Встроенный термоэлектрический генератор для беспроводных устройств

Иллюстрации

Показать все

Изобретение относится к устройствам подачи питания к беспроводным устройствам. Сущность: электроэнергия производится первым технологическим компонентом, первой тепловой трубой, образованной частично первой полостью в первом технологическом компоненте, и узлом термоэлектрического генератора. Узел термоэлектрического генератора термически соединен на одной стороне с теплоотводом, а на другой стороне - с первой тепловой трубой. Первый технологический компонент находится в непосредственном контакте с первой технологической текучей средой, а первая полость находится рядом с первой технологической текучей средой. Узел термоэлектрического генератора производит электроэнергию. 3 н. и 43 з.п. ф-лы, 10 ил.

Реферат

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение в целом относится к беспроводным устройствам, и более конкретно, к подаче питания беспроводным устройствам в сети беспроводных полевых устройств.

Беспроводные устройства становятся преобладающими в промышленных применениях. В качестве компонентов сетей беспроводных полевых устройств беспроводные устройства расширяют область действия систем управления или технологического контроля за пределы области действия проводных устройств, в места, в которых проводить проводку может быть сложно и дорого. Сеть беспроводных полевых устройств включает множество беспроводных устройств, или узлов, с центральным контроллером, или шлюзом. Узлы в беспроводной сети могут как отправлять, так и принимать информацию.

Сети беспроводных полевых устройств используются для управления и контроля за разнородными процессами и средами. Например, сети беспроводных полевых устройств могут использоваться на нефтяных месторождениях. Нефтяное месторождение состоит из множества отдельных местоположений, сосредоточенных на буровых площадках, которые разбросаны на больших площадях. Связь между этими изолированными локальными областями является крайне важной для общего управления месторождением. Сеть беспроводных полевых устройств на буровой площадке осуществляет контроль и управление всем от скоростей потока, давления в скважине и температуры текучей среды до состояния и положения клапана и потенциальных утечек. Получающиеся в результате данные передаются через сеть на контроллеры, которые анализируют данные и приводят в действие управляющие механизмы, чтобы управлять производством или предотвращать неисправности.

Сеть беспроводных полевых устройств представляет собой сеть связи, состоящую из множества беспроводных устройств (т.е., узлов), организованных в беспроводной топологии. Примерами беспроводных топологий служат ячеистые сети, такие как, например, WirelessHART®, и звездообразные сети, такие как, например, Bluetooth®. В сети беспроводных полевых устройств беспроводное устройство является одним из беспроводного приемопередатчика, беспроводного маршрутизатора данных и беспроводного полевого устройства. Беспроводной приемопередатчик содержит приемопередатчик и антенну, интегрированные в одном устройстве. Беспроводной маршрутизатор данных содержит беспроводной приемопередатчик и маршрутизатор данных, интегрированные в одном устройстве. Беспроводное полевое устройство содержит беспроводной маршрутизатор данных и полевое устройство, интегрированные в одном устройстве. Полевое устройство представляет собой устанавливаемое на месте устройство, которое выполняет функцию в системе управления или технологического контроля или станционной системе контроля, включая все устройства, используемые в измерении, управлении и контроле промышленных предприятий, процессов или технологического оборудования, включая устройства по защите окружающей среды, охране здоровья и безопасности труда на предприятиях. Полевое устройство, как правило, содержит по меньшей мере один преобразователь, такой как, например, датчик или исполнительное устройство, и может выполнять управляющую или предупреждающую функцию. Беспроводной приемопередатчик представляет собой устройство для передачи и получения передаваемых данных на РЧ основе. Маршрутизатор данных представляет собой устройство, которое определяет маршрут пакетов данных, полученных беспроводным приемопередатчиком, распаковывая полезную нагрузку связи для потребления присоединенным полевым устройством (если адрес этого устройства соответствует адресу окончательного назначения в пакете) или перенаправляя полезную нагрузку связи обратно на беспроводной приемопередатчик, чтобы передавать обратно в сеть на следующий пункт назначения в логическом пути. Например, в беспроводной ячеистой сети, поскольку каждое беспроводное устройство должно быть способно определять маршрут сообщений для себя и для других устройств в сети, каждое беспроводное устройство содержит маршрутизатор данных. Напротив, в простой звездообразной сети, где беспроводным устройствам нужно только отправлять и принимать сообщения, беспроводным устройствам не нужно содержать маршрутизатор данных.

Использование РЧ вещания более низкой мощности является существенным для беспроводных сетевых систем, спроектированных для приложений на основе преобразователей, таких как сеть беспроводных полевых устройств. Многие устройства в сети должны быть локально обеспеченными энергией, поскольку энергосистемы общего пользования, такие как 120 В сети переменного тока или запитанные шины данных, не располагаются поблизости или не разрешены в опасных зонах, где должны размещаться приборы и преобразователи, не приводя к большим затратам на установку. "Локально обеспеченные энергией" означает запитанные от локального источника питания, такого как портативный электрохимический источник (например, долговечные батареи или топливные элементы), или от аккумулирующего энергию источника питания малой мощности (например, вибрационного, солнечного или термоэлектрического). Общим признаком локальных источников питания является их ограниченная мощность, либо хранящаяся, в случае долговечных батарей, либо производимая, как в случае солнечной панели. Ожидается, что батареи будут работать более пяти лет и предпочтительно работать столько, сколько работает изделие.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Один вариант осуществления настоящего изобретения включает первый технологический компонент, первую тепловую трубу, образованную частично первой полостью в первом технологическом компоненте, и узел термоэлектрического генератора. Узел термоэлектрического генератора термически соединен на одной стороне с теплоотводом, а на другой стороне - с первой тепловой трубой. Первый технологический компонент находится в непосредственном контакте с первой технологической текучей средой, а первая полость находится рядом с первой технологической текучей средой. Термоэлектрический генератор производит электроэнергию.

Другой вариант осуществления настоящего изобретения представляет способ для генерации электроэнергии для использования в сети беспроводных полевых устройств. Технологический компонент контактирует с технологической текучей средой. Тепло проводится между технологической текучей средой и поверхностью герметичной полости в технологическом компоненте. Тепло передается между поверхностью герметичной полости и узлом термоэлектрического генератора путем испарения и конденсации рабочей текучей среды. Тепло передается между узлом термоэлектрического генератора и теплоотводом по меньшей мере одним из конвекционного или кондукционного обмена. Электроэнергия генерируется из проведения тепла через узел термоэлектрического генератора.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Фиг. 1A-1B представляют собой изображения беспроводного полевого устройства, включающего настоящее изобретение, установленное на технологическом фланце.

Фиг. 2A-2F представляют собой изображения варианта осуществления настоящего изобретения, включенного в термокарман, для подачи питания беспроводному полевому устройству для измерения температуры.

Фиг. 3A-3C представляют собой изображения другого варианта осуществления настоящего изобретения, включенного в термокарман, для подачи питания беспроводному полевому устройству для измерения температуры.

Фиг. 4A-4C представляют собой изображения варианта осуществления настоящего изобретения, включенного в усредняющую трубку Пито, для подачи питания беспроводному полевому устройству для измерения потока.

Фиг. 5A-5F представляют собой изображения варианта осуществления настоящего изобретения, включенного во фланец измерительной диафрагмы, для подачи питания беспроводному полевому устройству для измерения потока.

Фиг. 6A-6E представляют собой изображения варианта осуществления настоящего изобретения, включенного в конденсационный горшок, для подачи питания беспроводному маршрутизатору данных.

Фиг. 7A-7E представляют собой изображения варианта осуществления настоящего изобретения, включенного в трубку Вентури, для подачи питания беспроводному полевому устройству для измерения потока.

Фиг. 8A-8F представляют собой изображения варианта осуществления настоящего изобретения, включенного в кожух насоса, для подачи питания беспроводному маршрутизатору данных.

Фиг. 9A-9C представляют собой изображения варианта осуществления настоящего изобретения, включенного в измерительную диафрагму, для подачи питания беспроводному полевому устройству для измерения потока.

Фиг. 10 представляет собой изображение варианта осуществления настоящего изобретения, включенного в каждый из двух технологических компонентов, для подачи питания беспроводному полевому устройству для измерения потока.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение будет описываться в рамках подачи питания беспроводным устройствам в ячеистой сети беспроводных полевых устройств. Специалисту в данной области техники будет понятно, что изобретение равно подходит для других сетевых топологий и не ограничивается исключительно описанными вариантами осуществления, и что изобретение включает все варианты осуществления, попадающие в объем прилагаемой формулы изобретения.

Настоящее изобретение подает питание беспроводным устройствам в сети беспроводных полевых устройств с помощью термоэлектрического производства энергии. Как указано выше, ожидается, что батареи будут работать более пяти лет и предпочтительно работать столько, сколько работает изделие. Однако в некоторых применениях, требующих частых связи, опознавания или приведения в действие, батареи, достаточные для обеспечения питания в течение приемлемого периода времени, являются чрезмерно большими. Это усугубляется в условиях сурового климата, когда низкие температуры ограничивают отдачу батарей или же высокие температуры ограничивают срок действия батарей. В местах, где доступное солнечное излучение крайне ограничено, например, возле Северного полярного круга, солнечные панели, чтобы обеспечивать необходимое питание, также должны быть чрезмерно большими и дорогими. Часто эти применения включают технологические текучие среды, имеющие температуру, значительно более высокую или низкую, чем температура окружающей среды, что наводит на мысль об использовании термоэлектрической генерации энергии. Однако термоэлектрическая генерация энергии неэффективна по своей сути. Значительное усовершенствование эффективности термоэлектрической генерации энергии является существенным для того, чтобы удовлетворять энергетическим требованиям для беспроводного устройства в сети беспроводных полевых устройств.

КПД преобразования термоэлектрического генератора, как правило, составляет менее 1% и является функцией материала и конструкции термоэлектрического генератора. Кроме того, количество тепла, доступного для преобразования термоэлектрическому генератору, значительно уменьшается рядом термических сопротивлений между источником тепла (или холода) и поверхностью термоэлектрического генератора. Термические сопротивления замедляют передачу тепла для данной площади поперечного сечения, перпендикулярной направлению потока тепла, уменьшая скорость теплопередачи на единицу площади, или тепловой поток.

Например, типичным применением термоэлектрического генератора является теплая текучая среда в сосуде (например, текущая по трубе или содержащаяся в баке), окруженном более холодным воздухом, когда одна сторона теплопроводного элемента прикреплена к внешней, неизолированной части сосуда (затягиваясь на нем), а другая сторона теплопроводного элемента находится в физическом контакте с одной поверхностью термоэлектрического генератора. Теплообменник, находящийся в контакте с окружающим воздухом, крепится к другой поверхности термоэлектрического генератора. Для теплового потока от горячей текучей среды в сосуде к термоэлектрическому генератору имеется три значительных термических сопротивления: стенка сосуда, физический контакт (или нехватка физического контакта) между теплопроводным элементом и поверхностью сосуда, и термическое сопротивление через теплопроводный элемент.

Стенки сосуда обычно изготавливаются из материалов с плохой теплопроводностью, такой как, например, железо (60 Вт/м·К), нержавеющая сталь (10-40 Вт/м·К) или сплав хастелой (10 Вт/м·К). Тепловой поток должен проникать через всю толщину стенки сосуда, чтобы достигать теплопроводного элемента. Когда тепловой поток достигает поверхности внешней стенки сосуда, он должен течь в теплопроводный элемент. Крепление такого устройства к изогнутой поверхности сосуда, такого как труба или бак, представляет сложности. Радиус кривизны теплопроводного элемента должен в точности соответствовать радиусу кривизны внешней поверхности сосуда. Размеры сосуда и структура поверхности значительно разнятся, делая требующуюся точную посадку исключительно сложной. Несколько точечных контактов между двумя сопряженными поверхностями должны поддерживать практически весь поток тепла по площади сопряженных поверхностей, тогда как большую часть стыка занимают небольшие воздушные зазоры (превосходные изоляторы). Поток тепла, которому удается пройти стенку сосуда и пересечь стык между внешней поверхностью сосуда и теплопроводным элементом, должен затем пройти через теплопроводный элемент, чтобы достичь поверхности термоэлектрического генератора. Теплопроводные элементы, как правило, изготавливаются из материала с высокой теплопроводностью, например, меди (400 Вт/м·К), но все же представляют еще одно термическое сопротивление потоку тепла, ограничивая тепловой поток, доступный термоэлектрическому генератору. Настоящее изобретение в целом уменьшает, или вовсе устраняет, все три ряда термических сопротивлений потоку тепла от технологической текучей среды к термоэлектрическому генератору, значительно улучшая тепловой поток, доступный для преобразования термоэлектрическим генератором.

Настоящее изобретение обеспечивает питание для беспроводного устройства в сети беспроводных полевых устройств термоэлектрическим генератором. Изобретение содержит технологический компонент, непосредственно контактирующий с технологической текучей средой. Технологические компоненты, которые непосредственно контактируют с технологической текучей средой, включают, например, термокарманы, усредняющие трубки Пито, трубные фланцы, фланцы измерительных диафрагм, конденсационные горшки, выносные мембраны датчиков давления, переключатели уровней, контактные радиолокационные уровнемеры, вихревые расходомеры, счетчики Кориолиса, магнитные расходомеры, турбинные счетчики, клапанные коллекторы, элементы спрямления потока, ограничители потока, регулирующие клапаны, запорные клапаны, кожухи фильтров, кожухи насосов и предохранительные клапаны. Технологический компонент в настоящем изобретении содержит тепловую трубу, образованную частично теплосборной полостью внутри технологического компонента. Теплосборная полость используется только для того, чтобы образовывать часть тепловой трубы. Тепловая труба соединяется с одной стороной термоэлектрического генератора, а теплоотвод соединяется с другой стороной термоэлектрического генератора, перемещая тепло через термоэлектрический генератор, чтобы генерировать электричество для беспроводного устройства. Тепловая труба замещает теплопроводный элемент, описанный выше, значительно уменьшая термическое сопротивление, связанное с передачей тепла на поверхность термоэлектрического генератора. Встраивание тепловой трубы в технологический компонент в непосредственном контакте с технологической текучей средой устраняет два других термических сопротивления путем прямого проникновения стенки сосуда. Технологический компонент не накладывается на сосуд, а проникает в или замещает часть стенки сосуда. Некоторое термическое сопротивление сохраняется из необходимости проводить тепло от технологической текучей среды в полость тепловой трубы через часть технологического компонента, отделяющую теплосборную полость от технологической текучей среды. Однако, поскольку тепло течет в тепловую трубу со всей площади поверхности теплосборной полости и перемещается теплом испарения со всей внутренней поверхности теплосборной полости, тепловой поток, перемещаемый тепловой трубой, является намного более сильным.

Фиг. 1A-1B представляют собой изображения варианта осуществления настоящего изобретения для подачи питания беспроводному устройству в сети беспроводных полевых устройств, содержащего термоэлектрический генератор, включенный в технологический компонент. Фиг. 1A-1B представляют собой изображения технологического компонента, включающего настоящее изобретение, установленное на технологическом фланце. Фиг. 1B представляет собой часть фиг. 1A, увеличенную, чтобы лучше показать подробности изобретения.

Фиг. 1А представляет изображение точки 10 технологического измерения или контроля, содержащей беспроводное полевое устройство 12, технологический компонент 14, технологический фланец 16, технологический трубопровод 20 и сеть 21 беспроводных полевых устройств. Как представлено на фиг. 1 В, беспроводное полевое устройство 12 содержит кожух 22 электроники, электронную схему (не показана), антенну 24 и преобразователь (не показан). Технологический компонент 14 представляет собой установленный на фланце компонент, содержащий узел термоэлектрического генератора (не показан), устройство 27 теплопередачи, изоляцию 28a, изоляцию 28b и тепловую трубу (не показана). На фиг. 1B также показано множество фланцевых болтов 18. Хотя технологический трубопровод 20 представлен как труба, он также может быть любым из ряда технологических сосудов, включая технологический бак, резервуар, теплообменник, бойлер, дистилляционную колонну, печь для обжига или реактор. Сеть 21 беспроводных полевых устройств представляет собой любую сеть беспроводных полевых устройств, способную осуществлять беспроводную связь с беспроводным полевым устройством 12 и с системой управления или контроля. Сеть 21 беспроводных полевых устройств представляет собой, например, ячеистую сеть беспроводных полевых устройств.

Технологический фланец 16 крепится (как правило, приваривается) к отверстию в технологическом трубопроводе 20, чтобы создавать гнездо в технологический трубопровод 20. Уплотнительная прокладка (не показана), которая обычно состоит из материала с низкой теплопроводностью, вставляется между сопряженными поверхностями технологического компонента 14 и технологического фланца 16 перед тем, как технологический компонент 14 крепится к гнезду, чтобы быть в непосредственном контакте с технологической текучей средой F, когда она течет через технологический трубопровод 20. Технологический компонент 14 соединяется с технологическим фланцем 16 множеством фланцевых болтов 18. Узел термоэлектрического генератора интегрирован с технологическим компонентом 14 и косвенно находится в термическом контакте с технологической текучей средой F. Тепловая труба (не показана) термически соединяет технологическую текучую среду F и термоэлектрический генератор. Узел термоэлектрического генератора также находится в термическом контакте с устройством 27 теплопередачи, которое находится в термическом контакте с теплоотводом, например, с окружающей текучей средой A. Окружающая текучая среда А окружает точку 10 технологического измерения или контроля и обычно является воздухом. Во время обычной работы технологическая текучая среда F и окружающая текучая среда A имеют различную температуру. Изоляция 28a и изоляция 28b помещаются, чтобы термически ограждать устройство 27 теплопередачи, находящееся в термическом контакте с текучей средой A, от частей технологического компонента 14 находящихся в термическом контакте с текучей средой F. Как представлено на фиг. 1, технологический компонент 14 физически и электрически соединен с беспроводным полевым устройством 12, обеспечивая область взаимодействия между технологической текучей средой F и преобразователем. В другом случае кожух 22 электроники, антенна 24 и электронная схема беспроводного полевого устройства 12 физически отделены от технологического компонента 14, но электрически соединены с ним.

В работе поток тепла, движимый разностью температур между технологической текучей средой F и окружающей текучей средой A, перемещается тепловой трубой в технологическом компоненте 14. В случае, когда температура технологической текучей среды F выше, чем температура окружающей текучей среды А, поток тепла идет от технологической текучей среды F, расположенной в технологическом трубопроводе 20, к узлу термоэлектрического генератора посредством тепловой трубы. Поток тепла проводится через узел термоэлектрического генератора путем рассеивания тепла в окружающую текучую среду А устройством 27 теплопередачи, генерируя электроэнергию. Тепловой поток идет в обратном направлении для случая, когда температура технологической текучей среды F ниже, чем температура окружающей текучей среды A. Электричество проводится к беспроводному устройству 12, обеспечивая питание для беспроводного полевого устройства 12 для использования при работе преобразователя и для использования при связи с сетью 21 беспроводных полевых устройств через антенну 24. Параллельные пути для потока тепла между технологической текучей средой F и окружающей текучей средой A, которые бы стремились обойти намеченный путь через узел термоэлектрического генератора, уменьшаются изоляцией 28a и изоляцией 28b.

Все варианты осуществления, описанные ниже, кроме варианта осуществления, представленного на фиг. 10, представлены для случая, когда температура технологической текучей среды F выше, чем температура теплоотвода, а направление потока тепла идет от технологической текучей среды F к теплоотводу. Понятно, что для всех далее описываемых вариантов осуществления, для случая, когда температура технологической текучей среды F ниже температуры теплоотвода, описание является тем же, только направление потока тепла обращается, и тепло течет от теплоотвода к технологической текучей среде F.

Во всех вариантах осуществления теплоотвод поглощает или уносит тепло, чтобы поддерживать устойчивый поток тепла через термоэлектрический элемент. Для легкости представления во всех вариантах осуществления, описанных ниже, кроме варианта осуществления, представленного на фиг. 10, теплоотводом является окружающая текучая среда А. Окружающая текучая среда А часто является воздухом, но понятно, что окружающая текучая среда А может представлять собой другой тип текучей среды, такой как охлаждающая текучая среда, водоем или вторая технологическая текучая среда в физическом контакте с устройством теплопередачи. Кроме того, теплоотвод может быть землей или другой большой теплоемкостью, например, стеной здания или земляным валом.

Беспроводные полевые устройства, наподобие представленного на фиг. 1, могут измерять любые из ряда технологических характеристик, таких как, например, давление, скорость потока, массовый расход, pH, температура, плотность и проводимость; или могут контролировать технологическое оборудование на такие свойства как вибрация, нагрузка или коррозия; или могут контролировать общую производственную среду на такие свойства как обнаружение огня и газа; или могут определять настоящее положение рабочих и оборудования. Фиг. 2A-2F представляют собой изображения варианта осуществления настоящего изобретения для подачи питания беспроводному устройству в ячеистой сети беспроводных полевых устройств, содержащего термоэлектрический генератор, включенный в технологический компонент для подачи питания беспроводному полевому устройству для измерения температуры, где технологический компонент является термокарманом. Термокарман представляет собой прочную защитную оболочку, предназначенную содержать и защищать температурный датчик от вредных воздействий измеряемой текучей среды, включая вибрацию, удары, коррозию и истирание. Температурный датчик вставляется в термокарман вдоль его оси, а термокарман вставляется в технологический сосуд, содержащий измеряемую текучую среду. Термокарманы также обеспечивают дополнительное преимущество возможности замены вышедшего их строя температурного датчика без необходимости останавливать процесс и открывать сосуд.

Фиг. 2A представляет собой изображение в поперечном сечении термокармана, включающего настоящее изобретение. На фиг. 2A показана точка 110 технологического измерения, содержащая беспроводное полевое устройство 112, термокарман 114, технологический фланец 116, фланцевые болты 118 и технологический трубопровод 120, содержащий технологическую текучую среду F. Теплоотвод обеспечивается окружающей текучей средой А. Окружающая текучая среда А окружает точку 110 технологического измерения и обычно является воздухом. Хотя технологический трубопровод 120 представлен на фиг. 1 как труба, он также может быть любым из ряда технологических сосудов, включая технологический бак, резервуар, теплообменник, бойлер, дистилляционную колонну, печь для обжига или реактор. Беспроводное полевое устройство 112 содержит кожух 122 электроники, электронную схему 123, антенну 124 и температурный зонд 130. Температурный зонд 130 содержит температурный датчик 132 и провода 134 температурного датчика. Температурный датчик 132 представляет собой любой датчик, который изменяет электрическую характеристику в ответ на изменения температуры, например, термопару или резистивный датчик температуры. Провода 134 температурного датчика представляют собой провода, совместимые с температурным датчиком 132, например, провод термопары. Электронная схема 123 содержит схему 136 датчика, схему 138 связи передатчика, приемопередатчик 140, маршрутизатор 142 данных, схему 144 регулирования мощности и устройство 146 накопления энергии. Схема 136 датчика обрабатывает сигналы датчика и обеспечивает возбуждение датчика, как известно в области техники. Схема 138 связи передатчика содержит схему связи для отправки и получения проводных сигналов, например, данных HART®. Приемопередатчик 140 представляет собой устройство для передачи и получения данных связи на основе РЧ, например, данных WirelessHART. Маршрутизатор 142 данных представляет собой устройство, которое определяет маршрут пакетов данных. Схема 144 регулирования мощности принимает входную мощность и регулирует ее так, как необходимо для использования другими компонентами электронной схемы 123. Устройство 146 накопления энергии накапливает энергию для использования другими компонентами электронной схемы 123 и, например, является первичной батареей, перезаряжаемой батареей, конденсатором большой емкости или накопительным конденсатором, как известно в области техники. Термокарман 114 представляет собой установленный на фланце технологический компонент, содержащий узел 126 термоэлектрического генератора, устройство 127 теплопередачи, изоляцию 128a, изоляцию 128b, полость 148 теплокармана и тепловую трубу 150. Узел 126 термоэлектрического генератора содержит термоэлектрический элемент 152, распределитель 154 тепла и шнур 158 питания. Термоэлектрический элемент 152 представляет собой устройство, которое создает напряжение на устройстве и электрический ток через устройство (когда подключено к электрической нагрузке), когда противоположные стороны устройства удерживаются при различных температурах, например, устройство на основе полупроводников, известного в данной области техники типа, изготовленное из ряда перемежающихся полупроводников n-типа и p-типа. Распределитель 154 тепла представляет собой блок материала с большой теплопроводностью, например, меди, используемый, чтобы выравнивать тепловой поток по поверхности термоэлектрического элемента 152. Устройство 127 теплопередачи представляет собой любое устройство для эффективного обмена теплом с окружающей текучей средой А. Как показано, устройство 127 теплопередачи представляет собой игольчатый теплообменник, изготовленный из материала с высокой теплопроводностью, например, меди, и спроектирован с большим отношением площади поверхности к объему, чтобы усиливать теплопередачу. Изоляция 128a и изоляция 128b представляют собой любой тип прочных термоизоляционных структур, совместимых с окружающей текучей средой А. В этом варианте осуществления тепловая труба 150 содержит заправочное отверстие 160, пробку 162, теплосборную полость 164, трубу 166 теплопередачи и полость 168 рассеивания тепла. Пробка 162 представляет собой любую пробку, которая плотно закрывает, например, металлическую пробку с резьбой. Теплосборная полость 164 представляет собой ту часть тепловой трубы 150, встроенную в часть термокармана 114, которая находится в прямом контакте с технологической текучей средой F. Полость 168 рассеивания тепла представляет собой ту часть тепловой трубы 150, которая находится в прямом контакте с узлом 126 термоэлектрического генератора. Труба 166 теплопередачи представляет собой ту часть тепловой трубы 150, которая соединяет теплосборную полость 164 с полостью 168 рассеивания тепла.

Технологический фланец 116 крепится (как правило, приваривается) к отверстию в технологическом трубопроводе 120, чтобы создавать гнездо в технологический трубопровод 120. Уплотнительная прокладка (не показана) вставляется между сопряженными поверхностями термокармана 114 и технологического фланца 116 перед тем, как термокарман 114 вставляется в гнездо, чтобы быть в непосредственном контакте с технологической текучей средой F, когда она течет через технологический трубопровод 120, как представлено на фиг. 2A. Термокарман 114 соединяется с технологическим фланцем 116 на фланцевой части термокармана 114 множеством фланцевых болтов 118 (как правило, четырьмя или более, два показаны). Температурный зонд 130 вставляется в полость 148 термокармана так, что температурный датчик 132 находится в или возле конца термокармана 114, находящегося максимально глубоко в технологической текучей среде F. Температурный зонд 130, как правило, удерживается на месте резьбовым соединением возле конца температурного зонда 130, противоположного концу температурного датчика 132. Провода 134 температурного датчика соединяют температурный зонд 130 с электронной схемой 123 в кожухе 122 электроники на схеме 136 датчика. Антенна 124 соединяется с электронной схемой 123 в кожухе 122 электроники на приемопередатчике 140. В электронной схеме 123 схема 136 датчика соединяется со схемой 138 связи передатчика. Схема 138 связи передатчика соединяется с маршрутизатором 142 данных, который соединяется с приемопередатчиком 140. Схема 144 регулирования мощности соединяется с устройством 146 накопления энергии, схемой 136 датчика, схемой 138 связи передатчика, маршрутизатором 142 данных и приемопередатчиком 140. Тепловая труба 150 проходит из теплосборной полости 164, описанной ниже со ссылкой на фиг. 2D, в трубу 166 теплопередачи, описанную ниже со ссылкой на фиг. 2F, в полость 168 рассеивания тепла, описанную ниже со ссылкой на фиг. 2E. Пробка 162 плотно закрывает заправочное отверстие 160. Полость 168 рассеивания тепла тепловой трубы 150 соединяется с узлом 126 термоэлектрического генератора на распределителе 154 тепла. Распределитель 154 тепла тесно скреплен с одной стороной термоэлектрического элемента 152, а устройство 127 теплопередачи тесно скреплено с другой стороной термоэлектрического элемента 152, противоположной распределителю 154 тепла. Шнур 158 питания соединяет термоэлектрический элемент 152 с кожухом 122 электроники на схеме 144 регулирования мощности. Изоляция 128a располагается в промежутке между устройством 127 теплопередачи и внешней поверхностью термокармана 114, причем изоляция 128a проходит за края устройства 127 теплопередачи, чтобы гарантировать хорошую термоизоляцию. Изоляция 128b располагается в пространстве между устройством 127 теплопередачи и фланцевой частью термокармана 114, прикрепленной к технологическому фланцу 116. Термокарман 114 физически и электрически соединен с беспроводным полевым устройством 112, обеспечивая область взаимодействия между технологической текучей средой F и температурным зондом 130. В другом случае кожух 122 электроники, электронная схема 123 и антенна 124 физически отделены от температурного зонда 130 и термокармана 114, но электрически соединены с ними.

В работе температурный датчик 132 изменяет электрическую характеристику в ответ на изменение температуры технологической текучей среды F. Изменение электрической характеристики проводится через провода 134 температурного датчика на схему 136 датчика. Схема 136 датчика переводит изменение электрической характеристики в температурное измерение. Схема 136 датчика отправляет температурное измерение на схему 138 связи передатчика, которая отправляет температурное измерение и любую дополнительную информацию (например, идентификационный номер беспроводного полевого устройства) по проводной связи (не показан) на маршрутизатор 142 данных. Маршрутизатор 142 данных форматирует информацию в пакет цифровых данных, вместе с информацией о направлении передачи, и отправляет пакет цифровых данных на приемопередатчик 140 для передачи в ячеистую сеть беспроводных полевых устройств через антенну 124.

Кроме того, как член ячеистой сети беспроводных полевых устройств, беспроводное полевое устройство 112 также может определять маршрут пакетов данных, полученных от ячеистой сети беспроводных полевых устройств. Приемопередатчик 140 принимает пакеты цифровых данных от ячеистой сети беспроводных полевых устройств через антенну 124 и отправляет пакеты цифровых данных на маршрутизатор 142 данных. Маршрутизатор 142 данных определяет маршрут пакетов данных, полученных приемопередатчиком 140, распаковывая полезную нагрузку связи для потребления схемой 138 связи передатчика, если адрес устройства беспроводного полевого устройства 112 совпадает с адресом конечного назначения в пакете, или перенаправляя пакеты цифровых данных обратно на приемопередатчик 140 для передачи обратно в сеть через антенну 124 по следующему назначению в логическом пути.

По меньшей мере часть мощности для опознавания температуры и передачи данных, описанных выше, в варианте осуществления настоящего изобретения обеспечивается работой узла 126 термоэлектрического генератора с потока тепла, эффективно подаваемым тепловой трубой 150. Теплосборная полость 164 собирает тепло из технологической текучей среды F как описано ниже со ссылкой на фиг. 2D. Труба 166 теплопередачи передает тепло из теплосборной полости 164 в полость 168 рассеивания тепла, как описано ниже со ссылкой на фиг. 2F. В полости 168 рассеивания тепла тепло передается в распределитель 154 тепла (как описано ниже со ссылкой на фиг. 2E), который выравнивает тепловой поток, когда поток тепла проводится через распределитель 154 тепла на термоэлектрический элемент 152. Когда тепло течет через термоэлектрический элемент 152, генерируется напряжение, как функция количества тепла, текущего через термоэлектрический элемент 152, и ток течет в беспроводное полевое устройство 112. Генерация напряжения и тока производит электроэнергию. Если тепло не удаляется со стороны, противоположной распределителю 154 тепла, быстро достигается тепловое равновесие, и поток тепла прекращается, равно как и производство энергии. Непрерывное производство энергии требует удаления тепла со стороны термоэлектрического элемента 152, противоположной распределителю 154 тепла. Устройство 127 теплопередачи, своей большой площадью поверхности, эффективно удаляет тепло со стороны термоэлектрического элемента 152, противоположной распределителю 154 тепла, путем отвода в окружающую текучую среду А. Окружающая текучая среда А, посредством конвекции, проводимости или их сочетания, поглощает или уносит тепло с устройства 127 теплопередачи, таким образом, поддерживая устойчивый поток тепла через термоэлектрический элемент 152, необходимый для непрерывного