, что соответствует ошибке измерения фазы сигнала π/4. В предлагаемом способе необходимо различать ошибки в знании начального положения ФЦА в момент времени t0 и ошибки его положения относительно начального положения в течение времени синтеза TSA.

Ошибка в знании начального положения ФЦА приводит к равной ошибке определения местоположения ИРИ, но не влияет на когерентное накопление радиосигнала в апертуре (см. Кондратенков Г.С. Радиовидение. Радиолокационные системы дистанционного зондирования Земли / Г.С. Кондратенков, А.Ю. Фролов. - М.: Радиотехника, 2005. - 368 с. ). Требования к знанию начального положения ФЦА определяют исходя из условий обеспечения требуемой точности оценки пространственных параметров сигнала. Ошибка, представляющая собой линейный набег координат ФЦА за время синтеза апертуры, вызванная погрешностями в оценке скорости смещения, повлечет за собой смещение максимума функции неопределенности без ухудшения разрешающей способности измерителя (см. там же). Поэтому требования к частоте измерения местоположения ФЦА вытекают из условий обеспечения требуемой точности пеленгования.

Таким образом, в предлагаемом способе для обеспечения когерентного накопления радиосигнала в апертуре на интервале синтеза TSA для задачи пассивной локации в качестве допустимой принимается точность считывания координат ФЦА относительно линейного набега в пределах λ±/8.

Измеренные значения квадратурных составляющих сигнала, принятого на ОП и ВП, совместно с данными о пространственном положении ФЦА АПМ и времени их измерения ti и tn соответственно по соответствующим каналам связи передают на НПУ. Поступившие на НПУ данные о сигнале совместно запоминают (значения квадратурных составляющих сигнала соответствующего пункта и время их измерения ti, а также координаты фазового центра антенны АПМ соответствующего пункта и время их измерения tn).

Дискретные отсчеты квадратурных составляющих огибающих сигнала, принятые на интервале синтезирования l-м АПМ от неподвижного источника с длиной волны λ могут быть представлены в виде

где Ul(i) - амплитуда сигнала, rl(i) - расстояние от ИРИ до траектории перемещение ФЦА l-го АПМ в момент времени i, - отстройка между l-м АПМ и ИРИ, Δt=1/Fds - шаг по времени, φm(i) - фазовая модуляция сигнала ИРИ, δφИРИ(i) - нестабильность фазы передающего модуля ИРИ, δφl(i) - нестабильность фазы l-го АПМ, φol - постоянный фазовый сдвиг для l-го АПМ. Из выражения (3) следует, что полезной информацией для определения местоположения ИРИ является составляющая фазы, вызванная изменением расстояния от ИРИ до АПМ. Для выделения полезной информации в предлагаемом способе предлагается выполнить перемножение сигналов, принятых разными АПМ:

где S1(i) - сигнал, принятый от ИРИ на первом носителе ОП, - комплексно сопряженный сигнал, принятый от ИРИ на втором носителе ВП.

В выражении (4) сделано допущение, что можно пренебречь величиной задержки между сигналами S1(i) и S2(i). Это справедливо при выполнении условия: , где - полоса принимаемого сигнала, с - скорость света. Например, для полосы разница расстояний от носителей до ИРИ должна быть меньше 15 км. Невыполнение названного условия приводит к необходимости учета задержки между сигналами S1(t) и S2(t).

Выражение (4) для результирующего сигнала S(i) имеет вид:

где - отстройка по частоте между первым и вторым АПМ, φ0 - постоянный фазовый сдвиг.

Из выражения (5) видно, что операция (4) устраняет неизвестную отстройку по частоте ИРИ, нестабильность фазы в передающем тракте ИРИ, а также фазовую модуляцию радиосигнала. Синхронизацию приемников ОП и ВП осуществляют с помощью секундных меток времени от навигационного спутникового приемника, точность которых составляет 50 нс. Последние используют в совокупности с высокостабильными генераторами, подстраиваемыми по секундной метке времени.

Результирующий сигнал S(t) обладает меньшей полосой частот, чем исходные сигналы Sl(i), принятые АПМ. Полезная информация заключена в составляющей фазы сигнала из чего следует, что полоса полезного сигнала определяется диапазоном доплеровских частот, присутствующих в траекторном сигнале. Поэтому частота дискретизации результирующего сигнала (4) может быть понижена до значения Fd.

Под разностным траекторным сигналом в данном случае понимают отсчеты результирующего сигнала (4), взятые в моменты времени tn,

Q(n)=S(tn), tn=n/Fd,

На следующем этапе задают систему координат, в которой будет синтезироваться разностная апертура (S). В качестве последней может быть выбрана фиксированная (F) относительно земли декартова система координат (ФСК), местоположение которой задает оператор. При этом ось Y направлена на север по касательной к географическому меридиану, ось Z - по геодезической вертикали вверх, а ось X дополняет систему до правой. В этом случае с учетом (1) матрица направляющих косинусов для перехода от ФСК к ЗСК имеет вид:

где BF, LF - геодезические координаты начала ФСК. В качестве альтернативы может быть выбрана одна из ЛСК для используемых носителей. Матрица направляющих конусов для перехода из ЛСК в ФСК имеет вид

Так как система координат может быть задана на первом (предварительном) этапе работы, то в процессе работы задают лишь координаты ее начала.

Далее осуществляют пересчет траекторий двух ФЦА в единую систему координат.

Если траектории ФЦА измеряют в ЗСК, а в качестве системы координат для синтеза разностной апертуры (5) выбрана ФСК (S=F), то пересчет выполняют в соответствии с выражением (6)

где l - номер носителя, - координаты l-го ФЦА в ЗСК в момент времени n, - координаты центра системы координат для синтеза в ЗСК.

На следующем этапе задают рабочую зону для поиска местоположения ИРИ. Данная операция в ряде случаев (при наличии априорной информации о ИРИ) может выполняться одной из первых на подготовительном этапе для повышения быстродействия предлагаемого способа (аналогично известным решениям, предложенным в Пат. РФ №№2296341, 2327186 и др.). В общем случае и для удобства рассмотрения задание используемой в измерениях системы координат и рабочей зоны поиска ИРИ осуществляет оператор совместно. С этой целью координаты центра рабочей зоны поиска (Хс,, Yc, Zc), максимальное отклонение от центра по трем осям выбранной системы координат (Мх, My, Mz), шаг квантования пространства по каждой из осей (Δх, Δy, Δz) задают из условия обеспечения требуемой точности и разрешающей способности измерителя (пеленгатора). При этом число градаций по осям координат составляет

где - операция округления до целого.

Точки пространства в пределах рабочей зоны в соответствии с выбранными шагами дискретизации по каждой из осей нумеруют: kx=0, 1, …, Nx по оси X, ky=0, 1, …, Ny по оси Y, kz=0, 1, …, Nz по оси Z. При этом (kx, ky, kz)-тая точка имеет координаты xkх·Δkxсх, yky·ky+yc-My, zkz·kz+zc-Mz. Всего получается К=Nx·Ny·Nz элементов разрешения, при этом k-й элемент разрешения задается трехмерным вектором

Шаг квантования пространства по каждой из осей должен быть меньше разрешающей способности измерителя по соответствующей оси.

Известно, что разрешение вдоль линии движения носителя (по азимуту) и при условии прохождения радиосигнала в одном направлении определяется выражением (см. Кондратенков Г.С. Радиовидение. Радиолокационные системы дистанционного зондирования Земли / Г.С. Кондратенков, А.Ю. Фролов. - М: Радиотехника, 2005. - 368 с. )

где Rн - наклонная дальность от носителя до ИРИ, d - размер синтезированной апертуры, θн - угол наблюдения ИРИ. Очевидно, что разрешение зависит от расстояния между носителем и ИРИ, а так же от угла наблюдения. Минимально достижимое разрешение по одной из координат для апертуры, синтезированной на l-м носителе, в пределах рабочей зоны определяет как

где - минимальная наклонная дальность от l-го носителя до ИРИ.

Предусматривая возможность двукратного улучшения разрешения в случае синтеза разностной апертуры для произвольной траектории полета l-го носителя шаг квантования пространства по горизонтальным осям может быть установлен

На следующем этапе способа формируют опорные (эталонные) сигналы для всех К элементов разрешения с заданной длиной волны λ. Опорный (эталонный) траекторный сигнал от монохроматического стационарного источника с длиной волны λ расположенного в k-м элементе разрешения с координатами определяется как

где - координаты l-го ФЦА в системе координат (S) в момент времени n. Опорный (эталонный) разностный траекторный сигнал для k-го элемента разрешения из совокупности К находят из выражения

Далее осуществляют обработку траекторного сигнала. Для каждого k-го элемента разрешения вычисляют характеризующую его величину:

На основании полученных значений Ak приступают к построению пространственного изображения.

Совокупность величин Ak представляет собой функцию пространственн