Вставка виртуальной несущей в традиционную основную несущую ofdm в системе связи

Иллюстрации

Показать все

Изобретение относится к области связи. Техническим результатом является использование относительно недорогих и менее сложных устройств для обеспечения связи с использованием сетей типа LTE. Предложена мобильная телекоммуникационная система, содержащая мобильные терминалы первого типа и мобильные терминалы второго типа. Мобильные терминалы выполнены с возможностью передачи данных восходящей линии связи в сеть по радиоинтерфейсу с использованием множества поднесущих, и мобильные терминалы первого типа выполнены с возможностью передачи данных восходящей линии связи на первой группе поднесущих из множества поднесущих по всей первой ширине полосы пропускания, и мобильные терминалы второго типа выполнены с возможностью передачи данных восходящей линии связи на второй группе поднесущих из множества поднесущих в пределах первой группы поднесущих по всей второй ширине полосы пропускания. Вторая ширина полосы пропускания меньше, чем первая ширина полосы пропускания. Мобильные терминалы первого типа выполнены с возможностью передачи сообщений с запросом случайного доступа в базовую станцию сети, запрашивающих радиоресурс восходящей линии связи по первому каналу случайного доступа. Мобильные терминалы второго типа выполнены с возможностью передачи сообщений с запросом случайного доступа в базовую станцию сети, запрашивающих радиоресурсы восходящей линии связи по второму каналу случайного доступа. Сообщения с запросом случайного доступа, переданные по второму каналу случайного доступа, передаются на поднесущих в пределах второй группы поднесущих. 6 н. и 8 з.п. ф-лы, 19 ил.

Реферат

Область техники, к которой относится изобретение Настоящее изобретение относится к способам, системам и устройствам для выделения ресурсов передачи и передачи данных в мобильных телекоммуникационных системах.

Уровень техники

Мобильные телекоммуникационные системы третьего и четвертого поколений, такие как системы, основанные на архитектуре универсальной системы мобильной связи (UMTS) и проекта долгосрочного развития (LTE), определенной в рамках проекта партнерства для создания сетей третьего поколения (3GPP), могут поддерживать более совершенные услуги, чем простые голосовые услуги и услуги обмена сообщениями, предоставляемые мобильными телекоммуникационными системами предыдущих поколений.

Например, при наличии усовершенствованного радиоинтерфейса и повышенных скоростей передачи данных, обеспечиваемых системами LTE, пользователь может наслаждаться приложениями, требующими высокую скорость передачи данных, такими как мобильное потоковое видео и мобильная видеоконференц-связь, которые ранее были бы доступны только через информационное соединение по фиксированной линии. Поэтому существует сильный спрос на развертывание сетей третьего и четвертого поколений, и ожидается быстрое увеличение зоны обслуживания этих сетей, то есть географические местоположения, где возможен доступ к сетям.

Ожидаемое широкомасштабное развертывания сетей третьего и четвертого поколения привело к параллельной разработке класса устройств и приложений, которые скорее имеют преимущества, связанные с наличием высокой скорости передачи данных, чем преимущества, связанные с надежным радиоинтерфейсом и повсеместным распространением зоны обслуживания. Примеры включают так называемые приложения типа связь между машинами (МТС), которые характерны для полуавтономных или автономных устройств беспроводной связи (т.е. устройств МТС), обеспечивающих передачу небольшого количества данных на относительно редко встречающейся основе. Примеры включают так называемые интеллектуальные счетчики, которые, например, расположены в доме потребителей и периодически передают информацию обратно в центральный сервер МТС, данные, которые относятся к потреблению потребителями коммунальных услуг, таких как газ, вода, электроэнергия и т.д.

Хотя может быть и удобно для терминала, такого как терминал типа МТС, иметь преимущество, связанное с широкой зоной обслуживания, обеспечиваемой мобильной телекоммуникационной сетью третьего или четвертого поколения, в настоящее время существуют недостатки. В отличие от терминала третьего или четвертого поколения, такого как смартфон, терминал типа МТС является предпочтительно относительно простым и недорогим. Тип функций, выполняемых терминалом типа МТС (например, сбор и предоставление отчета о данных), не требует выполнения особо сложной обработки данных. Однако мобильные телекоммуникационные сети третьего и четвертого поколений обычно используют усовершенствованные методы модуляции данных по отношению к радиоинтерфейсу, который может требовать осуществления более сложных и дорогих радиоприемопередатчиков. Обычно бывает оправдано включение таких сложных приемопередатчиков в смартфон, так как смартфон будет, как правило, требовать мощного процессора для выполнения типичных функций. Однако, как указано выше, в настоящее время существует желание использовать относительно недорогие и менее сложные устройства для обеспечения связи с использованием сетей типа LTE.

Сущность изобретения

Согласно первому аспекту настоящего изобретения обеспечена мобильная телекоммуникационная система, содержащая мобильные терминалы первого типа и мобильные терминалы второго типа. Мобильные терминалы выполнены с возможностью передачи данных восходящей линии связи в сеть по радиоинтерфейсу с использованием множества поднесущих, и мобильные терминалы первого типа выполнены с возможностью передачи данных восходящей линии связи на первой группе поднесущих из множества поднесущих по всей ширине полосы пропускания, и мобильные терминалы второго типа выполнены с возможностью передачи данных восходящей линии связи на второй группе поднесущих из множества поднесущих в пределах первой группы поднесущих по всей второй ширине полосы пропускания. Вторая ширина полосы пропускания меньше чем первая ширина полосы пропускания. Мобильные терминалы первого типа выполнены с возможностью передачи сообщений с запросом случайного доступа в базовую станцию сети, запрашивающих радиоресурсы восходящей линии связи по первому каналу случайного доступа. Мобильные терминалы второго типа выполнены с возможностью передачи сообщений с запросом случайного доступа в базовую станцию сети, запрашивающих радиоресурсы восходящей линии связи по второму каналу случайного доступа. Сообщения с запросом случайного доступа, переданные по второму каналу случайного доступа, передаются на поднесущих в пределах второй группы поднесущих.

В традиционных мобильных телекоммуникационных сетях, таких как мобильные телекоммуникационные сети LTE, данные восходящей линии связи могут быть выделены для дальнейшей передачи из мобильного терминала в сеть по радиоресурсам несущей восходящей линии связи в любом подходящем положении в пределах всей ширины полосы пропускания несущей восходящей линии связи. Это включает в себя данные сигнализации управления восходящей линии связи, такие как сообщения с запросом случайного доступа, которые передаются мобильным терминалом в случае, когда мобильный терминал желает подсоединиться к сети, или при ожидании отправления данных восходящей линии связи. Соответственно, в традиционных сетях мобильный терминал должен иметь возможность передачи данных по всей ширине полосы пропускания несущей восходящей линии связи.

В соответствии с первым аспектом настоящего изобретения мобильные терминалы, такие как мобильные терминалы с уменьшенной пропускной способностью, можно выполнить с возможностью передачи данных в сеть на всех, с уменьшенным количеством поднесущих, размещенных по всей уменьшенной ширине полосы пропускания. Это позволяет кодировать и передавать данные восходящей линии связи с помощью мобильного терминала, оборудованного приемопередающим блоком пониженной сложности. Уменьшенное число поднесущих, переданных по всей уменьшенной ширине полосы пропускания из "виртуальной несущей" в пределах традиционной несущей восходящей линии связи (то есть "основной несущей"). Для того чтобы обеспечить передачу данных восходящей линии связи на виртуальной несущей, определяется второй канал случайного доступа, который позиционируется в пределах самой виртуальной несущей.

Устройства, обеспеченные приемопередающими блоками пониженной сложности (которые в дальнейшем называются как "терминалы виртуальных несущих") являются менее сложными и менее дорогостоящими, чем традиционные устройства типа LTE (которые в дальнейшем называются, в общем, как LTE-терминалы). Соответственно, развертывание таких устройств для приложений типа МТС в пределах сети типа LTE может стать более привлекательным, так как предоставление виртуального носителя позволяет использовать мобильные терминалы с менее дорогими и менее сложными приемопередающими блоками. Как будет понятно, мобильный терминал с приемопередатчиком с уменьшенной пропускной способностью может быть обычно менее дорогим, чем традиционный LTE-терминал.

Кроме того, в некоторых примерах, виртуальную несущую, вставленную в основную несущую, можно использовать для обеспечения логической отчетливости термина "сеть в пределах сети". Иными словами, данные, передаваемые посредством виртуальной несущей, можно обрабатывать как логические отличающиеся от данных, переданных с помощью сети основной несущей. Поэтому виртуальную несущую можно использовать для обеспечения так называемой выделенной сети для обмена сообщениями (DMN), которая "покрывает" традиционную сеть и используется для передачи данных обмена сообщениями в устройства DMN (то есть терминалы виртуальных несущих).

Согласно второму аспекту настоящего изобретения обеспечена мобильная телекоммуникационная система, содержащая мобильные терминалы первого типа и мобильные терминалы второго типа. Мобильные терминалы выполнены с возможностью передачи данных восходящей линии связи в сеть по радиоинтерфейсу с использованием множества поднесущих, и мобильные терминалы первого типа выполнены с возможностью передачи данных восходящей линии связи на первой группе поднесущих из множества поднесущих по всей первой ширине полосы пропускания, и мобильные терминалы второго типа выполнены с возможностью передачи данных восходящей линии связи на второй группе поднесущих из множества поднесущих в пределах первой группы поднесущих по всей второй ширине полосы пропускания. Вторая ширина полосы пропускания меньше, чем первая ширина полосы пропускания. Мобильные терминалы первого типа выполнены с возможностью передачи сообщений с запросом случайного доступа в базовую станцию сети, запрашивающих радиоресурсы восходящей линии связи по первому каналу случайного доступа. Мобильные терминалы второго типа выполнены с возможностью передачи сообщений с запросом случайного доступа в базовую станцию сети, запрашивающие радиоресурсы восходящей линии связи по второму каналу случайного доступа. Сообщения с запросом случайного доступа, переданные по второму каналу случайного доступа передаются на частотах за пределами второй группы поднесущих, но в пределах оставшейся части поднесущих первой группы поднесущих.

В соответствии с этим вторым аспектом настоящего изобретения вместо передачи сообщений с запросом случайного доступа в пределах виртуальной несущей, как объяснено выше со ссылкой на первый аспект настоящего изобретения, передаются сообщения с запросом случайного доступа за пределами первой несущей в основной несущей. В некоторых сценариях это может иметь преимущество, так как ресурсы восходящей линии связи, которые будут запрашивать иным образом для канала случайного доступа, являются между тем доступными для передачи других данных, таких как управляющие данные и пользовательские данные.

В соответствии с примером второго аспекта настоящего изобретения сообщения с запросом случайного доступа, которые передаются по второму каналу случайного доступа, передаются на той же самой группе поднесущих и в то же самое время, как и сообщения с запросом случайного доступа, которые передаются по первому каналу случайного доступа. Этот подход может иметь преимущества, так как меньшее количество изменений необходимо будет выполнить в процедурах случайного доступа в базовой станции, поэтому уменьшается количество адаптации традиционной сети, требуемых для осуществления примеров настоящего изобретения.

Различные дополнительные аспекты и варианты осуществления настоящего изобретения представлены в прилагаемой формуле изобретения.

Краткое описание чертежей

Варианты осуществления настоящего изобретения будут описаны ниже посредством примера только со ссылкой на сопроводительные чертежи, где одинаковые части обозначены соответствующими ссылочными позициями, и на которых:

фигура 1 - схема, иллюстрирующая пример традиционной сети мобильной связи;

фигура 2 - схема, иллюстрирующая традиционный радиокадр нисходящей линии связи LTE;

фигура 3 - схема, иллюстрирующая традиционный радиоподкадр нисходящей линии связи LTE;

фигура 4 - схема, иллюстрирующая традиционную процедуру "задержки вызова" LTE;

фигура 5 - схема, иллюстрирующая радиоподкадр нисходящей линии связи LTE, в которой виртуальная несущая была вставлена согласно варианту осуществления настоящего изобретения;

фигура 6 - схема, иллюстрирующая адаптированную процедуру "задержки вызова" в LTE для задержки вызова виртуальной несущей;

фигура 7 - схема, иллюстрирующая радиоподкадры нисходящей линии связи LTE согласно варианту осуществления настоящего изобретения;

фигура 8 - схема, иллюстрирующая физический широковещательный канал (РВСН);

фигура 9 - схема, иллюстрирующая радиоподкадр нисходящей линии связи LTE согласно варианту осуществления настоящего изобретения;

фигура 10 - схема, иллюстрирующая радиоподкадры нисходящей линии связи LTE, в которой виртуальная несущая была вставлена согласно варианту осуществления настоящего изобретения;

фигура 11A-11D - схемы, иллюстрирующие позиционирование сигналов определения местоположения в пределах подкадра нисходящей линии LTE согласно вариантам осуществления настоящего изобретения;

фигура 12 - схема, иллюстрирующая группу подкадров, в которой две виртуальные несущие изменяют местоположение в полосе основной несущей согласно варианту осуществления настоящего изобретения;

фигура 13A-13C - схемы, иллюстрирующие подкадры восходящей линии связи LTE, в которых виртуальная несущая восходящей линии связи была вставлена согласно варианту осуществления настоящего изобретения; и

фигура 14 - схема, показывающая часть адаптированной мобильной телекоммуникационной сети LTE, выполненной в соответствии с примером настоящего изобретения.

Подробное описание изобретения

Описание примерных вариантов осуществления

Традиционная сеть

На фигуре 1 изображена схема, иллюстрирующая основные функциональные возможности традиционной мобильной телекоммуникационной сети.

Сеть включает в себя множество базовых станций 101, соединенных с базовой сетью 102. Каждая базовая станция предусматривает зону 103 обслуживания (то есть соту), в пределах которой можно передавать данные в или из мобильных терминалов 104. Данные передаются из базовой станции 101 в мобильный терминал 104 в пределах зоны 103 обслуживания через нисходящую радиолинию связи. Данные передаются из мобильного терминала 104 в базовую станцию 101 через восходящую радиолинию связи. Базовая сеть 102 направляет данные в и из мобильных терминалов 104 и выполняет функции, такие как аутентификация, управление мобильностью, взимание оплаты и т.д.

Мобильные телекоммуникационные системы, такие как те, которые выполнены в соответствии с архитектурой проекта долгосрочного развития (LTE), определенной в 3GPP, используют интерфейс на основе мультиплексирования с ортогональным частотным разделением (OFDM) для нисходящей линии связи (так называемой OFDMA) и восходящей линии связи (так называемой SC-FDMA). Данные передаются по восходящей линии связи и по нисходящей линии связи на множестве ортогональных поднесущих. На фигуре 2 показана схема, иллюстрирующая радиокадр 201 нисходящей линии связи LTE на основе OFDM. Радиокадр нисходящей линии связи LTE передается из базовой станции LTE (известный как усовершенствованный узел B (eNodeB)) и продолжается в течение 10 мс. Радиокадр нисходящей линии связи содержит десять подкадров, причем каждый подкадр имеет длительность, равную 1 мс. Первичный сигнал синхронизации (SSS) передается в первом и шестом подкадрах кадра LTE, первичный широковещательный канал (PBCH) передается в первом подкадре кадра LTE. PSS, SSS и PBCH обсуждены более подробно ниже.

На фигуре 3 представлена схема, которая изображает сетку, которая иллюстрирует структуру примера традиционного подкадра LTE нисходящей линии связи. Подкадр содержит заданное число символов, которые передаются в течение периода, равного 1 мс. Каждый символ содержит заданное число ортогональных поднесущих, распределенных по всей ширине полосы пропускания радионесущей нисходящей линии связи.

Примерный подкадр, показанный на фигуре 3 содержит 14 символов и 1200 поднесущих, расположенных по всей ширине полосы пропускания с интервалом 20 МГц. Наименьший блок, в котором можно передавать данные в LTE, содержит двенадцать поднесущих, передаваемых в течение одного подкадра. Ради ясности изложения, на фигуре 3 не показан каждый отдельный ресурсный элемент, а вместо этого каждая отдельная ячейка сетки подкадра соответствует двенадцати поднесущим, которые передаются в одном символе.

На фигуре 3 показано выделение ресурсов для четырех LTE-терминалов 340, 341, 342, 343. Например, выделение 342 ресурса для первого LTE-терминала (UE1) продолжается в пределах пяти блоков двенадцати поднесущих, выделение 343 ресурса для второго LTE-терминала (UE2) продолжается в пределах шести блоков двенадцати поднесущих и т.д.

Данные каналы управления передаются в области 300 управления подкадра, содержащей первые n-символов подкадра, где n может изменяться между одним и тремя символами для ширины полосы пропускания 3 МГц или более, и где n может изменяться между двумя и четырьмя символами ширины полосы пропускания канала 1,4 МГц. Ради ясности изложения, последующее описание относится к основным несущим с шириной полосы пропускания канала 3 МГц или более, где максимальное значение n будет больше 3. Данные, передаваемые в области 300 управления, включают в себя данные, передаваемые по физическому каналу управления нисходящей линии связи (PDCCH), физическому каналу индикатора формата канала управления (PCFICH) и физическому каналу индикатора HARQ (PHICH).

PDCCH содержит управляющие данные, показывающие какие поднесущие в каких символах подкадра были выделены специфическим LTE-терминалом. Таким образом, данные PDCCH, передаваемые в области 300 управления подкадра, показанного на фигуре 3, будут показывать, что UE1 выделил первый блок ресурсов 342, UE2 выделил второй блок ресурсов 343 и т.д. PCFICH содержит управляющие данные, показывающие размер области управления (то есть между первым и третьим символами), и PHICH содержит данные HARQ (гибридного автоматического запроса повторной передачи данных), показывающие то, успешно или нет были приняты ранее переданные данные восходящей линии связи с помощью сети.

В некоторых подкадрах символы в центральной полосе 310 подкадра используются для передачи информации, включающей в себя первичный сигнал синхронизации (PSS), вторичный сигнал синхронизации (SSS) и физический широковещательный канал (РВСН). Эта центральная полоса 310 имеет типично ширину 72 поднесущих (соответствующую ширине полосы пропускания передачи 1,08 МГц). PSS и SSS представляют собой сигналы синхронизации, которые после обнаружения позволяют LTE-терминалу 104 достичь синхронизацию кадра и определить идентичность соты усовершенствованного узла Node B, передающего сигнал нисходящей линии связи. РВСН переносит информацию относительно соты, содержащую главный информационный блок (MIB), который включает в себя параметры, которые LTE-терминалы требуют для доступа к соте. Данные, переданные в отдельные LTE-терминалы по совместно используемому физическому каналу нисходящей линии связи (PDSCH), можно передавать в оставшихся блоках ресурсных элементов подкадра. Дополнительное объяснение этих каналов будет представлено в следующих абзацах.

На фигуре 3 также показана область PDSCH, содержащая системную информацию и продолжающуюся в пределах ширины R344 полосы пропускания.

Число поднесущих в канале LTE может изменяться в зависимости от конфигурации сети передачи. Типично такое изменение происходит от 72 поднесущих, которые содержатся в пределах ширины полосы пропускания канала 1,4 МГц, до 1200 поднесущих, которые содержатся в пределах ширины полосы пропускания канала 20 МГц, как показано на фиг.3. Как показано в уровне техники, данные, переданные по PDCCH, PCFICH и PHICH, типично распределены на поднесущих по всей ширине полосы пропускания подкадра. Поэтому традиционный LTE-терминал должен принимать по всей ширине полосы пропускания подкадра для того, чтобы принимать и декодировать область управления.

Традиционная процедура задержки вызова

На фигуре 4 иллюстрирован процесс "задержки вызова" в LTE, который представляет собой процесс, выполняемый терминалом таким образом, чтобы он мог декодировать передачи нисходящей линии связи, которые посылаются с помощью базовой станции через канал нисходящей линии связи на полосе несущей. Используя этот процесс, терминал может идентифицировать части передач, которые включают в себя системную информацию для соты, и, таким образом, декодировать информацию о конфигурации для соты.

Как можно увидеть на фигуре 4, в традиционной процедуре задержки вызова в LTE терминал сначала синхронизируется с базовой станцией (этап 400) с использованием PSS и SSS в центральной полосе 300 несущей, как упомянуто выше. Как можно видеть со ссылкой на фигуру 3, центральная полоса 310 имеет ширину Язю полосы пропускания, где полоса находится в центре несущей (то есть занимает центральные поднесущие).

Терминал обнаруживает эту центральную полосу и обнаруживает PSS и SSS, которые показывают длительность циклического префикса и ID соты. В LTE PSS и SSS передаются только в первом и шестом подкадрах каждого радиокадра. Конечно, в другой системе, например, в системе не LTE, полоса 310 может не находиться в центре полосы несущей и может быть шире или уже, чем 72 поднесущих или 1,08 МГц. Аналогично, подкадры могут иметь другой размер или размеры.

Терминал затем декодирует РВСН (этап 401), который также переносится на центральной полосе 310, где РВСН включает в себя, в частности, главный информационный блок (MIB). MIB показывает, в частности, ширину R320 полосы пропускания несущей нисходящей линии связи, системный номер кадра (SFN) и конфигурацию PHICH. При использовании MIB, который передается по РВСН, терминал может узнать о ширине R320 полосы пропускания несущей. Так как терминал также знает, где находится центральная полоса 310, он знает точную ширину R320 несущей нисходящей линии связи.

Для каждого подкадра терминал затем декодирует PCFICH, который распределен по всей ширине несущей 320 (этап 402). Как обсуждено выше, несущая нисходящая линии связи LTE может иметь ширину вплоть до 20 МГц (1200 поднесущих), и LTE-терминал, таким образом, должен иметь пропускную способность для приема и декодирования передач в полосе частот 20 МГц для того, чтобы декодировать PCFICH. На этой стадии при полосе несущей, равной 20 МГц, терминал работает с гораздо большей шириной полосы пропускания (шириной R320 полосы пропускания), чем во время этапов 400 и 401 (ширина R310 полосы пропускания), которые относятся к синхронизации и декодированию РВСН.

Терминал затем выясняет местоположения PHICH (этап 403) и декодирует PDCCH (этап 404), в частности, для идентификации передач системной информации и для идентификации своих персональных грантов выделения PDSCH. Гранты выделения используются терминалом для определения местоположения системной информации и для определения местоположения своих данных в PDSCH. Как в системной информации, так и персональные выделения передаются по PDSCH и планируются в пределах полосы 320 несущей. Этапы 403 и 404 также требуют, чтобы терминал работал по всей ширине R320 полосы пропускания полосы несущей.

На этапах 402-404 терминал декодирует информацию, которая содержится в области 300 управления подкадра. Как объяснено выше, в LTE три управляющих канала, упомянутых выше (PCFICH, PHICH и PDCCH), можно обнаружить в пределах области 300 управления несущей, где области управления продолжаются в пределах ширины R320 и занимают первые один, два или три символа OFDM каждого подкадра, как обсуждено выше. В подкадре типично каналы управления не используют все ресурсные элементы в пределах области 300, но они рассеяны по все области таким образом, чтобы LTE-терминал мог одновременно принимать всю область 300 управления для декодирования каждого из трех каналов управления.

Терминал может затем декодировать PDSCH (этап 405), который содержит системную информацию или данные, переданные для этого терминала.

Как обсуждено выше, в подкадре LTE PDSCH обычно занимает группы ресурсных элементов, которые не находятся ни в области управления, ни в ресурсных элементах, занимаемых PSS, SSS или РВСН. Данные в блоках ресурсных элементах 340, 341, 342, 343, показанных на фигуре 3, имеют меньшую ширину полосы пропускания по сравнению с шириной полосы пропускания всей несущей, хотя для декодирования этих блоков терминалы сначала принимают PDCCH в пределах диапазона R320 частот, и если PDCCH показывает, что ресурс PDSCH следует декодировать, то после того, как он принял весь подкадр, он затем декодирует только PDSCH только в релевантном частотном диапазоне, показанном с помощью PDCCH. Таким образом, например, UE1, обсужденный выше, декодирует всю область 300 управления и затем данные в ресурсном блоке 342.

Виртуальная несущая нисходящей линии связи

Некоторые классы устройств, таких как устройства МТС (например, полуавтономные или автономные устройства беспроводной связи, такие как интеллектуальные счетчики, как обсуждено выше) поддерживают приложения связи, которые характеризуются передачей маленького количества данных с относительно редкими интервалами, и могут, таким образом, быть значительно менее сложными по сравнению с традиционными LTE-терминалами. Во многих сценариях обеспечение терминалов с низкой пропускной способностью терминалами с традиционными высокопроизводительными приемными блоками LTE с возможностью приема и обработки данных из кадра нисходящей линии связи LTE по всей полной ширине полосы пропускания несущей может быть чрезмерно сложным для устройства, которое предназначено только для передачи малого количества данных. Таким образом, это может огранить, в частности, широкое развертывание устройств типа МТС с низкой пропускной способностью в сети LTE. Вместо этого предпочтительно оснастить терминалы с низкой пропускной способностью, такие как устройство МТС, более простым приемным блоком, который более соответствует по количеству данных, которые вероятно будут передаваться в терминал. Как изложено ниже, в соответствии с примерами настоящего изобретения "виртуальная несущая" вставляется в традиционную несущую нисходящей линии связи типа OFDM (то есть в "основную несущую"). В отличие от данных, переданных на традиционной несущей нисходящей линии связи типа OFDM, данные, переданные на виртуальной несущей, можно принимать и декодировать без необходимости в обработке полной полосы пропускания основной несущей OFDM нисходящей линии связи. Соответственно, данные, переданные на виртуальной несущей, можно принимать и декодировать с использованием приемного устройства пониженной сложности.

На фигуре 5 изображена схема, иллюстрирующая подкадр нисходящей линии связи LTE, которая включает в себя виртуальную несущую, вставленную в основную несущую в соответствии с примером настоящего изобретения.

Согласно традиционному подкадру нисходящей линии связи LTE первые n символов (на фигуре 5 n равно трем) образует область 300 управления, которая зарезервирована для передачи управляющих данных нисходящей линии связи, таких как данных, переданных по PDCCH. Однако, как можно увидеть из фигуры 5, подкадр нисходящей линии связи LTE вне области 300 управления включает в себя группу ресурсных элементов ниже центральной полосы 310, которая образует виртуальную несущую 501. Как будет объяснено дальше, виртуальная несущая 501 будет адаптирована таким образом, чтобы данные, переданные на виртуальной несущей 501, можно было обрабатывать как логически отчетливые из данных, переданных в оставшихся частях основной несущей, и можно декодировать без первоначального декодирования всех управляющих данных из области 300 управления. Хотя на фигуре 5 показана виртуальная несущая, занимающая частотные ресурсы ниже центральной полосы, в общем, виртуальная несущая может альтернативно занимать частотные ресурсы выше центральной полосы или частотные ресурсы, включающие в себя центральную полосу. Если виртуальная несущая выполнена с возможностью перекрытия любых ресурсов, используемых PSS, SSS или РВСН основной несущей, или любого другого сигнала, переданного с помощью основной несущей, чтобы мобильный терминал, работающий на основной несущей требовал бы правильной работы и ожидал бы нахождения в известном заданном местоположении, то сигналы на виртуальной несущей можно разместить таким образом, чтобы поддерживались эти аспекты сигнала основной несущей.

Как можно увидеть на фигуре 5, данные, переданные на виртуальной несущей 501, передаются по всей ограниченной ширине полосы пропускания. Она может представлять собой любую подходящую ширину полосы пропускания при условии, что она будет меньше, чем ширина полосы пропускания основной несущей. В примере, показанном на фигуре 5, виртуальная несущая передается по всей ширине полосы пропускания, содержащей двенадцать блоков по двенадцать поднесущих (то есть 144 поднесущие), что эквивалентно ширине полосы пропускания передачи 2,16 МГц. Соответственно, терминал, принимающий данные, переданные на виртуальной несущей, должен быть только оснащен приемником с возможностью приема и обработки данных, переданных в пределах ширины полосы пропускания 2,16 МГц. Это позволяет оснастить терминалы с низкой пропускной способностью (например, терминалы типа МТС) упрощенными приемными блоками, которые все же могут работать в пределах сети связи типа OFDM, которая, как обсуждено выше, традиционно требует, чтобы терминалы были оснащены приемниками с возможностью приема и обработки сигнала OFDM по всей ширине полосы пропускания сигнала.

Как объяснено выше, в системах мобильной связи, основанных на OFDM, таких как LTE, данные нисходящей линии связи назначаются динамическим способом для дальнейшей передачи на различных поднесущих на основе подкадр за подкадром. Соответственно, в каждом подкадре сеть должна оповещать о том, какие поднесущие на каких символах содержат данные, относящиеся к каким терминалам (то есть сигнализация гранта нисходящей линии связи).

Как можно увидеть на фигуре 3, в традиционном подкадре LTE нисходящей линии связи эта информация передается по PDCCH во время первого символа или символов подкадра. Однако, как объяснено ранее, информация, передаваемая в PDCCH, распространяется во всей полосе пропускания подкадра, и поэтому ее нельзя принимать с помощью терминала мобильной связи с упрощенным приемным блоком, который может только принимать виртуальную несущую с уменьшенной шириной полосы пропускания.

Соответственно, как можно увидеть на фигуре 5, конечные символы виртуальной несущей можно зарезервировать в качестве области 502 управления виртуальной несущей, которая выделяется для передачи управляющих данных, показывающих, какие ресурсные элементы виртуальной несущей 501 были выделены. В некоторых примерах, число символов, содержащих область 502 управления виртуальной несущей, ограничивается, например, тремя символами. В других примерах область 502 управления виртуальной несущей можно изменять по размеру, например, между одним и тремя символами.

Область управления виртуальной несущей может быть расположена в любом подходящем положении в пределах виртуальной несущей, например, в первых нескольких символах виртуальной несущей. В примере, показанном на фигуре 5, это может означать позиционирование области управления виртуальной несущей на четвертом, пятом или шестом символах. Однако фиксация положения области управления виртуальной несущей в конечных символах подкадра может обеспечить преимущество, так как положение области управления виртуальной несущей не должно изменяться даже в случае, если изменяется число символов области управления основной несущей. Это упрощает обработку, предпринимаемую терминалами мобильной связи, принимающими данные на виртуальной несущей, так как для них отсутствует необходимость в определении положения области управления виртуальной несущей, каждого подкадра, так как известно, что он будет всегда позиционироваться в конечных символах подкадра.

В другом варианте осуществления управляющие символы виртуальной несущей могут относиться к передачам PDSCH виртуальной несущей в отдельном подкадре.

В некоторых примерах виртуальную несущую можно расположить в пределах центральной полосы 310 подкадра нисходящей линии связи. Это позволит минимизировать уменьшение ресурсов PDSCH основной несущей, вызванное вставкой виртуальной несущей, поскольку ресурсы, занятые PSS/SSS и PBCH будут содержаться в пределах области виртуальной несущей, а не в области PDSCGH основной несущей. Поэтому в зависимости, например, от ожидаемой пропускной способности виртуальной несущей, местоположение виртуальной несущей можно выбрать соответствующим образом с тем, чтобы она находилась внутри или снаружи центральной полосы согласно тому, выбрана основная или виртуальная несущая для того, чтобы нести издержки PSS, SSS и РВСН.

Процесс "задержки вызова" на виртуальной несущей

Как объяснено выше, перед тем как традиционный LTE-терминал сможет начать передачу и прием данных в соте, он должен сначала задержать вызов в соте. Адаптированный процесс задержки вызова должен быть также предусмотрен перед тем, как терминалы смогут принять данные на виртуальной несущей.

На фигуре 6 показана схема, иллюстрирующая процесс задержки вызова согласно примеру настоящего изобретения. Процесс задержки вызова виртуальной несущей объяснен со ссылкой на подкадр, показанный на фигуре 5, на котором виртуальная несущая полосы пропускания 144 поднесущих вставляется в основную несущую с полосой пропускания 120 поднесущих. Как обсуждено выше терминал, имеющий приемный блок с рабочей шириной полосы пропускания меньше чем у основной несущей, не может декодировать данные в области управления подкадров основной несущей. Однако при условии, что приемный блок терминала имеет рабочую ширину полосы пропускания, равную, по меньшей мере, двенадцати блокам с двенадцатью поднесущими (то есть 2,16 МГц), то он может принимать данные, переданные на примерной виртуальной несущей 502.

В примере, показанном на фигуре 6, первые этапы 400 и 401 являются такими же, как и традиционный процесс задержки вызова, показанный на фигуре 6, хотя терминал виртуальной несущей может извлекать дополнительную информацию из MIB как будет описано ниже. Оба терминала могут использовать PSS/SSS и РВСН для синхронизации с базовой станцией, использующей информацию, переносимую на центральной полосе с 72 поднесущими в пределах основной несущей. Однако там, где традиционные LTE-терминалы продолжают затем процесс посредством выполнения этапа 402 декодирования PCFICH, который требует приемного блока с возможностью приема и декодирования области 300 управления основной несущей, терминал, задерживающий вызов в соте для приема данных на виртуальной несущей (который упоминается в дальнейшем как "терминал виртуальной несущей") выполняет вместо этого этапы 606 и 607.

В другом варианте осуществления настоящего изобретения отдельная синхронизация и функциональные возможности РВСН можно обеспечить для устройства виртуальной несущей в противоположность повторному использованию одних и тех же традиционных первоначальных процессов задержки вызова на этапах 400 и 401 устройства основной несущей.

На этапе 606 терминал виртуальной несущей определяет местоположение виртуальной несущей, если она предусмотрена в основной несущей, используя специфический этап для виртуальной несущей. Различные возможные варианты осуществления этого этапа дополнительно обсуждены ниже. После того, как терминал виртуальной несущей определил местоположение виртуальной несущей, он может осуществить доступ к информации в пределах виртуальной несущей. Например, если виртуальная несущая отражает традиционный способ выделения ресурсов LTE, то терминал виртуальной несущей может декодировать управляющие части в пределах виртуальной несущей, которые могут, например, указывать, какие ресурсные элементы в пределах виртуальной несущей были выделены для специфического терминала виртуальной несущей или для системной информации. Например, на фигуре 7 показаны блоки ресурсных элементов 350-352 в пределах виртуальной несущей 330, которые были выделены для подкадра SF2. Однако для терминала виртуальной несущей отсутствует требование выполнения или отражения традиционного процесса LTE (например, этапа 402-404), и эти этапы позволяют, например, осуществить самым различным образом для процесса здержки вызова виртуальной несущей.

Независимо от терминала виртуального несущей после этапа, аналогичного LTE, или другого типа этапа, при выполнении этапа 607 терминал виртуальной несущей может затем декодировать выделенные ресурсные элементы н