Датчик теплового излучения и способ его изготовления
Иллюстрации
Показать всеИспользование: для тепловой изоляции детекторов теплового излучения. Сущность изобретения заключается в том, что прибор для теплового детектирования инфракрасного излучения включает в себя пиксель на полупроводниковой подложке, пиксель включает в себя первую секцию и вторую секцию, первая секция находится на поверхности полупроводниковой положки и включает в себя электрические цепи, вторая секция отделена от первой секции и находится непосредственно над ней, вторая секция является планарной и включает в себя ножки, микро-мембрану и расположенный на ней температурный детектор, вторая секция поддерживается колоннами, одна из ножек имеет один конец интегрально соединенный с микро-мембраной и другой конец интегрально соединенный с одной из колонн, другая из ножек имеет один конец, интегрально соединенный с микро-мембраной, и другой конец, интегрально соединенный с другой из колонн, ножки обеспечивают электрическое соединение температурного детектора с электрическими цепями через соответствующие колонны и термоизоляцию температурного детектора и микро-мембраны от полупроводниковой подложки, одна из ножек включает в себя первую часть первого диэлектрического слоя, первую часть второго диэлектрического слоя, часть электропроводящего слоя, данная часть электропроводящего слоя обеспечивает вышеупомянутое электрическое соединение, первая часть первого диэлектрического слоя граничит с первой поверхностью электропроводящего слоя и первая часть второго диэлектрического слоя граничит со второй поверхностью электропроводящего слоя, первая и вторая поверхности электропроводящего слоя являются противолежащим поверхностями части электропроводящего слоя, часть электропроводящего слоя является источником механических напряжений, вызывающим напряжения растяжения в первой части первого диэлектрического слоя и напряжения растяжения в первой части второго диэлектрического слоя. Технический результат: обеспечение возможности снижения теплопроводности диэлектрических слоев. 2 н. и 18 з.п. ф-лы, 24 ил., 2 табл.
Реферат
Изобретение относится к проборам для регистрации теплового излучения и методам изготовления таких приборов. Эти приборы имеют детекторы теплового излучения с тепловой изоляцией. Одним из многих инновационных аспектов данного изобретения являются новые структуры для тепловой изоляции детекторов теплового излучения.
Структура для детектирования теплового излучения может быть реализована с использованием сверхчувствительного термометра для регистрации и измерения теплового излучения. Такие структуры могут быть использованы, в частности, для детектирования и измерения инфракрасного (ИК) излучения. Структуры для детектирования ИК излучения представляют собой температурный детектор, термически связанный с абсорбером ИК излучения, в свою очередь, температурный детектор и абсорбер являются теплоизолированными от подложки, на которой сформированы электрические приборы для считывания и обработки значений теплового излучения, поглощенного температурным детектором. Чувствительность таких ИК детекторов определяется, помимо других факторов, качеством теплоизоляции температурного детектора. Если термоизоляция температурного детектора недостаточна, то разогрев температурного детектора тепловым излучением так же недостаточен, что, в свою очередь, приводит к невозможности регистрирования электронными приборами изменений свойств температурного детектора, вызванными тепловым излучением. Как правило, слой материала с высоким коэффициентом теплового сопротивления (КТС) используется в качестве температурного детектора. Этот КТС, как правило, выражается в процентном изменении сопротивления на градус температуры. В данный момент наилучшие материалы, как, например, оксид ванадия или аморфный кремний, обладают изменением КТС в несколько процентов на градус температуры, что является достаточными для детектирования и регистрации ИК излучения. Детекторы теплового излучения могут иметь более сложную структуру. Например, полупроводниковые р-n диоды могут использоваться в качестве детекторов ИК излучения. В этом случае, детектирование и измерение ИК излучения происходят на основе изменения вольтамперных характеристик диодов, вызванных их разогревом.
Термоизоляция температурного детектора (и абсорбера) от подложки, на которой изготовлен детектор, как правило, осуществляется при помощи так называемых ножек. Ножки - это удлиненные элементы конструкции детектора, которые позволяют исключить непосредственный физический контакт температурного детектора (и абсорбера) с подложкой. Как правило, ножки в сочетании с колоннами позволяют осуществлять подвес детектора (и абсорбера) над поверхностью подложки. Вытянутая форма ножек позволяет осуществить низкую теплопроводность данного элемента и повысить теплоизоляцию температурного детектора от подложки. Один конец каждой ножки соединен с температурным детектором или мембраной, на которой располагается температурный детектор, другой конец каждой ножки соединен с соответствующей колонной, обеспечивающей подвешивание температурного детектора над поверхностью подложки. Патент ЕР 1212592 В1 описывает такую структуру, где расположенный на микро-мембране температурный детектор подвешен над подложкой при помощи ножек и колонн. Ножки в данном патенте имеют удлиненную форму и изготовлены с использованием оксида ванадия и нитрида кремния. Термоизоляция температурного детектора достигается в данном патенте за счет длины ножек.
Для понимания данного изобретения необходимо ввести следующие определения физических величин из законов, используемых для описания изобретения.
Модуль Юнга, обозначаемый как Е (модуль продольной упругости), - это физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации.
Закон Гука - утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т.п.), пропорциональна приложенной к этому телу силе. Закон Гука может быть описан следующей формулой: σ=ε*Е, где σ - это нормальное напряжение в поперечном сечении, равное силе F, приложенной к сечению упругого тела, деленной на величину поперечного сечения S, ε - относительное удлинение, равное удлинению упругого тела Δl в направлении и под действием приложенной силы, деленному на длину упругого тела l в направлении приложенной силы.
Коэффициент Пуассона, обозначаемый как µ, - это величина отношения относительного поперечного сжатия к относительному продольному растяжению.
Биаксиальный модуль, обозначаемый как М, - это величина, вычисляемая по формуле M=E/(1-µ).
ИК излучение - это электромагнитное излучение в интервале длин волн 0.7 µm - 1000 µm.
Поглощение ИК излучения в слое материала, коэффициент поглощения которого не зависит от толщины, описывается законом Ламберта - Бера: Id=I0e-kd, где I0 - это интенсивность излучения, входящего в слой материала, Id - это интенсивность излучения после прохождения слоя толщиной d, k - коэффициент поглощения1. Если абсорбционные свойства материала не зависят от толщины слоя, изготовленного из этого материала, то коэффициент поглощения зависит только от длины волны и не зависит от толщины слоя.
Под нитридом метала в описании данного изобретения понимаются как однофазные, так и многофазные соединения, имеющие как стехиометрический, так и нестехиометрический состав.
Под нитридом, оксидом, окси-нитридом кремния в описании данного изобретения понимаются как гидрогенизированные, так и негидрогенизированные соединения кремния, имеющие аморфную структуру и имеющие как стехиометрический, так и нестехиометрический состав.
Структура для детектирования ИК излучения включает в себя минимум один температурный детектор на микро-мембране, находящейся над поверхностью подложки. Микро-мембрана подвешена над поверхностью подожки посредством ножек и колонн. Ножки - это удлиненный элемент, имеющий низкую теплопроводность для обеспечения термоизоляции микро-мембраны и температурного детектора, находящегося на ней от подложки. Один конец каждой ножки соединен с микро-мембраной, другой конец ножки соединен с соответствующей колонной, обеспечивающей зазор между поверхностью подложки и микро-мембраной. Ножки совместно с колоннами обеспечивают электрическое соединение с электронными компонентами (цепями) на подложке, предназначенными для считывания данных с температурного детектора. Для улучшения чувствительности температурного детектора ИК излучения может использоваться абсорбер ИК излучения, термически связанный с температурным детектором ИК излучения. ИК излучение может поглощаться как абсорбером, так и самим температурным детектором и/или материалом микро-мембраны. Кроме того, поверхность подложки под микромембраной может быть покрыта материалом, отражающим ИК излучение для повышения процента поглощения ИК излучения, преобразованного температурным детектором. Микро-мембрана, интегрально соединенные с ней ножки, температурный детектор, расположенный на ней, образуют планарную структуру. Эта планарная структура также может включать в себя абсорбер.
Такая структура может быть изготовлена с использованием тонкопленочных технологий, широко распространенных в полупроводниковой промышленности. Как правило, для упрощения технологического процесса один слой материала структурируется таким образом, что различные части этого слоя используются в различных частях изделия. Например, один диэлектрический слой может быть использован для формирования не только микро-мембраны но и ножек. Кроме того, правильно подобранный материал микро-мембраны позволяет ей функционировать как абсорбер. Такие материалы, как оксид, нитрид или окси-нитрид кремния, имеют абсорбционные пики в ИК диапазоне. Например вибрационные моды химических связей Si-N, Si-H и N-H вызывают соответствующие абсорбционные пики на длинах волн 11.76 мкм, 4.5 мкм и 2.99 мкм соответственно. Однако использование одного слоя в различных элементах структуры накладывает много требований к свойствам слоев. Например, если один слой диэлектрика используется для изготовления как микро-мембраны, так и ножек, и, кроме того, этот слой должен функционировать как абсорбер, то внутренние механические напряжения в этом слое должны быть оптимизированы таким образом, чтобы не вызывать изгиба ножек и микромембраны, кроме того, абсорбция слоя, использованного для изготовления микро-мембраны, в рабочем ИК диапазоне должна быть высокой, кроме того теплопроводность того же слоя, использованного для изготовления ножек, должна быть низкой для минимизации тепловых потерь через ножки.
Решение такой многоцелевой задачи оптимизации свойств слоев может оказаться, если не невыполнимой, то очень сложной. Одним из аспектов данного изобретения является снижение теплопроводности диэлектрических слоев, используемых в ножках посредством прикладывания к ним напряжений растяжения. Снижение теплопроводности ножки, состоящей из трех слоев, где электропроводящий слой находится между двумя слоями диэлектриков, может быть достигнуто, когда электропроводящий слой изготовлен из жесткого материала, имеющего напряжения сжатия. В таком случае электропроводящий слой вызывает напряжения растяжения в диэлектрических слоях, которые, в свою очередь, снижают теплопроводность диэлектрических слоев. Этот эффект позволяет упростить задачу оптимизации, например если диэлектрический слой используется для изготовления ножек и микро-мембраны, кроме того, он должен обладать ещё и определенными абсорбционными свойствами в ИК диапазоне, то применение вышеупомянутого приема для снижения теплопроводности диэлектрических слоев позволяет оптимизировать параметры напыления диэлектрических слоев, прежде всего, для получения оптимальной абсорбции в ИК диапазоне и предотвращения изгиба микро-мембраны. Кроме того, безотносительно задач оптимизации, вышеупомянутый прием прикладывания напряжений растяжения к диэлектрическим слоям позволяет улучшать параметры детекторов (т.е. снижать теплопроводность ножек), изготавливаемых с использованием уже оптимизированных процессов. Для этого нужно оптимизировать внутренние напряжения в электропроводящем слое таким образом, чтобы он вызывал напряжения растяжения в соседних диэлектрических слоях.
В свою очередь, задача оптимизации изготовления структур для детектирования ИК излучения может включать в себя следующие этапы. Сначала создается библиотека технологических процессов для нанесения слоев, используемых для изготовления структур. В эту библиотеку входят не только технологические параметры нанесения, но и свойства слоев, которые были нанесены в результате использования этих технологических процессов. Свойства слоев в библиотеке включают в себя свойства, которые учитываются аддитивно при анализе характеристик структур для детектирования ИК излучения. Например, знание коэффициентов преломления и абсорбции материалов позволяет вычислить спектр поглощения микро-мембраны и/или абсорбера, состоящих из нескольких слоев материалов, свойства которых занесены в библиотеку вместе с соответствующими параметрами напыления. Кроме того, в библиотеке могут быть сохранены такие механические свойства слоев, такие как значения биаксиальных модулей и внутренних напряжений. Эти параметры, в свою очередь, позволяют выбрать оптимальные значения толщин слоев для получения вышеупомянутого эффекта снижения теплопроводности ножек, которые также позволяют избежать недопустимую деформацию микромембраны.
После создания библиотеки проводится подбор слоев, которые согласно расчету/математическому моделированию могут обеспечить заданные характеристики одного или нескольких элементов конструкции структур для детектирования ИК излучения. Один или несколько элементов конструкции с вышеупомянутыми характеристиками позволяют изготовить структуру для детектирования ИК излучения с заданными характеристиками. Например заранее измеренные коэффициенты абсорбции и преломления отдельных слоев позволяют смоделировать абсорбцию многослойной структуры, состоящих из нескольких слоев, т.е. абсорбцию ИК излучения в структуре для детектирования ИК излучения. Подбор слоев может также проводиться с учетом максимизации вышеупомянутого эффекта снижения теплопроводности ножек. Знание механических свойств отдельных слоев, используемых для изготовления ножек, позволяет аналитически решить задачу многоцелевой оптимизации, согласно которой выбранные слои для изготовления ножек должны обеспечивать отсутствие недопустимой деформации ножек и одновременно обеспечивать максимизацию вышеупомянутого эффекта снижения теплопроводности ножек (т.е. использовать электропроводящий, слой используемый для формирования ножек, для создания напряжений растяжения в граничащих с ним диэлектрических слоях). Кроме того, задача многоцелевой оптимизации может включать в себя задачу получения требуемой абсорбции в рамках вышеупомянутого моделирования абсорбции, если хотя бы один слой используется для формирования как ножек, так и элементов конструкции структуры для детектирования ИК излучения, которые абсорбируют ИК излучение и передают абсорбированное ИК излучение температурному детектору (например, микро-мембрана и/или абсорбер). В дальнейшем проводятся изготовление структур и измерение их характеристик. На этом этапе осуществляется измерение не только характеристик, которые были ранее смоделированы на основе свойств материалов (например, спектра поглощения), но и характеристик которые определяются на основе сложных эффектов, обусловленных взаимным влиянием процессов, происходящих в слоях (например, теплопроводность ножек). Теплопроводность ножек, состоящих из нескольких слоев, помимо прочих факторов определяется длиной пробега фононов, переносящих тепло, которая сопоставима с размерами сечения ножек, рассеянием фононов на границах слоев, а таке вышеупомянутым эффектом снижения теплопроводности в диэлектрических слоях. Так же на этом этапе может проводиться измерение интегральных характеристик структуры для детектирования ИК излучения таких, как, например, чувствительность в рабочем диапазоне.
Если в результате измерений установлено, что характеристики структур не соответствуют заданным, то проводятся подбор новой комбинации слоев и/или оптимизация толщин уже выбранных слоев. В дальнейшем изготавливаются новые структуры с учетом внесенных изменений.
Процесс такой итерационной оптимизации может повторятся несколько раз, пока измеренные характеристики вновь изготовленных структур не будут соответствовать заданным значениям (например, не будут в заданных интервалах) или пока этот итерационный процесс не выйдет на насыщение, т.е. изменения (улучшения) одной или нескольких характеристик, полученные в результате очередной итерации, будут являются незначительными (например, когда относительное изменение одной или нескольких характеристик меньше определенного значения).
Электропроводящий слой, расположенный между слоями диэлектриков в ножках, может быть изготовлен из любого электропроводящего жесткого стабильного материала, способного вызвать напряжения растяжения в соседних диэлектрических слоях, которые приводят к снижению их теплопроводности. Подходящими материалами могут быть нитриды переходных металлов четвертой, пятой или шестой групп Периодической системы химических элементов, такие как титан, ванадий, хром, цирконий, ниобий, молибден, гафний, тантал или вольфрам. Электропроводящий слой может быть изготовлен также из твердых растворов или сплавов данных металлов или их нитридов. Кроме того, электропроводящий слой может быть многослойным, т.е. состоять из нескольких электропроводящих слоев. Электропроводящий слой может быть нанесен методом магнетронного напыления, методом плазмохимического газофазного осаждения или методом распыления мишени ионным пучком. В качестве источника ионного пучка может быть использован источник Кауфмана. Нитриды металлов могут быть напылены с использованием мишеней из соответствующих нитридов металлов или методом реактивного напыления. В случае реактивного напыления с использованием ионного пучка азот может напускаться непосредственно в вакуумную камеру, где проводится напыление, и/или может использоваться дополнительный источник ионного пучка для азотирования поверхности выращиваемого слоя.
Диэлектрические слои могут быть изготовлены, например, из нитрида, оксида или окси-нитрида кремния. Каждый из диэлектрических слоев может быть многослойным, т.е. состоять из нескольких диэлектрических слоев. Диэлектрические слои могут быть нанесены методом магнетронного напыления, методом плазмохимического газофазного осаждения или методом распыления мишени ионным пучком. Для нейтрализации заряда поверхности распыляемой мишени и/или поверхности подложки, на которую проводится напыление, может использоваться вспомогательный источник электронов. Нитриды, оксиды и окси-нитриды кремния могут быть нанесения с использованием мишеней из соответствующих нитридов, оксидов и окси-нитридов кремния или методом реактивного напыления. В случае реактивного напыления с использованием ионного пучка азот и/или кислород могут напускаться в вакуумную камеру, где проводится напыление, и/или может использоваться дополнительный источник ионного пучка для азотирования и/или окисления поверхности выращиваемого слоя.
Для создания напряжений растяжения в слоях диэлектриков, прилегающих к электропроводящему слою в ножках может быть использован следующий процесс: формирование жертвенного слоя на подложке; формирование ножек на жертвенном слое; удаление жертвенного слоя. Формирование ножек включает в себя: последовательное формирование на жертвенном слое одного из диэлектрических слоев, формирование на сформированном диэлектрическом слое электропроводящего слоя, имеющего напряжение сжатия, формирование другого диэлектрических слоя на электропроводящем слое. При таком изготовлении ножек электропроводящий слой вызывает напряжения растяжения в прилегающих диэлектрических слоях после удаления жертвенного слоя. Для нанесения диэлектрических слоев наиболее предпочтительным является использование процессов напыления, позволяющих получать ненапряженные слои диэлектриков на подложке.
Механические свойства слоев, использованных для изготовления ножек, могут удовлетворять следующим правилам, позволяющим оптимизировать ножки таким образом, чтобы их изгиб являлся незначительным и/или планарность и параллельность микро-мембраны относительно поверхности подложки не были нарушены:
1. |M1*d1-M2*d2|/(M1*d1+M2*d2)<0.1, где "| |" операция вычисления модуля, т.е. абсолютного значения величины; M1 и d1 являются биаксиальным модулем и толщиной первого диэлектрического слоя, примыкающего к одной поверхности электропроводящего слоя ножек; М2 и d2 являются биаксиальным модулем и толщиной второго диэлектрического слоя, примыкающего к противоположной поверхности электропроводящего слоя ножек. В отдельных случаях предпочтителен более жесткий критерий: 1 M1*d1-M2*d2 1/(M1*d1+M2*d2)<0.05. Эти критерии применимы, когда в первом и втором диэлектрическом слоях отсутствуют внутренние напряжения непосредственно после их напыления, и до того момента, когда в процессе изготовления пикселя внутренние напряжения сжатия в электропроводящем слое вызывают напряжения растяжения во фрагментах первого и второго диэлектрических слоев, использованных для формирования ножек. Кроме того, эти критерии применимы, когда во фрагментах электропроводящего слоя, использованных для изготовления ножек, отсутствует градиент внутренних напряжений по толщине электропроводящего слоя.
2. M1*d1>M2*d2, этот критерий применим, когда внутренние напряжения сжатия в электропроводящем слое существенно изменяются по толщине слоя, когда абсолютное значение напряжений сжатия в электропроводящем слое на границе с первым диэлектрическим слоем, имеющем биаксиальный модуль M1 и толщину d1, больше чем абсолютное значение напряжений сжатия в электропроводящем слое на границе со вторым диэлектрическим слоем, имеющем биаксиальный модуль М2 и толщину d2. Вышеупомянутый критерий может быть сформулирован и для "зеркального случая", когда абсолютное значение напряжений сжатия в электропроводящем слое на границе с первым диэлектрическим слоем, меньше чем абсолютное значение напряжений сжатия в электропроводящем слое на границе со вторым диэлектрическим слоем. В таком случае M1*d1<M2*d2. Критерии пункта 2 применимы, когда в первом и втором диэлектрическом слоях отсутствуют внутренние напряжения непосредственно после их напыления, и до того момента, когда в процессе изготовления пикселя внутренние напряжения сжатия в электропроводящем слое вызывают напряжения растяжения во фрагментах первого и второго диэлектрических слоев, использованных для формирования ножек.
Слои без градиентов внутренних напряжений могут быть получены в результате следующего процесса оптимизации процесса нанесения. Сначала наносятся минимум два слоя различной толщины. Толщина одного слоя является номинальной, т.е. равной толщине слоя, который используется для изготовления структуры для детектирования ИК излучения. Остальные слои, в дальнейшем называемые тестовыми, имеют толщины, которые меньше толщины номинального соля. Например можно использовать минимум один тестовый слой, имеющий толщину в интервале 30 - 40% от номинальной толщины. Если значения внутренних напряжений, измеренных при помощи формулы Стони2 в слое и всех тестовых слоях не лежат в заданном интервале (например, заданное значение +/-5%), то проводится оптимизация процесса нанесения слоев в результате которой выбираются один или несколько подстроечных технологических параметров нанесения, которые изменяются в процессе нанесения слоев таким образом, что значения внутренних напряжений в слое и всех тестовых слоях лежат в заданном интервале. Например, в качестве подстроечных технологических параметров можно использовать частоту разряда плазмы или соотношение периодов возбуждения плазмы на различных частотах для процессов плазмохимического газофазного осаждения (CVD) напыления слоев3. В свою очередь, для процессов газофазного нанесения слоев (PVD) можно использовать интенсивность ионной бомбардировки поверхности напыляемого слоя (ion assistance) в качестве подстроечного параметра.
Реализация данного изобретения и преимущества, которые вытекают из него, станут более отчетливо очевидными в результате рассмотрения иллюстративных примеров, которые следуют ниже, приведенных только для сведения, но не означающих ограничения, подкрепленных приложенными чертежами.
На чертежах:
Фиг. 1а - 13а иллюстрируют сечение колонны на подложке на различных этапах изготовления структуры;
Фиг. 1б - 13б иллюстрируют сечение микро-мембраны, температурного детектора, абсорбера, ножек и подложки на различных этапах изготовления структуры;
Фиг. 14 иллюстрирует вид сверху пикселя, оснащенным температурным детектором;
Фиг. 15 иллюстрирует трехмерное изображение пикселя, оснащенным температурным детектором;
Фиг. 16 иллюстрирует внутренние напряжения и значения биаксиального модуля в слоях нитрида кремния в зависимости от толщин пленок;
Фиг. 17 иллюстрирует внутренние напряжения и значения биаксиального модуля в слоях нитрида титана в зависимости от толщин пленок;
Фиг. 18 иллюстрирует внутренние напряжения и значения биаксиального модуля в слоях нитрида титана в зависимости от толщин пленок;
Фиг. 19а и 19б иллюстрируют тестовую структуру для выявления градиента внутренних напряжений в слоях различных материалов;
Фиг. 20а и 20в иллюстрируют тестовые структуры после удаления жертвенного слоя, для пленок с различными градиентами внутренних напряжений по толщине;
Фиг. 21а и 21в иллюстрируют тестовую структуру для измерения биаксиальных модулей материалов;
Фиг. 22 иллюстрирует диаграмму последовательности этапов оптимизации изготовления пикселя;
Фиг. 23 иллюстрирует матрицу пикселей;
Фиг. 24 иллюстрирует матрицу пикселей.
Фиг. 1а - 13а и Фиг. 1б - 13б иллюстрируют сечения колонны, ножек, микромембраны, температурного детектора, подложки и абсорбера в процессе изготовления пикселя оснащенного температурным детектором. Как будет показано далее, пиксели могут быть объединены в матрицу пикселей, позволяющую получать изображение в ИК диапазоне. На начальном этапе на подложке 100 формируются электронные цепи и логические транзисторные элементы 102 для считывания состояния температурного детектора. В случае, когда в качестве температурного детектора используется слой оксида ванадия с высоким температурным коэффициентом электрического сопротивления, электронные цепи и логические транзисторные элементы сконфигурированы для измерения электрического сопротивления слоя оксида ванадия. На фиг. 1а также показан алюминиевый контакт 101 электрических цепей, на котором будет впоследствии сформирована колонна, поддерживающая микро-мембрану. Как будет также проиллюстрировано дальше, электрический контакт температурного детектора с электрическими цепями осуществляется через алюминиевый контакт 101 и колонну, сформированную на нем.
Фиг. 2а и фиг. 2б иллюстрируют следующий этап изготовления пикселя: нанесение и структурирование слоя ИК рефлектора. Часть слоя 103б выполняет функцию ИК рефлектора, другая часть слоя 103а выполняет защитную функцию алюминиевого контакта 101, также она может улучшать адгезию материалов, из которых изготавливается колонна. Этот слой может быть изготовлен из различных металлов, имеющих хорошую отражательную способность в ИК диапазоне. Например этот слой может быть изготовлен из титана, никеля, хрома или никель-хромового сплава. Также этот слой может быть многослойным и может состоять из нескольких металлических слоев. Этот слой может быть нанесен методом магнетронного напыления, методом распыления мишени ионным пучком или термического испарения.
Фиг. 3а и фиг. 3б иллюстрируют дальнейший этап изготовления пикселя. На этом этапе формируется и структурируется жертвенный слой 104. Он может быть структурирован через маску из структурированного слоя 105 методом плазмохимического травления в кислородной или кислород-водородной плазме. В результате структурирования жертвенного слоя формируется окно над контактом 101. Дно сформированного окна открывает поверхность контакта 101, если элемент 103а не был сформирован, или поверхность элемента 103а, если он был сформирован.
В качестве жертвенного слоя может быть использованы органические материалы типа полиимидов, фоторезистов или неорганические материалы на основе низкотемпературных стекол, полученных методом плазмохимического газофазного осаждения или центрифугирования из растворов. Слой 105 может быть удален после структурирования жертвенного слоя 104.
Если слой 105 не удален после структурирования жертвенного слоя, то его части могут быть использованы для изготовления ножек и/или микромембраны.
В качестве альтернативного варианта может быть использован фоточувствительный жертвенный слой. В таком случае процесс структурирования такого слоя не требует использования маски 105. Структурирование фоточувствительного слоя осуществляется также как структурирование фоторезиста, т.е. методом засветки с последующей проявкой и термообработкой.
В зависимости от обработки жертвенного слоя и/или процесса структурирования жертвенного слоя стенки сформированного окна могут быть вертикальными или, как показано на фиг. 3а, наклонными. Наклонные стенки можно получить в результате проявления фоточувствительного жертвенного слоя с последующей термообработкой или методом оптимизации процесса травления.
Толщина жертвенного слоя определяется ИК диапазоном, в котором должен работать пиксель. Например, если пиксель рассчитан на работу в ИК диапазоне 8-12 мкм, то толщина жертвенного слоя над рефлектором 103б выбирается в интервале 1.7-2 мкм. Наилучшим вариантом является толщина жертвенного слоя над рефлектором, равная четверти длины волны, являющейся средним арифметическим значением длин волн, являющимися граничными длинами волн рабочего ИК диапазона прибора.
После структурирования жертвенного слоя 104, как показано на фиг. 3а и фиг. 3б, производится напыление диэлектрического слоя 106 как показано на фиг. 4а и фиг. 4б. Как будет показано в дальнейшем, различные части этого слоя после структурирования будут использованы для изготовления ножек и микро-мембраны. В качестве альтернативы этот слой может использоваться для изготовления только микро-мембраны или ножек. Для этого слой 106 должен быть соответствующим образом структурирован. Если этот слой используется только для изготовления микро-мембраны, то часть этого слоя должна быть удалена в области структуры, сечение которой представлено на Фиг. 4а. Если этот слой используется только для изготовления ножек, то часть этого слоя должна быть удалена в области структуры, сечение которой представлено на Фиг. 4б.
Иллюстрация следующего этапа изготовления приведена на Фиг. 5а и 5б. На маску из фоторезиста 107 производится нанесение слоя температурного детектора 108 и слоя защитного диэлектрика 109. Слой 109 не является обязательным элементом структуры. В отдельных вариантах структуры может использоваться только слой 108. Слой 108 может быть изготовлен из оксида ванадия VOx, где 1.7<х<1.9. Слои с таким химическим составом обладают негативным коэффициентом изменения электрического сопротивления в интервале 1.7-2.6% на градус Кельвина. Слой оксида ванадия может быть напылен методом реактивного ионно-лучевого распыления ванадиевой мишени, методом ионного распыления ванадиевой мишени с использованием вспомогательного ионного пучка ионов кислорода, направленного в сторону поверхности выращиваемой пленки, или методом реактивного импульсного магнетронного распыления. Впоследствии производится структурирование слоев 108 и 109 методом взрывной фотолитографии, как показано на фиг. 6а и 6б. В результате формируется структура из частей слоев 108 и 109, расположенных друг над другом, или только из части слоя 108, на слое 106 или 105 (в зависимости от опций технологического маршрута, описанных выше). Эта структура расположена над слоем 103б. В качестве альтернативы, слои 109 и 108 или, если слой 109 не используется, только слой 108 могут быть структурированы методом травления через маску из фоторезиста. Травление может быть осуществлено ионно-лучевым методом. Слой 108 может быть нанесен методом реактивного магнетронного напыления с использованием ванадиевой мишени в атмосфере аргона и кислорода или методом реактивного ионно-лучевого напыления с использованием ванадиевой мишени и ионного пучка из ионов аргона и кислорода для распыления ванадиевой мишени. Толщина слоя 108, использованного для формирования температурного детектора, может быть в интервале 50-150 нм.
На фиг. 7а и 7б проиллюстрировано формирование электрических контактов к слою термического детектора 109. Контакты могут быть изготовлены из любого металла, например ванадия, который обеспечивает омический контакт к слою 108. Для эффективного использования площади структуры термического детектора пара контактов 119 располагается вблизи противолежащих сторон структуры 108, как показано на фиг. 7б. Если в процессе изготовления используется слой 109, то перед формированием контактов 119 в слое 109 производится протравливание окон для контактов 119, как показано на фиг. 7б. Толщина слоя, использованного для формирования контактов 119, может быть в интервале 30-150 нм.
Следующий шаг формирования структуры приведен на фиг. 8а и 8б. Как показано на фиг. 8а, в слое 106 протравливается окно над контактом 103а. Это окно впоследствии обеспечивает формирование электрического контакта между контактом 101 и контактом 119. Окно открывает часть поверхности элемента 103а, как показано на фиг. 8а. Если элемент 103а не используется, то окно открывает часть поверхности контакта 101. Формирование окна производится в том случае, если в процессе изготовления используется слой 106.
На фиг. 9а и 9б приведен следующий шаг формирования структуры: напыление электропроводящего слоя 112. Этот слой не только обеспечивает электрический контакт между контактами 119 и 101, где контакт 101 может быть покрыть слоем 103а. Как будет показано дальше, часть этого слоя используется для формирования ножек, следовательно, для реализации эффекта снижения теплопроводности диэлектрических слоев ножек, этот слой должен быть изготовлен из жесткого, стабильного материала с высоким внутренним напряжением сжатия, которое в силу свойств материала не снижаются во времени.
Подходящими материалами для изготовления слоя 112 могут быть нитриды переходных металлов четвертой, пятой или шестой групп Периодической системы химических элементов, такие как титан, ванадий, хром, цирконий, ниобий, молибден, гафний, тантал или вольфрам. Электропроводящий слой может быть изготовлен также из твердых растворов или сплавов данных металлов или их нитридов. Кроме того, электропроводящий слой может быть многослойным, т.е. состоять из нескольких электропроводящих слоев. Эти материалы могут быть получены методом реактивного магнетронного напыления в атмосфере азота и аргона с использованием мишеней из соответствующих металлов. Толщина слоя 112 может быть в диапазоне 10-100 нм.
На фиг. 10а и 10б приведен следующий шаг формирования структуры: формирование несущего элемента 113 колонны 118. Как показано на фиг. 10а, материал этого элемента 113 покрывает дно и стенки окна, ранее сформированного в жертвенном слое. Кроме того, материал элемента 113 может образовывать манжету над жертвенным слоем по периметру окна в жертвенном слое. Элемент 113 может быть изготовлен методом магнетронного напыления алюминия или другого подходящего металла с последующим структурированием методом травления через маску из фоторезиста. Толщина слоя металла, использованного для формирования элемента 113, может быть в интервале 0.3-1.5 мкм.
На фиг. 11а и 11б приведен следующий шаг формирования структуры: нанесения слоя диэлектрика 114. Как показано на фиг. 11а и 11б, диэлектрик покрывает электропроводящий слой 112 и элемент несущей колонны 113.
На фиг. 12а и 12б приведен следующий шаг формирования структуры: формирование структуры ножек 116. Этот шаг может быть осуществлен методом травления слоев 105, 106, 112, 114 через маску из фоторезиста. В результате формируются щели 115, разделяющие ножки 116 от микромембраны 117.
На фиг. 13а и 13б приведен следующий шаг формирования структуры: удаление жертвенного слоя 104. Этот шаг может быть осуществлен методом плазмохимического травления в атмосфере кислорода. В результате формируются микро-мембрана 117 и ножки 116, подвешенные над поверхностью подложки 100, или, в зависимости от конфигурации пикселя, над поверхностью слоя 102, включающего в себя электронные цепи и логические транзисторные элементы. Механическое соединение микромембраны с подложкой осуществляется ножками 116 и колоннами 118, как показано на виде сверху пикселя на фиг. 14. Элементы 103а, 103б, а так же детали рельефа поверхности микро-мембраны не показаны на фиг. 14 для большей наглядности изображения. На фиг. 14 приведены контуры структур 112а и 112б, изготовленных из электропроводящего слоя 112, контуры структур контактов 119, и контуры структурированных слоев 108 и 109. Фиг. 1а - 13а иллюстрируют этапы формирования элементов пикселя в сечении А-А, показанного на фиг.14. Фиг. 1б - 13б иллюстрируют этапы формирования элементов пикселя в сечении В-В, показанного на фиг. 14.
На Фиг. 15 приведено трехмерное изображение пикселя, иллюстрирующее микро-мембрану 117 с температурным детектором. Термоизоляция микромембраны осуществляется при помощи пары ножек 116, которые, в свою очередь, соединены с парой колонн 118, поддерживающих все эти элементы над повер