Инжектор для систем с гибкой насосно-компрессорной трубой

Иллюстрации

Показать все

Группа изобретений относится к инжекторам, используемым в системах с гибкой насосно-компрессорной трубой, и к способам автоматической регулировки натяжения цепи в указанном инжекторе. Технический результат заключается в автоматическом регулировании натяжения цепи, продлении срока служба цепи. Инжектор содержит: по меньшей мере, две противоположные цепные петли встречного вращения, имеющие первый конец и второй конец, причем цепные петли содержат цепь; фиксированную ведущую звездочку, установленную на первом конце цепной петли, и плавающую звездочку, установленную на втором конце цепной петли; нагрузку, прикладываемую к плавающей звездочке, установленной на втором конце цепной петли для поддержания в цепных петлях требуемого натяжения цепи; и цилиндр натяжения, автоматически поддерживающий в цепной петле требуемое натяжение цепи. Цилиндр натяжения дополнительно содержит головку цилиндра и уплотнение головки цилиндра, шток и уплотнение штока, грязесъемник штока, корпус цилиндра, стопор, уплотнение поршня, поршень и цилиндр, причем поршень делит цилиндр, по меньшей мере, на две камеры, первую камеру и вторую камеру, причем каждая камера содержит площадь поршня, при этом площадь поршня является одинаковой в первой и второй камерах. Цилиндр натяжения также содержит обратный клапан, соединяющий первую и вторую камеры, при этом обратный клапан обеспечивает проход текучей среды и давления из первой камеры во вторую камеру. 3 н. и 16 з.п. ф-лы, 18 ил.

Реферат

Настоящее изобретение относится, в общем, к инжектору гибкой насосно-компрессорной трубы с использованием цилиндра натяжения, который автоматически регулирует натяжение цепи или ременного элемента.

В разработке и строительстве нефтяных или газовых скважин удлиненные насосно-компрессорные трубы можно вводить в скважину с поверхности для нагнетания некоторых типов текучих сред обработки для интенсификации притока, вытеснения текучих сред в скважине, для выполнения промывки на эксплуатационной колонне насосно-компрессорных труб, а также для различных других целей. Непрерывную насосно-компрессорную трубу вводят в скважину с большого барабана на поверхности. В нефтегазовой промышленности данный способ относят к эксплуатации гибкой насосно-компрессорной трубы. Примеры устройств для спуска и подъема гибкой насосно-компрессорной трубы в скважину можно найти в патенте U.S. № 5188174, Anderson, Jr. et al., который полностью включен в данный документ в виде ссылки.

Установки с гибкой насосно-компрессорной трубой используют для геотехнических мероприятий в нефтяных и газовых скважинах, и в некоторых случаях насосно-компрессорную трубу, которую перевозят намотанной на большой барабан, используют в качестве эксплуатационной колонны насосно-компрессорных труб в истощенных газовых скважинах. Инжектор является сердцем системы с гибкой насосно-компрессорной трубой. Инжектор гибкой насосно-компрессорной трубы подает гибкую насосно-компрессорную трубу в нефтяную или газовую скважину для осуществления техобслуживания скважины.

Инжекторы для гибкой насосно-компрессорной трубы хорошо известны в технике. Инжекторы гибкой насосно-компрессорной трубы, в общем, имеют две противоположные вертикальные петли цепи встречного вращения с фиксированной ведущей звездочкой сверху и плавающей звездочкой снизу. Две противоположные цепи встречного вращения обеспечивают инжектору способность спускать гибкую насосно-компрессорную трубу в скважину под давлением. Для спуска гибкой насосно-компрессорной трубы в скважину под высоким давлением инжектор должен передавать значительное сжимающее усилие для преодоления сопротивления давлению в оборудовании устья скважины. Другими словами, скважинное давление создает силу выталкивания гибкой насосно-компрессорной трубы из скважины, которой должна противодействовать сила, прикладываемая к нижним звездочкам, для плотного удержания цепной петли. Указанное известно специалисту в данной области техники как натяжение цепи.

Большинство поломок цепи инжектора и подшипника скольжения обуславливаются ненадлежащим натяжением цепи при работе инжектора. В известной технике натяжением цепи управляет оператор, регулируя гидравлическое давление на пульте управления в цилиндрах натяжения, прикрепленных к валам нижних звездочек. Оператор должен определить подходящее для натяжения цепи давление с учетом наружного диаметра гибкой насосно-компрессорной трубы и скважинного давления (и в горизонтальных скважинах силы трения, действующей на гибкую насосно-компрессорную трубу). Данные факторы могут изменяться в ходе выполнения проекта бурения, что требует от оператора мониторинга нагрузки при спуске под давлением и давления натяжения цепи. В некоторых случаях оператору трудно непрерывно осуществлять мониторинг усилия принудительного спуска труб в скважину под давлением. В результате, механические ограничители добавлены к валам нижних звездочек в известной технике. Механические ограничители предотвращают перемещение звездочек дальше заданной точки и должны вручную регулироваться по мере износа цепи. Износ цепи (удлинение цепи) может обуславливаться износом пальцев и вкладышей (когда цепь работает, наружная поверхность пальца и внутренняя поверхность вкладыша трутся друг о друга, понемногу изнашиваясь). Другой заботой является положение, в котором цепь и звездочка входят в контакт флуктуациями, обуславливая вибрацию цепи вместе с данной флуктуацией. Вибрация возникает, поскольку имеется расчетная длина в цепях, где они могут изгибаться только на мгновенном центре вращения. Высота зацепления (радиус от центра звездочки) изменяется, когда цепь зацепляется в тангенциальном положении и когда зацепляется в хорде. Давление натяжения цепи, которое должно удерживать цепи прижатыми для противодействия высокой силе задавливания труб, дает в результате всплески нагрузки от хордального действия цепи. По меньшей мере, по причинам, изложенным выше, существует необходимость создания инжектора для систем с гибкой насосно-компрессорной трубой, в которой автоматически регулируется натяжение цепи.

По причинам, изложенным выше, задачей вариантов осуществления настоящего изобретения является создание инжектора, в котором автоматически регулируется натяжение цепи или ременного элемента.

Варианты осуществления настоящего изобретения обеспечивают оператору установку надлежащего давления натяжения цепи, что продлевает срок службы цепей, и создают механический ограничитель для предотвращения выталкивания вверх нижних звездочек от скважинного давления на гибкой насосно-компрессорной трубе. Варианты осуществления настоящего изобретения имеют автоматическое регулирование для компенсации увеличения длины цепи вследствие износа.

Варианты осуществления настоящего изобретения включают в себя инжектор, используемый в системах с гибкой насосно-компрессорной трубой, включающий в себя, по меньшей мере, две противоположные цепные петли встречного вращения, имеющие первый конец и второй конец, причем цепные петли имеют цепь. Инжектор вариантов осуществления настоящего изобретения дополнительно включает в себя фиксированную ведущую звездочку, установленную на первом конце цепной петли, и плавающую звездочку, установленную на втором конце цепной петли. В инжекторе вариантов осуществления настоящего изобретения имеется сила, прикладываемая к плавающей нижней звездочке, для поддержания в цепных петлях требуемого натяжения цепи. Кроме того, инжектор вариантов осуществления настоящего изобретения включает в себя цилиндр натяжения, автоматически поддерживающий в цепной петле требуемое натяжение цепи.

В другом варианте осуществления настоящего изобретения создан цилиндр натяжения, где цилиндр натяжения включает в себя: головку цилиндра и уплотнение головки цилиндра; шток и уплотнение штока; грязесъемник штока; корпус цилиндра; стопор; уплотнение поршня; и поршень и цилиндр, где поршень делит цилиндр на две камеры, первую камеру и вторую камеру, и каждая камера включает в себя площадь поршня, причем площадь поршня является, по существу, одинаковой в первой и второй камерах. Цилиндр натяжения дополнительно включает в себя обратный клапан, соединяющий первую и вторую камеры, где обратный клапан обеспечивает проход текучей среды и давления из первой камеры во вторую камеру.

Варианты осуществления настоящего изобретения дополнительно включают в себя способ автоматической регулировки натяжения цепи в инжекторе, используемом в системах с гибкой насосно-компрессорной трубой, включающий в себя приложение силы к плавающей звездочке для поддержания в цепных петлях требуемого натяжения цепи. Инжектор включает в себя: по меньшей мере, две противоположные цепные петли встречного вращения, имеющие первый конец и второй конец, причем цепные петли имеют цепь; и фиксированную ведущую звездочку, установленную на первом конце цепной петли, при этом плавающая звездочка установлена на втором конце цепной петли. Способ автоматической регулировки натяжения цепи в инжекторе, используемый в системах с гибкой насосно-компрессорной трубой, дополнительно включает в себя: предотвращение перемещения плавающей нижней звездочки к первому концу цепной петли с использованием механического ограничителя; и автоматическое поддержание в цепных петлях требуемого натяжения цепи с использованием цилиндра натяжения.

В другом варианте осуществления настоящего изобретения создан инжектор, используемый в системах с гибкой насосно-компрессорной трубой, включающий в себя: по меньшей мере две противоположные цепные петли встречного вращения, имеющие верх и низ, причем цепные петли имеют цепь; фиксированную ведущую звездочку сверху вертикальных цепных петель и плавающую звездочку снизу вертикальных цепных петель; силу, прикладываемую к плавающей нижней звездочке, для удержания цепной петли прижатой к ней с созданием требуемого натяжения цепи; механический ограничитель для предотвращения перемещения плавающей нижней звездочки к верху вертикальной цепной петли; и цилиндр натяжения, автоматически поддерживающий в цепной петле требуемое натяжение цепи. Цилиндр натяжения включает в себя: корпус цилиндра; головку цилиндра и уплотнение головки цилиндра; шток и уплотнение штока; грязесъемник штока; стопорное кольцо; и плавающий поршень и цилиндр, где поршень делит цилиндр на две камеры, первую камеру и вторую камеру, каждую камеру имеющую площадь поршня, причем площадь поршня является, по существу, одинаковой в первой и второй камерах. Цилиндр натяжения дополнительно включает в себя: пружину, установленную между поршнем и штоком, где пружина поддерживает расстояние, по существу, эквивалентное хордальному перемещению цепей на звездочках; уплотнение поршня; обратный клапан, соединяющий первую и вторую камеры, где обратный клапан обеспечивает проход текучей среды и давления из первой камеры во вторую камеру, но обратный клапан не допускает прохода текучей среды и давления из второй камеры в первую камеру; и два окна, первое окно и второе окно, где первое окно соединяется с клапаном управления давлением натяжения цепи и где через первое окно стравливается воздух из цилиндра, и второе окно закрывается во время работы инжектора. Инжектор дополнительно включает в себя: валы звездочек, соединенные с плавающими нижними звездочками, где шток включает в себя пазы, прорезанные в конце штока, шток соединен с валами звездочек, и шток соединяется с поршнем с помощью стопорного кольца. Кроме того, инжектор включает в себя: ролики, соединенные с цепью и перемещающиеся с цепью; и плавающие/подвижные цилиндры сцепления, где силы от цепи толкают шток на плавающую звездочку в цепной петле. Если силы толкают плавающую звездочку к верху цепной петли, шток должен проходить расстояние, по существу, равное расстоянию, поддерживаемому отклоняющим элементом, при этом предотвращается перемещение звездочки за местоположение поршня в цилиндре.

Предпочтительные признаки вариантов осуществления настоящего изобретения показаны на прилагаемых чертежах, где одинаковыми позициями обозначены одинаковые элементы.

На ФИГ. 1 показан вид в изометрии спереди и сбоку инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 2 показан вид спереди инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 3 показан вид справа инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 4 показан вид слева инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 5 показан вид сзади инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 6 показан вид спереди и сбоку инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 7 показан вид спереди инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 8 показан вид справа инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 9 показано сечение по линии D-D Фиг. 7.

На ФИГ. 10 показан вид в изометрии сверху инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 11 показан вид в изометрии снизу инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 12 показан вид в изометрии снизу инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 13 показан вид в изометрии сбоку нижнего вала инжектора согласно варианту осуществления настоящего изобретения.

На ФИГ. 14 показан вид в изометрии сзади цилиндра натяжения согласно варианту осуществления настоящего изобретения.

На ФИГ. 15 в сечении показано внутреннее устройство цилиндра натяжения согласно варианту осуществления настоящего изобретения.

На ФИГ. 16 показано сечение цилиндра натяжения согласно варианту осуществления настоящего изобретения.

На ФИГ. 17A в сечении верха показано внутреннее устройство цилиндра натяжения согласно варианту осуществления настоящего изобретения.

На ФИГ. 17B в сечении низа показано внутреннее устройство цилиндра натяжения согласно варианту осуществления настоящего изобретения.

Варианты осуществления настоящего изобретения описаны более полно ниже в данном документе со ссылкой на прилагаемые чертежи, на которых показаны предпочтительные варианты осуществления изобретения. Данное изобретение можно, вместе с тем, реализовать во многих различных формах без ограничения показанными вариантами осуществления, описанными в данном документе.

Данные показанные варианты осуществления представлены для полноты и завершенности описания, которое должно передавать объем изобретения специалисту в данной области техники.

В следующем описании одинаковые позиции имеют одинаковые или соответствующие части по всем чертежам. Кроме того, в следующем описании понятно, что термины, такие как "верх", "низ", "верхний", "нижний", "левый", "правый" и т.п., являются словами, применяемыми для удобства описания, и не должны восприниматься, как ограничивающие термины.

Варианты осуществления настоящего изобретения включают в себя инжекторы 1 гибкой насосно-компрессорной трубы, которые имеют две противоположные вертикальные цепные петли 2 встречного вращения с фиксированной ведущей звездочкой 4 сверху и плавающей звездочкой 6 снизу. Как понятно специалисту в данной области техники, плавающая звездочка 6 является звездочкой, которой обеспечена возможность перемещения вверх или вниз в пазу 8, но исключена возможность перемещения вбок. Длина паза равна расстоянию, на которое плавающая звездочка 6 может перемещаться при приемлемой величине износа цепи. Две противоположные цепи 2 встречного вращения обеспечивают инжектору 1 способность спускать гибкую насосно-компрессорную трубу 10 в скважину под давлением. Скважинное давление передает силу, выталкивающую гибкую насосно-компрессорную трубу 10 из скважины, данной силе должна противодействовать сила, приложенная к нижним плавающим звездочкам 6 для удержания цепных петель 2 стянутыми (натяжение цепи). Натяжение в варианте осуществления настоящего изобретения определяется эмпирически. В варианте осуществления настоящего изобретения 500 фунт/дюйм2 (3450 кПа) является минимальным давлением, применяемым в цилиндрах 12 натяжения для обеспечения тихой и плавной работы цепи 2. Вместе с тем, в других вариантах осуществления настоящего изобретения, давление натяжения может отличаться вследствие таких факторов, как диаметр цилиндра натяжения и шаг цепи.

Варианты осуществления настоящего изобретения включают в себя цилиндр 12 натяжения в составе корпуса 14 цилиндра, головки 16 цилиндра и штока 18. Кроме того, варианты осуществления настоящего изобретения включают в себя плавающий поршень 20, пружину 22 и способ, которым поршень 20 и шток 18 соединяются.

Варианты осуществления настоящего изобретения дополнительно включают в себя цилиндр 12 натяжения, обеспечивающий оператору установление надлежащего давления для натяжения цепи, который продлевает срок службы цепей 2 и создает механический ограничитель для предотвращения выталкивания нижних плавающих звездочек 6 вверх действием скважинного давления на гибкую насосно-компрессорную трубу 10. Цилиндр 12 натяжения в составе вариантов осуществления настоящего изобретения автоматически регулируется для увеличения длины цепи вследствие износа. Износ цепи (удлинение цепи) обусловлен износом пальцев и вкладышей (когда цепь 2 работает, наружная поверхность пальца 24 и внутренняя поверхность вкладыша 26 трутся друг о друга, понемногу изнашиваясь). Давление натяжения цепи должно поэтому соответствующим образом поддерживаться для обеспечения плавной и тихой работы с оптимальным сроком службы цепей 2. Оператору системы установки с гибкой насосно-компрессорной трубой не требуется осуществлять мониторинг усилий принудительного спуска труб в скважину под давлением для определения натяжения цепи во время работы, и цепь 2 не подвергается высоким нагрузкам в результате высокого давления натяжения цепи.

Как показано на прилагаемых чертежах, цилиндр 12 натяжения в составе вариантов осуществления настоящего изобретения включает в себя поршень 20 и цилиндр 14, где поршень 20 делит цилиндр 14 на две камеры, первую камеру 28 и вторую камеру 30. Площадь поршня является, по существу, одинаковой в первой и второй камерах 28, 30. Обратный клапан 32 соединяет первую камеру 28 со второй камерой 30, обеспечивая проход текучей среды и давления из первой камеры 28 во вторую камеру 30, но не из второй камеры 30 в первую камеру 28.

Цилиндр 12 натяжения также включает в себя головку 16 цилиндра, уплотнение 36 головки цилиндра, уплотнение 38 штока, грязесъемник 40 штока, корпус 14 цилиндра, стопор 34 и уплотнение 42 поршня.

Ниже описаны элементы цилиндра 12 натяжения, включенные в вариант осуществления настоящего изобретения.

Корпус 14 цилиндра, в общем, выполнен из стали и является бесшовной толстостенной трубой с компонентом цилиндрической формы, также в общем выполненным из стали, приваренным на одном конце, где внутренний диаметр выполнен станочной обработкой. Вместе с тем, специалист в данной области техники должен понимать, что корпус цилиндра и другие компоненты цилиндра 12 натяжения можно выполнять с применением дополнительных материалов, иных, чем описанные в данном документе.

Головка 16 цилиндра является компонентом цилиндрической формы, в общем, выполненным из стали, который прикрепляется к открытому концу корпуса 14 цилиндра и содержит уплотнение 36 головки цилиндра, уплотнение 38 штока и грязесъемник 40 штока.

Уплотнение 36 головки цилиндра, в общем, выполнено из эластомерного материала и является компонентом, уплотняющим зазор между головкой 16 цилиндра и корпусом 14 цилиндра.

Уплотнение 38 штока, в общем, выполнено из эластомерного материала и является компонентом, уплотняющим зазор между головкой 16 цилиндра и штоком 18 цилиндра.

Грязесъемник 40 штока, в общем, выполнен из твердого эластомерного материала и является компонентом, счищающим загрязнения с открытого участка штока 18 перед его перемещением через уплотнение 38 штока.

Шток 18 является компонентом цилиндрической формы, в общем, выполненным из стали, который выходит из цилиндра 14 и имеет один конец, обработанный на металлорежущем станке, для прикрепления к нижнему валу 44 инжектора и противоположный конец, обработанный на металлорежущем станке для удержания отклоняющего элемента 22 (обычно пружина) и прикрепления к поршню 20. Нижний вал 44 инжектора может включать в себя плавающие звездочки 6 в варианте осуществления настоящего изобретения.

Поршень 20 является компонентом цилиндрической формы, в общем выполненным из стали, который разделяет две камеры 28, 30 корпуса 14 цилиндра внутри.

Уплотнение 42 поршня, в общем, выполнено из эластомерного материала и является компонентом, уплотняющим зазор между поршнем 20 и корпусом 14 цилиндра.

Отклоняющий элемент 22 является пружиной в предпочтительном варианте осуществления настоящего изобретения. Отклоняющий элемент 22 является упругим устройством, запасающим энергию, используемым для поддержания заданного расстояния между штоком 18 и поршнем 20. Специалисту в данной области техники должно быть понятно, что отклоняющий элемент 22 может представлять собой любое упругое устройство, запасающее энергию. Например, отклоняющим элементом 22 могут являться пластинчатые пружины, спиральные пружины, торсионы или их комбинации или т.п. Отклоняющий элемент 22 может также являться упругим материалом.

Стопор 34 является устройством, которое прикрепляет шток 18 к поршню 20.

Обратный клапан 32 является механическим устройством, которое обеспечивает проход текучей среды через него только в одном направлении.

Цилиндр 12 натяжения дополнительно включает в себя два окна, первое окно 46 и второе окно 48. Первое окно 46 соединяется с клапаном 50 управления давлением натяжения цепи.

Шток 18 соединен с валами 44 нижних звездочек, и шток 18 включает в себя пазы 52, прорезанные в конце 54 штока 18. Шток 18 соединяется с поршнем 20 с помощью стопора 34. Стопор 34 может представлять собой стопорное кольцо, показанное на чертежах. Специалисту в данной области техники должно быть понятно, что различные средства можно использовать для соединения штока 18 и поршня 20, включающие в себя, без ограничения этим, зажим или палец.

Хордальное перемещение является разностью между радиусом делительной окружности и расстоянием от центра звездочки 6 до хорды (когда цепь сцепляется со звездочкой, центры соединений звеньев цепи лежат на делительной окружности звездочки, и линия центров каждого звена образует хорды данной окружности). Пружина 22 установлена между поршнем 20 и штоком 18, и пружина 22 поддерживает расстояние, эквивалентное хордальному перемещению цепи 2 на звездочке 6. Данное расстояние требуется поддерживать минимальным для ограничения провеса в цепи 2 при высоком усилии принудительного спуска труб в скважину под давлением.

В варианте осуществления настоящего изобретения через второе окно 48 стравливают воздух из цилиндра 14, и второе окно 48 закрыто во время работы.

В вариантах осуществления настоящего изобретения давление натяжения цепи толкает шток 18 на нижнюю плавающую звездочку 6 в цепи 2. Давление является по существу равными в первой и второй камерах 28, 30, и поскольку площадь поршня является, по существу, одинаковой в обеих камерах, на поршень 20 не действует усилие, перемещающее его в каком-либо направлении. Пружина 22 между штоком 18 и поршнем 20 поддерживает зазор для штока 18 для перемещения, когда валы нижних звездочек 44 флуктуируют от хордального действия. Когда цепь 2 изнашивается и увеличивается в длине, обратный клапан 32 в поршне 20 обеспечивает проход текучей среды из первой камеры 28 во вторую камеру 30, когда давление натяжения выдвигает шток 18, перемещая нижние звездочки 6 вниз до опирания нижних звездочек 6 на цепь 2. Если сила спуска на гибкой насосно-компрессорной трубе 10 толкает нижние звездочки 6 вверх, шток 18 должен проходить расстояние, равное зазору, поддерживаемому пружиной 22 между штоком 18 и поршнем 20. В вариантах осуществления настоящего изобретения гидравлическая текучая среда является несжимаемой, и обратный клапан 32 предотвращает проход текучей среды из второй камеры 30 в первую камеру 28. Кроме того, предотвращается перемещение нижних звездочек 6 за местоположение поршня в цилиндре 14.

Вариант осуществления настоящего изобретения можно использовать в любом цепном приводе, где требуется гидравлическое натяжение. Другой вариант осуществления настоящего изобретения включает в себя клапан 56 сброса давления, установленный во втором окне 48, который можно использовать, например, в системе натяжения, требующей ограничения по максимальному усилию.

Варианты осуществления настоящего изобретения исключают ручное управление упорами нижних звездочек, которое оператору в некоторых случаях трудно поддерживать. Кроме того, варианты осуществления настоящего изобретения создают оптимальное расстояние, на которое вал 44 нижних звездочек перемещается перед контактом с упором.

Как показано на фиг. 12, в варианте осуществления настоящего изобретения саморегулирующийся механизм натяжения цепи с обратным клапаном в цилиндре, описанный выше, используется в инжекторе, который включает в себя ролики 58, которые перемещаются и устанавливаются в цепи 2. Наоборот, в другом варианте осуществления настоящего изобретения, саморегулирующийся механизм натяжения цепи с обратным клапаном в цилиндре, описанный выше, используется в инжекторе, который включает в себя стационарные ролики, установленные в направляющих 61. Направляющие 61 являются элементами, которые включают в себя ролики в данном варианте осуществления. Кроме того, направляющие 61 являются элементами, выполненными с возможностью соединения с толкателем 64 поршня 60 цилиндров 62 сцепления в варианте осуществления настоящего изобретения. В варианте осуществления настоящего изобретения сжимающую силу на гибкой насосно-компрессорной трубе 10 можно регулировать величиной силы, приложенной цилиндрами 62 сцепления.

Кроме того, показанный на чертежах в варианте осуществления настоящего изобретения саморегулирующийся механизм натяжения цепи с обратным клапаном в цилиндре, описанный выше, используется в инжекторе, который включает в себя плавающие/подвижные цилиндры 62 сцепления. Наоборот, в другом варианте осуществления настоящего изобретения саморегулирующийся механизм натяжения цепи с обратным клапаном в цилиндре, описанный выше, используется в инжекторе, который включает в себя стационарные цилиндры сцепления.

В варианте осуществления настоящего изобретения, показанном на фиг. 1, инжектор 1 гибкой насосно-компрессорной трубы включает в себя внутреннюю раму 66, наружную раму 68 и раму 70 основания. Как известно специалистам в данной области техники, различные конструктивные элементы рам 66, 68, 70 могут включать в себя разнообразные известные конструктивные компоненты, такие как пластины, двутавры, швеллера, трубчатые конструктивные элементы и т.п., которые подбирают по размерам и конфигурации для удовлетворительной работы под действием сил, возникающих при нормальных операциях с гибкой насосно-компрессорной трубой. Конструктивное исполнение, выбор подбор размеров данных различных компонентов осуществляется при проектировании, выполняемом специалистами в данной области техники. Инжектор 1 гибкой насосно-компрессорной трубы дополнительно включает в себя приводные компоновки 72 с приводными двигателями, обычно используемыми в технике, например гидравлическими двигателями. Специалист в данной области техники должен понимать, что различные средства привода можно использовать в инжекторе 1 гибкой насосно-компрессорной трубы согласно вариантам осуществления настоящего изобретения. Приводные компоновки 72 соединяются с приводными валами, которые включают в себя ведущие звездочки 4 для привода цепей 2. Инжектор 1 гибкой насосно-компрессорной трубы, показанный на фиг. 1, включает в себя много аксессуаров и представляет собой типичный комплектный инжектор 1 гибкой насосно-компрессорной трубы уровня техники с улучшениями и патентоспособными признаками, описанными в данном документе.

Как показано на фиг. 2, различные системы трубок могут соединяться с первым и вторым окнами 46, 48 цилиндра 12 натяжения. Система трубок может включать в себя измерительные приборы 74, такие как манометры для получения релевантных измерений, помогающих оператору инжектора 1 гибкой насосно-компрессорной трубы согласно варианту осуществления настоящего изобретения. В варианте осуществления настоящего изобретения клапан управления давлением натяжения цепи соединяется с первым окном 46, и клапан 56 сброса давления соединяется со вторым окном 48.

Известные специалистам в данной области техники цепи 2 представляют собой бесконечные цепи, которые вращаются (одна по часовой стрелке и другая против часовой стрелки) с помощью приводных компоновок 72, соединенных с ведущими звездочками 4. Вместе с тем, специалист в данной области техники должен понимать, что варианты осуществления настоящего изобретения не обязательно включают в себя цепи, например ременную передачу можно использовать взамен цепи. Конкретные типы звездочек, цилиндров сцепления, двигателей, цепей и других компонентов, используемых в инжекторе 1 гибкой насосно-компрессорной трубы согласно вариантам осуществления настоящего изобретения, все выбирается при конструировании, и их выбор и подбор размеров может меняться в зависимости от конкретного варианта применения. Данные признаки относятся к компетенции специалиста в данной области техники и не должны рассматриваться ограничивающими варианты осуществления настоящего изобретения.

На ФИГ. 6 показан инжектор 1 гибкой насосно-компрессорной трубы согласно варианту осуществления настоящего изобретения без наружной рамы 66 и рамы основания 68, и большинство других систем трубок и дополнительных механических элементов, общих для инжекторов, удалены для ясности. Внутренняя рама 66 инжектора 1 гибкой насосно-компрессорной трубы ясно показана на данной Фигуре, а также на Фиг. 7 и 8. В варианте осуществления настоящего изобретения цепи 2 включают в себя захватывающие блоки 76 для захвата гибкой насосно-компрессорной трубы 10.

На ФИГ. 9 показано сечение по линии D-D Фиг. 7. На Фиг. 9 можно видеть внутреннее устройство цилиндра 62 сцепления, включающего в себя поршень 60 и шток 78, также толкатель 64 цилиндра сцепления. В варианте осуществления, показанном на Фиг. 9, направляющие 61 соединены с толкателями 64 поршня 60 цилиндров 62 сцепления в варианте осуществления настоящего изобретения. Как указано выше, в варианте осуществления настоящего изобретения силу захвата на гибкой насосно-компрессорной трубе 10 можно регулировать по величине силы, прикладываемой цилиндрами 62 сцепления.

На ФИГ. 12 показана с увеличением нижняя часть инжектора 1 согласно варианту осуществления настоящего изобретения, где участок внутренней рамы 66 снят для ясного отображения компонентов инжектора 1.

Во время работы гибкая насосно-компрессорная труба 10 вставляется через верх инжектора 1 гибкой насосно-компрессорной трубы, где входит в контакт с множеством захватывающих блоков 76 при вращении цепей 2 приводными компоновками 72. Оператор инжектора 1 гибкой насосно-компрессорной трубы согласно вариантам осуществления настоящего изобретения устанавливает надлежащее давление натяжения цепи, что продлевает срок службы цепей 2. Затем, в работе, инжектор 1 гибкой насосно-компрессорной трубы согласно вариантам осуществления настоящего изобретения автоматически регулируется для компенсации увеличения длины цепи вследствие износа с использованием цилиндра 12 натяжения.

Для специалиста в данной области техники является очевидным, что инжекторы гибкой насосно-компрессорной трубы согласно вариантам осуществления настоящего изобретения способны размещать гибкую насосно-компрессорную трубу различных диаметров. Кроме того, специалисту в данной области техники должно быть понятно, что вариант осуществления настоящего изобретения включает в себя инжектор в вертикальной конфигурации, показанный на чертежах. Вместе с тем, специалисту в данной области техники также понятно, что варианты осуществления настоящего изобретения также включают в себя инжекторы, которые можно выполнять в различных сочетаниях и конфигурациях, например горизонтальной или диагональной.

Ниже приведен перечень позиций, использованных в прилагаемых чертежах для вариантов осуществления настоящего изобретения.

(1) Инжектор гибкой насосно-компрессорной трубы

(2) Цепь

(4) Ведущая звездочка

(6) Плавающая звездочка

(8) Паз

(10) Гибкая насосно-компрессорная труба

(12) Цилиндр натяжения

(14) Корпус цилиндра/цилиндр

(16) Головка цилиндра

(18) Шток

(20) Поршень

(21) Толкатель

(22) Пружина

(24) Палец

(26) Вкладыш

(28) Первая камера

(30) Вторая камера

(32) Обратный клапан

(34) Стопор

(36) Уплотнение головки цилиндра

(38) Уплотнение штока

(40) Грязесъемник штока

(42) Уплотнение поршня

(44) Нижний вал инжектора

(46) Первое окно

(48) Второе окно

(50) Клапан управления давлением натяжения цепи

(52) Паз

(54) Конец штока

(56)Клапан сброса давления

(58) Ролик (подвижный)

(60) Поршень (цилиндр сцепления)

(61) Направляющая

(62) Подвижный цилиндр сцепления

(64) Толкатель (цилиндра сцепления)

(66) Внутренняя рама

(68) Наружная рама

(70) Рама основания

(72) Приводная компоновка

(74) Измерительные приборы

(76) Захватывающий блок

1. Инжектор, используемый в системах с гибкой насосно-компрессорной трубой, содержащий:по меньшей мере, две противоположные цепные петли встречного вращения, имеющие первый конец и второй конец, причем цепные петли содержат цепь;фиксированную ведущую звездочку, установленную на первом конце цепной петли, и плавающую звездочку, установленную на втором конце цепной петли;нагрузку, прикладываемую к плавающей звездочке, установленной на втором конце цепной петли для поддержания в цепных петлях требуемого натяжения цепи; ицилиндр натяжения, автоматически поддерживающий в цепной петле требуемое натяжение цепи, при этом цилиндр натяжения дополнительно содержит:головку цилиндра и уплотнение головки цилиндра;шток и уплотнение штока;грязесъемник штока;корпус цилиндра;стопор;уплотнение поршня;поршень и цилиндр, причем поршень делит цилиндр, по меньшей мере, на две камеры, первую камеру и вторую камеру, причем каждая камера содержит площадь поршня, и при этом площадь поршня является, по существу, одинаковой в первой и второй камерах; иобратный клапан, соединяющий первую и вторую камеры, при этом обратный клапан обеспечивает проход текучей среды и давления из первой камеры во вторую камеру.

2. Инжектор по п. 1, дополнительно содержащий механический ограничитель для предотвращения перемещения к плавающей звездочке, установленной на втором конце цепной петли, к первому концу цепной петли.

3. Инжектор по п. 1, в котором цилиндр натяжения дополнительно содержит корпус цилиндра, головку цилиндра, поршень и шток.

4. Инжектор по п. 3, в котором соединение между поршнем и штоком обеспечивает цилиндру натяжения автоматическую регулировку натяжения цепной петли.

5. Инжектор по п. 3, в котором цилиндр натяжения дополнительно содержит отклоняющий элемент, который входит в контакт со штоком и поршнем.

6. Инжектор по п. 5, в котором отклоняющий элемент обеспечивает цилиндру натяжения автоматическую регулировку натяжения цепной петли.

7. Инжектор по п. 5, в котором отклоняющий элемент является пружиной.

8. Инжектор по п. 1, дополнительно содержащий:валы звездочек, соединенные с плавающими звездочками, установленными на втором конце цепной петли, при этом шток соединен с валами звездочек и шток соединяется с поршнем с помощью стопора; иотклоняющий элемент, установленный между поршнем и штоком, при этом отклоняющий элемент поддерживает расстояние, по существу, эквивалентное хордальному перемещению цепей на звездочках,при этом цилиндр натяжения дополнительно содержит два окна, первое окно и второе окно, при этом первое окно соединяется с клапаном управления давлением натяжения цепи, при этом через первое окно стравливается воздух из цилиндра, и второе окно закрывается во время работы инжектора,при этом силы натяжения цепи толкают шток на плавающую звездочку в цепной петле,при этом, если силы толкают плавающую звездочку к первому концу цепной петли, шток должен проходить расстояние, по существу, равное расстоянию, поддерживаемому отклоняющим элементом, ипри этом предотвращается перемещение звездочки за местоположение поршня в цилиндре.

9. Инжектор по п. 8, дополнительно содержащий клапан сброса давления, установленный во втором окне.

10. Инжектор по п. 1, дополнительно содержащий валы звездочек, соединенные с плавающими звездочками, установленными на втором конце цепной петли, при этом шток включает в себя пазы, прорезанные в конце штока, причем шток соединен с валами звездочек, и шток соединяется с поршнем с помощью стопора.

11. Инжектор по п. 1, дополнительно содержащий ролики, соединенные с цепью и перемещающиеся с цепью.

12. Инжектор по п. 1, дополнительно содержащий плавающие/подвижные цилиндры сцепления.

13. Инжектор по п. 1, дополнительно содержащий стационарные цилиндры сцепления.

14. Способ автоматической регулировки натяжения цепи в инжекторе, используемый в системах с гибк