Хитоолигосахариды и способы их применения для усиления роста кукурузы

Иллюстрации

Показать все

Изобретение относится к сельскому хозяйству. Проводят обработку семени кукурузы и/или растения кукурузы, которое прорастает из семени кукурузы, эффективным количеством по меньшей мере одного хитоолигосахарида (ХО), представленного формулой:

в которой R1 означает водород или метил; R2 означает водород или метил; R3 означает водород, ацетил или карбамоил; R4 означает водород, ацетил или карбамоил; R5 означает водород, ацетил или карбамоил; R6 означает водород, арабинозил, фукозил, ацетил, сульфат, 3-O-S-2-O-MeFuc, 2-O-MeFuc и 4-O-AcFuc; R7 означает водород, маннозил или глицерин; R8 означает водород, метил или -СН2ОН; R9 означает водород, арабинозил или фукозил; R10 означает водород, ацетил или фукозил; и n равно 0, 1, 2 или 3. Изобретение позволяет увеличить урожайность, количество, длину, массу, объем корней и площадь листвы. Изобретение позволяет усилить рост растения. 3 н. и 33 з.п. ф-лы, 9 ил., 2 табл., 5 пр.

Реферат

УРОВЕНЬ ТЕХНИКИ

Документально доказано наличие симбиоза между грамотрицательными почвенными бактериями, Rhizobiaceae и Bradyrhizobiaceae, и бобовыми растениями, такими как соя. Биохимическая основа этих взаимосвязей включает обмен молекулярными сигналами, причем соединения, передающие сигналы от растений к бактериям, включают флавоны, изофлавоны и флаваноны, и соединения, передающие сигналы от бактерий к растениям, включают конечные продукты экспрессии брадиризобиальных и ризобиальных генов nod, известных как липохитоолигосахариды (ЛХО). Симбиоз между этими бактериями и бобовыми растениями позволяет бобовым растениям связывать атмосферный азот, необходимый для роста растений, и тем самым устранять необходимость в азотных удобрениях. Поскольку азотные удобрения могут значительно повысить стоимость сельскохозяйственных культур и сопровождаются целым рядом загрязняющих воздействий, в сельском хозяйстве продолжаются исследования по использованию этой биологической взаимосвязи и разработке новых средств и способов улучшения урожайности растений без увеличения использования удобрений на основе азота.

В патенте U.S. 6979664 описан способ улучшения прорастания семян или появления ростков сельскохозяйственных культур, включающий стадии приготовления композиции, которая включает эффективное количество по меньшей мере одного липохитоолигосахарида и сельскохозяйственно подходящего носителя, и внесения композиции в непосредственной близости от семян или ростков в количестве, эффективном для улучшения прорастания семян или появления ростков по сравнению с необработанными семенами или ростками.

Дальнейшее развитие этого подхода представлено в WO 2005/062899, относящейся к комбинациям по меньшей мере одного индуктора растения, а именно ЛХО, в комбинации с фунгицидом, инсектицидом или их комбинацией для улучшения таких характеристик растения, как густота стояния, рост, мощность и/или урожайность растения. Указано, что композиции и способы применимы для бобовых и небобовых растений и могут использоваться для обработки семян (непосредственно перед посевом), ростков, корней или растений.

Аналогичным образом в WO 2008/085958 описаны композиции для усиления роста растений и повышения урожайности культур бобовых и небобовых растений, которые содержат ЛХО в комбинации с другим активным средством, таким как хитин или хитозан, флавоноид или гербицид, и которые можно наносить на семена и/или растения одновременно или последовательно. Как и в случае публикации WO 2005/062899, в публикации WO 2008/085958 описана обработка семян непосредственно перед посевом.

Недавно Halford, "Smoke Signals" в Chem. Eng. News (April 12, 2010) на стр. 37-38 сообщили, что каррикины или бутенолиды, которые содержатся в дыме, после лесного пожара действуют, как стимуляторы роста и активаторы прорастания семян и могут активировать семена, такие как семена кукурузы, томатов, латука и лука, которые находились на хранении. Эти молекулы являются объектом патента U.S. 7576213.

Однако все еще сохраняется необходимость в системах для улучшения или усиления роста растений.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Первым объектом настоящего изобретения является способ усиления роста растений кукурузы, включающий a) обработку (например, нанесение) семян кукурузы или растения кукурузы, которое прорастает из семян, эффективным количеством по меньшей мере одного хитоолигосахарида (ХО), где после уборки растение кукурузы характеризуется по меньшей мере одним из следующих: увеличенной урожайностью растений, измеренной в единицах бушель/акр, увеличенным количеством корней, увеличенной длиной корней, увеличенной массой корней, увеличенным объемом корней и увеличенной площадью листвы по сравнению с необработанными растениями кукурузы или растениями, выросшими из необработанных семян кукурузы.

В некоторых вариантах осуществления используют по меньшей мере два ХО. В некоторых вариантах осуществления обработка семян кукурузы включает непосредственное нанесение по меньшей мере одного ХО на семена кукурузы, которые затем можно высеять или хранить в течение некоторого времени до высевания. Обработка семян кукурузы может включать непрямую обработку, например, путем внесения по меньшей мере одного ХО в почву (которое известно в данной области техники как внесение в борозды). В других вариантах осуществления по меньшей мере один ХО можно нанести на растения кукурузы, которые прорастают из семян, например, путем некорневого опрыскивания. Методики дополнительно могут включать применение других агрономически полезных агентов, таких как питательные микроэлементы, жирные кислоты и их производные, сигнальные молекулы растений (кроме ХО), такие как липохитоолигосахариды, хитиновые соединения (кроме ХО), флавоноиды, жасмоновая кислота и ее производные, линолевая кислота и ее производные, линоленовая кислота и ее производные и каррикины и их производные, гербициды, фунгициды и инсектициды и солюбилизирующие фосфат микроорганизмы.

Как показывают рабочие примеры, в которых обобщаются данные экспериментов, проведенных в теплицах и в поле, результаты, полученные способами, предлагаемыми в настоящем изобретении, показывают, что нанесение по меньшей мере одного ХО на семена кукурузы или растения кукурузы, которые прорастают из семян, приводит к усиленному росту растений. Эти результаты представляются неожиданными, в особенности с учетом точки зрения, согласно которой ХО участвуют в системной приобретенной устойчивости (СПО), но необязательно участвуют в непосредственном усилении роста растений. Результаты, описанные в настоящем изобретении, показывают, что в некоторых случаях способы, предлагаемые в настоящем изобретении, приводят по существу к такому же эффекту или, в некоторых других случаях, приводят к более значительному усилению роста растений, чем обеспечиваемый с помощью ЛХО. В этом отношении особенно важны результаты, полученные с помощью экспериментов в теплицах, поскольку они проведены при условиях, когда практически отсутствуют болезни.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1a и 2a приведены химические структуры хитоолигосахаридов (ХО), применимых при практическом осуществлении настоящего изобретения.

На фиг. 1b и 2b приведены химические структуры липохитоолигосахаридов (ЛХО), которые соответствуют ХО, приведенным на фиг. 1a и 2a, и которые также применимы при практическом осуществлении настоящего изобретения.

На фиг. 3a и 4a приведены химические структуры других ХО, применимых при практическом осуществлении настоящего изобретения.

На фиг. 3b и 4b приведены химические структуры Myc-факторов, которые соответствуют ХО, приведенным на фиг. 3a и 3b, и которые также применимы при практическом осуществлении настоящего изобретения.

На фиг. 5 (эксперимент 1) и 6 (эксперимент 2) приведены столбцовые диаграммы, которые иллюстрируют влияние ХО, представленного на фиг. 2a, по сравнению с ЛХО, представленным на фиг. 2b, и смеси (не предлагаемых в настоящем изобретении) хитиновых соединений, выработанных с помощью хитиназы, при обработке семян кукурузы, выраженное с помощью средней массы в сухом состоянии побегов, корней и полной массы в сухом состоянии (суммарной массы в сухом состоянии побегов и корней).

На фиг. 7 приведена секторная диаграмма, которая иллюстрирует влияние ХО, представленного на фиг. 2a, по отдельности или в комбинации с одной из двух разных жирных кислот, по сравнению с ЛХО, представленным на фиг. 2b, и водой при обработке семян кукурузы, выраженное с помощью степени прорастания семян в процентах.

На фиг. 8 приведена диаграмма, которая иллюстрирует влияние ХО, представленного на фиг. 2a, по отдельности или в комбинации с одной из двух разных жирных кислот, по сравнению с ЛХО, представленным на фиг. 2b, каждой из жирных кислот по отдельности и контролем при обработке семян кукурузы, выраженное с помощью степени прорастания семян в процентах.

На фиг. 9 приведена столбцовая диаграмма, которая иллюстрирует влияние ХО, представленного на фиг. 2a, по отдельности или в комбинации с ЛХО, представленным на фиг. 2b, по сравнению с ЛХО, представленным на фиг. 2b, и водой при обработке семян кукурузы, выраженное с помощью средней массы растения в сухом состоянии.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Хитоолигосахариды

ХО известны в данной области техники как β-1-4-связанные N-ацетилглюкозаминовые структуры, идентифицированные как олигомеры хитина, также как N-ацетилхитоолигосахариды. ХО обладают особыми и различными структурами боковых цепей, которые делают их отличными от молекул хитина [(C8H13NO5)n, CAS No. 1398-61-4] и молекул хитозана [(C5H11NO4)n, CAS No. 9012-76-4]. См., например, Hamel, et al., Planta 232:787-806 (2010)(например, фиг. 1, на которой представлены структуры хитина, хитозана, Nod-факторов (ЛХО) и соответствующих ХО (в котором отсутствуют 18C, 16C или 20C ацильные группы)). ХО, предлагаемые в настоящем изобретении, также относительно хорошо растворимы в воде по сравнению с хитином и хитозаном и в некоторых вариантах осуществления, описанных ниже в настоящем изобретении, являются пентамерными. Типичной литературой, в которой описаны структура и получение ХО, которые могут быть подходящими для применения в настоящем изобретении, является следующая: Muller, et al., Plant Physiol. 124:733-9 (2000)(например, фиг. 1 в этой публикации); Van der Holst, et al., Current Opinion in Structural Biology, 11:608-616 (2001)(например, фиг. 1 в этой публикации); Robina, et al., Tetrahedron 58:521-530 (2002); D'Haeze, et al., Glycobiol. 12(6):79R-105R (2002); Rouge, et al. Chapter 27, "The Molecular Immunology of Complex Carbohydrates" в Advances in Experimental Medicine and Biology, Springer Science; Wan, et al., Plant Cell 21:1053-69 (2009); PCT/F100/00803 (9/21/2000); и Demont-Caulet, et al., Plant Physiol. 120(1):83-92 (1999).

ХО по структуре отличаются от ЛХО в основном тем, что в них отсутствует боковая группа жирной кислоты. Образующиеся из микориза ХО и отсутствующие в природе их синтетические производные, которые можно использовать при практическом осуществлении настоящего изобретения, можно представить следующей формулой:

,

в которой R1 и R2 каждый независимо означает водород или метил; R3 означает водород, ацетил или карбамоил; R4 означает водород, ацетил или карбамоил; R5 означает водород, ацетил или карбамоил; R6 означает водород, арабинозил, фукозил, ацетил, сульфат, 3-О-S-2-О-MeFuc, 2-О-MeFuc и 4-О-AcFuc; R7 означает водород, маннозил или глицерин; R8 означает водород, метил или -CH2OH; R9 означает водород, арабинозил или фукозил; R10 означает водород, ацетил или фукозил; и n равно 0, 1, 2 или 3. Структуры соответствующих ризобиальных ЛХО описаны в публикации D'Haeze, et al., см. выше.

Два ХО, подходящие для применения в настоящем изобретении, представлены на фиг. 1a и 2a. Они соответствуют ЛХО, вырабатывающимся Bradyrhizobium japonicum и Rhizobium leguminosarum biovar viciae соответственно, которые симбиотически взаимодействуют с соей и горохом соответственно, но в них отсутствуют боковые цепи жирных кислот. Соответствующие ЛХО, вырабатывающиеся этими микоризами (и которые также применимы при практическом осуществлении настоящего изобретения), представлены на фиг. 1b и 2b.

Структуры других ХО, которые могут быть подходящими для применения при практическом осуществлении настоящего изобретения, легко образовать из ЛХО, полученных (т.е. выделенных и/или очищенных) из микоризных грибов, таких как грибы группы Glomerocycota, например, Glomus intraradices. См., например, WO 2010/049751 и Maillet, et al., Nature 469:58-63 (2011) (описанные в ней ЛХО также называют "Myc-факторами"). Типичные ХО, образованные из микоризных грибов, описываются следующей структурой:

,

в которой n=1 или 2; R1 означает водород или метил; и R2 означает водород или SO3H. Два других ХО, подходящие для применения в настоящем изобретении, один из которых сульфатирован и другой не сульфатирован, представлены на фиг. 3a и 4a соответственно. Они соответствуют двум разным ЛХО, вырабатывающимся микоризными грибами Glomas intraradices, которые представлены на фиг. 3b и 4b (и которые также применимы при практическом осуществлении настоящего изобретения).

ХО могут быть синтетическими или рекомбинантными. Способы получения синтетических ХО описаны, например, в публикации Robina, см. выше. Способы получения рекомбинантных ХО, например, с использованием E. coli в качестве хозяина, известны в данной области техники. См., например, Dumon, et al., ChemBioChem 7:359-65 (2006), Samain, et al., Carbohydrate Res. 302:35-42 (1997); Cottaz, et al., Met. Eng. 7(4):311-7 (2005) и Samain, et al., J. Biotechnol. 72:33-47 (1999)(например, фиг. 1 в этой публикации, на котором представлены структуры ХО, которые можно образовать рекомбинантно в E. coli, содержащих различные комбинации генов nodBCHL). Для задач настоящего изобретения по меньшей мере один ХО структурно отличается от хитинов, хитозанов и других хитоолигосахаридов, получаемых ферментативным путем с использованием хитина в качестве исходного вещества.

Для задач настоящего изобретения в вариантах осуществления, в которых по меньшей мере один ХО является рекомбинантным, по меньшей мере один рекомбинантный ХО обладает чистотой, составляющей не менее 60%, например чистотой, составляющей не менее 60%, чистотой, составляющей не менее 65%, чистотой, составляющей не менее 70%, чистотой, составляющей не менее 75%, чистотой, составляющей не менее 80%, чистотой, составляющей не менее 85%, чистотой, составляющей не менее 90%, чистотой, составляющей не менее 91%, чистотой, составляющей не менее 92%, чистотой, составляющей не менее 93%, чистотой, составляющей не менее 94%, чистотой, составляющей не менее 95%, чистотой, составляющей не менее 96%, чистотой, составляющей не менее 97%, чистотой, составляющей не менее 98%, чистотой, составляющей не менее 99%, вплоть до чистоты, составляющей 100%.

Семена кукурузы можно обработать по меньшей мере одним ХО по различным методикам, таким как распыление или разбрызгивания. Обработку распылением и разбрызгиванием можно проводить путем приготовления эффективного количества по меньшей мере одного ХО в сельскохозяйственно приемлемом носителе, обычно водном по природе, и распыления или разбрызгивания композиции на семена с помощью непрерывной системы для обработки (которую калибруют для нанесения обрабатывающего средства с заранее заданной скоростью в соответствии с непрерывным потоком семян), такой как протравливатель барабанного типа. В этих методиках предпочтительно используются относительно небольшие объемы носителя, чтобы обеспечить относительно быструю сушку обработанных семян, таким образом можно эффективно обработать большие объемы семян. Также можно использовать системы периодического действия, в которых в смеситель подаются заранее заданные количества семян и композиций сигнальных молекул. Системы и аппаратуру для проведения такой обработки продают многочисленные поставщики, например Bayer CropScience (Gustafson).

В другом варианте осуществления обработка включает нанесение на семена кукурузы покрытия по меньшей мере из одного ХО. Одна такая методика включает нанесение композиции на внутреннюю стенку круглого контейнера, добавление семян и последующее вращение контейнера, так чтобы семена соприкасались со стенкой и композицией, эта методика известна в данной области техники, как "контейнерное нанесение покрытия". Наносить покрытия на семена с помощью комбинации методик нанесения покрытий. Замачивание обычно включает использование водного раствора, содержащего средство для усиления роста растений. Например, семена можно замачивать в течение от примерно 1 мин до примерно 24 ч (например, в течение не менее 1 мин, 5 мин, 10 мин, 20 мин, 40 мин, 80 мин, 3 ч, 6 ч, 12 ч, 24 ч). Некоторые типы семян (например, семена сои) чувствительны к влаге. Тогда замачивание таких семян в течение длительного периода времени может быть нежелательным и в этом случае замачивание обычно проводят в течение от примерно 1 мин до примерно 20 мин.

В тех вариантах осуществления, которые включают хранение семян кукурузы после нанесения по меньшей мере одного ХО, адгезия ХО к семенам в течение любой части времени хранения не является критически важной. Если не ограничиваться какой-либо конкретной теорией, то заявители полагают, что, несмотря на то, что обработка может не обеспечить соприкосновение сигнальной молекулы растения с поверхностью семени после обработки и в течение любой части времени хранения, ХО может оказать предназначенное воздействие вследствие явления, известного как память семян, или восприятие семян. См. Macchiavelli, et al., J. Exp. Bot. 55(408):1635-40 (2004). Заявители также полагают, что после обработки ХО диффундирует по направлению к молодому развивающемуся корешку и активирует гены, связанные с симбиозом и развитием, что приводит к изменению структуры корней растения. Тем не менее, композиции, содержащие ХО, могут дополнительно содержать желательное количество агента, придающего липкость или образующего покрытие. По эстетическим соображениям композиции могут дополнительно содержать образующий покрытие полимер и/или краситель.

Количество по меньшей мере одного ХО эффективно для усиления роста, так что после уборки растение кукурузы характеризуется по меньшей мере одним из следующих: увеличенной урожайностью растений, измеренной в единицах бушель/акр, увеличенным количеством корней, увеличенной длиной корней, увеличенной массой корней, увеличенным объемом корней и увеличенной площадью листвы по сравнению с необработанными растениями кукурузы или растениями кукурузы, выросшими из необработанных семян кукурузы (любым активным веществом). Эффективное количество по меньшей мере одного ХО, использующегося для обработки семян кукурузы, выраженное в единицах концентрации, обычно находится в диапазоне от примерно 10-5 до примерно 10-14 M (молярная концентрация) и в некоторых вариантах осуществления от примерно 10-5 до примерно 10-11 M, и в некоторых других вариантах осуществления от примерно 10-7 до примерно 10-8 M. Выраженное в единицах массы эффективное количество обычно находится в диапазоне от примерно 1 до примерно 400 мкг/центнер (ц) семян и в некоторых вариантах осуществления от примерно 2 до примерно 70 мкг/ц, и в некоторых других вариантах осуществления от примерно 2,5 до примерно 3,0 мкг/ц семян.

Для непрямой обработки семян кукурузы, т.е. обработки внесением в борозды, эффективное количество по меньшей мере одного ХО обычно находится в диапазоне от примерно 1 мкг/акр до примерно 70 мкг/акр, и в некоторых вариантах осуществления от примерно 50 мкг/акр до примерно 60 мкг/акр. Для нанесения на растения эффективное количество ХО обычно находится в диапазоне от примерно 1 мкг/акр до примерно 30 мкг/акр, и в некоторых вариантах осуществления от примерно 11 мкг/акр до примерно 20 мкг/акр.

Семена кукурузы можно обработать по меньшей мере одним ХО непосредственно перед высеванием или во время высевания. Обработка по время высевания может включать прямое нанесение на семена, как это описано выше, или в некоторых других вариантах осуществления путем внесения активных веществ в почву, известного в данной области техники как обработка внесением в борозды. В тех вариантах осуществления, которые включают обработку семян после хранения, после этого семена можно упаковать, например, в 50-фунтовые или 100-фунтовые мешки, или большие мешки, или контейнеры в соответствии со стандартными методиками. Семена можно хранить в течение не менее 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 месяцев и даже дольше, например в течение 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 месяцев или даже дольше при подходящих условиях хранения, которые известны в данной области техники.

Другие агрономически полезные агенты

Настоящее изобретение может дополнительно включать обработку семян кукурузы или растений кукурузы, которые прорастают из семян, по меньшей мере одним сельскохозяйственно/агрономически полезным агентом. При использовании в настоящем изобретении и в данной области техники термин "сельскохозяйственно или агрономически полезный" означает агенты, которые при нанесении на семена кукурузы или растения кукурузы приводят к улучшению (которое может быть статистически значимым) характеристик растения кукурузы, таких как густота стояния растений, рост (например, как это определено в связи с ХО) или мощность, по сравнению с необработанными семенами кукурузы или растениями кукурузы. Эти агенты можно приготовить вместе по меньшей мере с одним ХО или нанести на семена или растения с помощью отдельного состава. Типичные примеры таких агентов, которые могут быть применимы при практическом осуществлении настоящего изобретения, включают питательные микроэлементы (например, витамины и микроэлементы), жирные кислоты и их производные, сигнальные молекулы растений (кроме ХО), гербициды, фунгициды и инсектициды, солюбилизирующие фосфат микроорганизмы.

Питательные микроэлементы

Типичные витамины, которые могут быть применимы при практическом осуществлении настоящего изобретения, включают пантотенат кальция, фолиевую кислоту, биотин и витамин C. Типичные примеры микроэлементов, которые могут быть применимы при практическом осуществлении настоящего изобретения, включают бор, хлор, марганец, железо, цинк, медь, молибден, никель, селен и натрий.

Количество по меньшей мере одного питательного микроэлемента, использующееся для обработки семян кукурузы, выраженное в единицах концентрации, обычно находится в диапазоне от 10 част./млн до 100 част./млн, и в некоторых вариантах осуществления от примерно 2 част./млн до примерно 100 част./млн. Выраженное в единицах массы эффективное количество в одном варианте осуществления обычно находится в диапазоне от примерно 180 мкг до примерно 9 мг/центнер (ц) семян, и в некоторых вариантах осуществления при некорневом внесении от примерно 4 мкг до примерно 200 мкг/растение. Другими словами, при обработке семян эффективное количество по меньшей мере одного питательного микроэлемента обычно находится в диапазоне от 30 мкг/акр до примерно 1,5 мг/акр и в некоторых вариантах осуществления при некорневом внесении от примерно 120 мг/акр до примерно 6 г/акр.

Жирные кислоты

Типичные жирные кислоты, которые могут быть применимы при практическом осуществлении настоящего изобретения, включают жирные кислоты, которые являются заместителями в природных ЛХО, такие как стеариновая и пальмитиновая кислоты. Другие жирные кислоты, которые можно использовать, включают насыщенные C12-C18 жирные кислоты, которые (кроме стеариновой и пальмитиновой кислот) включают лауриновую кислоту и миристиновую кислоту, и ненасыщенные C12-C18 жирные кислоты, такие как миристоленовую кислоту, пальмитоленовую кислоту, сапиеновую кислоту, олеиновую кислоту, элаидиновую кислоту, вакценовую кислоту, линолевую кислоту, линоленовую кислоту и линоэлаидиновую кислоту. Линолевая кислота и линоленовая кислота образуются при биосинтезе жасмоновой кислоты (которая, как это описано ниже, также является агрономически полезным агентом для задач настоящего изобретения). Сообщают, что линолевая кислота и линолевая кислота (и их производные) являются индукторами экспрессии гена nod или продуцирования ЛХО ризобактериями. См., например, Mabood, Fazli, "Linoleic and linolenic acid induce the expression of nod genes in Bradyrhizobium japonicum," USDA 3, May 17, 2001.

Полезные производные жирных кислот, которые могут быть применимы при практическом осуществлении настоящего изобретения, включают эфиры, амиды, гликозиды и соли. Типичными эфирами являются соединения, в которых карбоксигруппа жирной кислоты, например линолевой кислоты и линоленовой кислоты, заменена группой --COR, в которой R означает группу --OR1, в которой R1 означает: алкильную группу, такую как неразветвленная или разветвленная C1-C8 алкильная группа, например метильная, этильная или пропильная группа; алкенильную группу, такую как неразветвленная или разветвленная C2-C8 алкенильная группа; алкинильную группу, такую как неразветвленная или разветвленная C2-C8 алкинильная группа; арильную группу, содержащую, например, от 6 до 10 атомов углерода; или гетероарильную группу, содержащую, например, от 4 до 9 атомов углерода, где геетроатомами в гетероарильной группе могут быть, например, N, O, P или S. Типичными амидами являются соединения, в которых карбоксигруппа жирной кислоты, например линолевой кислоты и линоленовой кислоты, заменена группой --COR, в которой R означает группу NR2R3, в которой R2 и R3 независимо означают: водород; алкильную группу, такую как неразветвленная или разветвленная C1-C8 алкильная группа, например метильная, этильная или пропильная группа; алкенильную группу, такую как неразветвленная или разветвленная C2-C8 алкенильная группа; алкинильную группу, такую как неразветвленная или разветвленная C2-C8 алкинильная группа; арильную группу, содержащую, например, от 6 до 10 атомов углерода; или гетероарильную группу, содержащую, например, от 4 до 9 атомов углерода, где геетроатомами в гетероарильной группе могут быть, например, N, O, P или S. Сложные эфиры можно получить по известным методикам, таким как катализируемое кислотой нуклеофильное присоединение, при котором карбоновая кислота взаимодействует со спиртом в присутствии каталитического количества неорганической кислоты. Амиды также можно получить по известным методикам, например по реакции карбоновой кислоты с соответствующим амином в присутствии реагента сочетания, такого как дициклогексилкарбодиимид (ДЦК), в нейтральной среде. Подходящие соли жирных кислот, например линолевой кислоты и линоленовой кислоты, включают, например, соли присоединения с основаниями. Основания, которые можно использовать в качестве реагентов для получения метаболически приемлемых солей этих соединений с основаниями, включают образованные из катионов, таких как катионы щелочных металлов (например, калия и натрия) и катионы щелочноземельных металлов (например, кальция и магния). Эти соли можно легко получить смешиванием раствора жирной кислоты с раствором основания. Соль можно осадить из раствора и собрать фильтрованием или можно извлечь другими средствами, такими как выпаривание растворителя.

Количества жирной кислоты или ее производного, использующегося для обработки семян кукурузы или растений кукурузы, обычно составляют от примерно 10% до примерно 30% и в некоторых вариантах осуществления примерно 25% в пересчете на количество по меньшей мере одного ХО.

Сигнальные молекулы растений

Настоящее изобретение также может включать обработку семян кукурузы или растения кукурузы сигнальной молекулой растения, не представляющей собой ХО. Для задач настоящего изобретения термин "сигнальная молекула растения", который можно использовать взаимозаменяемым образом с термином "средство для усиления роста растений", в широком смысле означает любой агент, в природе содержащийся в растениях или микробах, и синтетический (и который может быть не находящимся в природе), который прямо или косвенно активирует биохимический путь растения, что приводит к усиленному росту растений кукурузы, который можно измерить с помощью по меньшей мере одного из следующих: увеличенной урожайности растений, измеренной в единицах бушель/акр, увеличенного количества корней, увеличенной длины корней, увеличенной массы корней, увеличенного объема корней и увеличенной площади листвы по сравнению с необработанными растениями кукурузы или растениями кукурузы, выросшими из необработанных семян кукурузы. Типичные примеры сигнальных молекул растений, которые могут быть применимы при практическом осуществлении настоящего изобретения, включают липохитоолигосахариды, хитиновые соединения (кроме ХО), флавоноиды, жасмоновую кислоту, линолевую кислоту и линоленовую кислоту и их производные (см. выше) и каррикины и их производные.

Липохитоолигосахариды (ЛХО), также известные в данной области техники, как симбиотические Nod-сигналы или Nod-факторы, состоят из олигосахаридной главной цепи β-1,4-связанных N-ацетил-D-глюкозаминовых ("GIcNAc") остатков с присоединенной к атому N жирной ацильной цепью, сконденсированной на невосстанавливающем конце. ЛХО различаются по количеству остатков GIcNAc в главной цепи, по длине и степени насыщенности жирной ацильной цепи и степени замещения восстанавливающими и невосстанавливающими сахарными остатками. См., например, Denarie, et al., Ann. Rev. Biochem. 65:503-35 (1996), Hamel, et al., см. выше, Prome, et al., Pure & Appl. Chem. 70(1):55-60 (1998). Пример ЛХО приведен ниже в виде формулы I

,

в которой:

G означает гексозамин, который может быть замещен, например, ацетильной группой по атому азота, сульфатной группой, ацетильной группой и/или простой эфирной группой по атому кислорода,

R1, R2, R3, R5, R6 и R7, которые могут быть одинаковыми или разными, означают H, CH3 CO--, Cx Hy CO--, где x является целым числом, равным от 0 до 17, и y является целым числом, равным от 1 и 35, или любую другую ацильную группу, например карбамоил,

R4 означает моно-, ди- или триненасыщенную алифатическую цепь, содержащую по меньшей мере 12 атомов углерода, и n является целым числом, равным от 1 и 4.

ЛХО можно получить (выделить и/или очистить) из бактерий, таких как Rhizobia, например Rhizobium sp., Bradyrhizobium sp., Sinorhizobium sp. и Azorhizobium sp. Структура ЛХО характеристична для каждого такого вида бактерий и каждый штамм может продуцировать множество ЛХО, обладающих разными структурами. Например, конкретные ЛХО из S. meliloti также были описаны в патенте U.S. 5549718 как обладающие формулой II:

,

в которой R означает H или CH3 CO-- и n равно 2 или 3.

Еще более специфические ЛХО включают NodRM, NodRM-1, NodRM-3. В случае ацетилирования (R=CH3 CO--) они превращаются в AcNodRM-1 и AcNodRM-3 соответственно (патент U.S. 5545718).

ЛХО из Bradyrhizobium japonicum описаны в патентах U.S. 5175149 и 5321011. В широком смысле они являются пентасахаридными фитогормонами, содержащими метилфукозу. Описан целый ряд этих образованных из B. japonicum ЛХО: BjNod-V (C18:1); BjNod-V (Aс, C18:1), BjNod-V (C16:1); и BjNod-V (Aс, C16:0), где "V" указывает на наличие пяти N-ацетилглюкозаминов; "Ac" на ацетилирование; число после "C" указывает количество атомов углерода в боковой цепи жирной кислоты; и число после ":" количество двойных связей.

ЛХО, использующиеся в вариантах осуществления настоящего изобретения, можно получить (т.е. выделить и/или очистить) из штаммов бактерий, которые продуцируют ЛХО, таких как штаммы Azorhizobium, Bradyrhizobium (включая B. japonicum), Mesorhizobium, Rhizobium (включая R. leguminosarum), Sinorhizobium (включая S. meliloti), и штаммов бактерий, которым с помощью генной инженерии придана способность продуцировать ЛХО.

ЛХО являются первичными детерминантами специфичности по отношению к хозяину в симбиозе бобовых (Diaz, et al., Mol. Plant-Microbe Interactions 13:268-276 (2000)). Таким образом, в семействе бобовых специфические роды и виды микоризы образуют симбиотическую связывающую азот взаимосвязь со специфическим бобовым-хозяином. Эти комбинации растение-хозяин/бактерии описаны в публикации Hungria, et al., Soil Biol. Biochem. 29:819-830 (1997). Примеры этого симбиотического партнерства бактерии/бобовые включают S. meliloti/люцерна и донник белый; R. leguminosarum biovar viciae/горох и чечевица; R. leguminosarum biovar phaseoli/фасоль; Bradyrhizobium japonicum/соя; и R. leguminosarum biovar trifolii/красный клевер. В публикации Hungria также перечислены эффективные индукторы флавоноидного гена Nod ризобиальных видов и специфические структуры ЛХО, которые продуцируются различными ризобиальными видами. Однако специфичность ЛХО необходима только для образования образование клубеньков в бобовых растений. При практическом осуществлении настоящего изобретения применение данного ЛХО не ограничивается обработкой семян его симбиотического бобового партнера для обеспечения повышенной урожайности растения, измеренной в единицах бушель/акр, увеличенного количества корней, увеличенной длины корней, увеличенной массы корней, увеличенного объема корней и увеличенной площади листвы по сравнению с растениями, выросшими из необработанных семян, или по сравнению с растениями, выросшими из семян, обработанных сигнальными молекулами непосредственно перед высеванием или в течение недели или меньшего количества времени после высевания.

Таким образом, в качестве дополнительных примеров, ЛХО и не встречающиеся в природе их синтетические производные, которые можно использовать при практическом осуществлении настоящего изобретения, описываются следующей формулой:

,

в которой R1 означает C14:0, 3OH-C14:0, изо-C15:0, C16:0, 3-OH-C16:0, изо-C15:0, C16:1, C16:2, C16:3, изо-C17:0, изо-C17:1, C18:0, 3OH-C18:0, C18:0/3-OH, C18:1, OH-C18:1, C18:2, C18:3, C18:4, C19:1 карбамоил, C20:0, C20:1, 3-OH-C20:1, C20:1/3-OH, C20:2, C20:3, C22:1 и C18-26(ω-1)-OH (которые в соответствии с публикацией D′Haeze, et al., см. выше, включают C18, C20, C22, C24 и C26 гидроксилированные соединения и C16:1Δ9, C16:2 (Δ2,9) и C16:3 (Δ2,4,9)); R2 означает водород или метил; R3 означает водород, ацетил или карбамоил; R4 означает водород, ацетил или карбамоил; R5 означает водород, ацетил или карбамоил; R6 означает водород, арабинозил, фукозил, ацетил, сульфат, 3-О-S-2-О-MeFuc, 2-О-MeFuc и 4-О-AcFuc; R7 означает водород, маннозил или глицерин; R8 означает водород, метил или -CH2OH; R9 означает водород, арабинозил или фукозил; R10 означает водород, ацетил или фукозил; и n равно 0, 1, 2 или 3. Структуры природных ризобиальных ЛХО, описывающиеся этой структурой, описаны в публикации D′Haeze, et al., см. выше.

В качестве других дополнительных примеров ЛХО, полученный из B. japonicum, представленный на фиг. 1b, можно использовать для обработки семян бобовых растений, не являющихся соей, и семян небобовых растений, таких как кукуруза. В качестве другого примера, ЛХО, который можно получить из R. leguminosarum, представленный на фиг. 2b (обозначенный как ЛХО-V (C18:1), SP104) можно использовать для обработки семян бобовых растений, не являющихся горохом, и также небобовых растений.

В объем настоящего изобретения также входит применение ЛХО, полученных (т.е. выделенных и/или очищенных) из микоризных грибов, таких как грибы группы Glomerocycota, например Glomus intraradices. Структуры типичных ЛХО, полученных из этих грибов, описаны в WO 2010/049751 и WO 2010/049751 (описанные в ней ЛХО также называют "Myc-факторами"). Типичные ХО, образованные из микоризных грибов и не встречающиеся в природе их производные, описываются следующей структурой:

,

в которой n=1 или 2; R1 означает C16, C16:0, C16:1, C16:2, C18:0, C18:1Δ9Z или C18:1Δ11Z; и R2 означает водород или SO3H. В некоторых вариантах осуществления используются ЛХО, продуцируемые микоризными грибами, представленные на фиг. 3b и 4b.

В объем настоящего изобретения также входит применение синтетических соединений ЛХО, таких как описанные в WO 2005/063784, и рекомбинантных ЛХО, полученных с помощью генной инженерии. Основная структура природных ЛХО может содержать модификации или заместители, обнаруживаемые в природных ЛХО, такие как описанные в публикациях Spaink, Crit. Rev. Plant Sci. 54:257-288 (2000) и D′Haeze, et al., Glycobiology 12:79R-105R (2002). Молекулы олигосахаридов-предшественников (ХО, которые, как это описано ниже, также применимы в качестве сигнальных молекул растений в настоящем изобретении), использующиеся для получения ЛХО, также могут синтезировать полученные с помощью генной инженерии микроорганизмы, например, как это описано в публикациях Samain, et al., Carbohydrate Res. 302:35-42 (1997); Cottaz, et al., Met. Eng. 7(4):311-7 (2005) и Samain, et al., J. Biotechnol. 72:33-47 (1999)(например, фиг. 1 в этой публикации, на которой представлены структуры ЛХО, которые можно образовать рекомбинантно в E. coli, содержащих различные комбинации генов nodBCHL).

Можно использовать ЛХО разной чистоты и их можно использовать в чистом виде или в форме культуры продуцирующих ЛХО бактерий или грибов. Например, OPTIMIZE® (продающийся фирмой Novozymes BioAg Limited) содержит культуру B. japonicum, который продуцирует ЛХО (ЛХО-V(C18:1, MeFuc), MOR116), который представлен на фиг. 1b. Методики получения в основном чистых ЛХО включают простое удаление микробных клеток из смеси ЛХО и микробов или продолжение выделения и очистки молекул ЛХО путем отделения содержащей ЛХО фазы растворителя с последующей очисткой с помощью ВЭЖХ (высокоэффективная жидкостная хроматография), как это описано, например, в патенте U.S. 5549718. Очистку можно улучшить путем повторения ВЭЖХ и для длительного хранения очище