Аппарат для обнаружения, содержащий два сцинтиллятора для обнаружения рентгеновского излучения

Иллюстрации

Показать все

Изобретение относится к устройству для обнаружения рентгеновского излучения. Аппарат для обнаружения излучения содержит принимающий излучение блок, включающий в себя: первый сцинтиллятор для генерации первого света сцинтилляции в зависимости от излучения, где первый свет сцинтилляции имеет первый характер поведения во времени, второй сцинтиллятор для генерации второго света сцинтилляции в зависимости от излучения, где второй свет сцинтилляции имеет второй характер поведения во времени, который отличается от первого характера поведения во времени, блок обнаружения света сцинтилляции для обнаружения первого света сцинтилляции и второго света сцинтилляции и для генерации общего сигнала обнаружения света, который указывает первый свет сцинтилляции и второй свет сцинтилляции, блок определения обнаруживаемых значений для определения первого обнаруживаемого значения и второго обнаруживаемого значения, причем блок определения обнаруживаемых значений выполнен с возможностью: определения первого обнаруживаемого значения посредством применения первого процесса определения к общему сигналу обнаружения света, причем первый процесс определения включает в себя частотную фильтрацию общего сигнала обнаружения света посредством использования первого частотного фильтра, тем самым генерируя первый фильтрованный общий сигнал обнаружения света, и определения первого обнаруживаемого значения в зависимости от первого фильтрованного общего сигнала обнаружения света, определения второго обнаруживаемого значения посредством применения второго процесса определения к общему сигналу обнаружения света, причем второй процесс определения отличается от первого процесса определения. Технический результат - упрощение конструкции устройства. 6 н. и 9 з.п. ф-лы, 3 ил.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Изобретение относится к аппарату для обнаружения, способу обнаружения и компьютерной программе для обнаружения, чтобы обнаруживать излучение. Изобретение дополнительно относится к системе визуализации, способу визуализации и компьютерной программе визуализации для визуализации объекта.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В публикации «Comparison of dual-kVp and dual-layer CT in simulations and real CT system measurements» S. Kappler et al, IEEE Nuclear Science Symposium Conference Record (NSS/MIC), страницы с 4828 до 4831 (2008), раскрыта двухэнергетическая система компьютерной томографии, которая содержит полихроматический рентгеновский источник и двухслойный детектор. Систему компьютерной томографии адаптируют для того, чтобы генерировать рентгеновские лучи, которые проходят через объект, подлежащий визуализации, в то время как рентгеновский источник вращают относительно объекта. Излучение, после прохождения через объект, обнаруживают посредством двухслойного детектора, где в первом слое, на который сначала падает излучение, первый сцинтиллятор генерирует первый свет сцинтилляции в зависимости от обнаруживаемого излучения, и где во втором слое, на который во-вторых падает излучение, второй сцинтиллятор генерирует второй свет сцинтилляции в зависимости от излучения. Первый свет сцинтилляции и второй свет сцинтилляции, которые соответствуют различным энергиям обнаруживаемого излучения, обнаруживают посредством фотодиодов, где фотодиод для обнаружения первого света сцинтилляции располагают смежно с боковой поверхностью первого сцинтиллятора, т.е., например, не на нижней поверхности первого сцинтиллятора. Это расположение на боковой поверхности ведет к технически относительно сложной конструкции детектора.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩЕСТВА ИЗОБРЕТЕНИЯ

Задача настоящего изобретения состоит в том, чтобы предоставить аппарат для обнаружения, способ обнаружения и компьютерную программу для обнаружения, чтобы обнаруживать излучение, которые позволяют обнаруживать излучение посредством использования технически менее сложной конструкции детектора. Дополнительная задача настоящего изобретения состоит в том, чтобы предоставить систему визуализации, способ визуализации и компьютерную программу визуализации для визуализации объекта, которые могут использовать технически менее сложную конструкцию детектора.

В первом аспекте настоящего изобретения представлен аппарат для обнаружения излучения, причем аппарат для обнаружения содержит:

принимающий излучение блок, который содержит:

первый сцинтиллятор для генерации первого света сцинтилляции в зависимости от излучения, где первый свет сцинтилляции имеет первый характер поведения во времени,

второй сцинтиллятор для генерации второго света сцинтилляции в зависимости от излучения, где второй свет сцинтилляции имеет второй характер поведения во времени, который отличается от первого характера поведения во времени,

блок обнаружения света сцинтилляции для обнаружения первого света сцинтилляции и второго свет сцинтилляции и для генерации общего сигнала обнаружения света, который указывает первый свет сцинтилляции и второй свет сцинтилляции,

блок определения обнаруживаемых значений для определения первого обнаруживаемого значения и второго обнаруживаемого значения, где блок определения обнаруживаемых значений выполнен с возможностью:

определять первое обнаруживаемое значение посредством применения первого процесса определения к общему сигналу обнаружения света, где первый процесс определения включает в себя частотную фильтрацию общего сигнала обнаружения света посредством использования первого частотного фильтра, тем самым генерируя первый фильтрованный общий сигнал обнаружения света, и определения первого обнаруживаемого значения в зависимости от первого фильтрованного общего сигнала обнаружения света,

определять второе обнаруживаемое значение посредством применения второго процесса определения к общему сигналу обнаружения света, где второй процесс определения отличается от первого процесса определения.

Поскольку блок обнаружения света сцинтилляции, который предпочтительно представляет собой фотодиод, обнаруживает первый свет сцинтилляции и второй свет сцинтилляции и генерирует общий сигнал обнаружения света, который описывает первый свет сцинтилляции и второй свет сцинтилляции, где блок определения обнаруживаемых значений определяет первое и второе обнаруживаемые значения посредством применения различных процессов определения к общему сигналу обнаружения света, где по меньшей мере один из процессов определения включает в себя частотную фильтрацию, первый свет сцинтилляции и второй свет сцинтилляции можно совместно обнаруживать посредством одного и того же блока обнаружения света сцинтилляции, без необходимости других блоков обнаружения света сцинтилляции, расположенных на боковых поверхностях сцинтилляторов для отдельного обнаружения первого света сцинтилляции и второго света сцинтилляции, где все еще можно генерировать спектрально различные обнаруживаемые сигналы, которые можно использовать, например, в целях разрешения по энергии. Поскольку первый свет сцинтилляции и второй свет сцинтилляции можно обнаруживать посредством одного и того же блока обнаружения света сцинтилляции, первый сцинтиллятор и второй сцинтиллятор можно укладывать пакетом, например, поверх друг друга, где получаемый пакет можно располагать на блоке обнаружения света сцинтилляции. Следовательно, излучение можно обнаруживать с использованием технически менее сложной конструкции детектора.

Блок обнаружения света сцинтилляции предпочтительно выполнен с возможностью обнаруживать комбинированную интенсивность первого света сцинтилляции и второго света сцинтилляции и для того, чтобы генерировать общий сигнал обнаружения света, который описывает обнаруживаемую комбинированную интенсивность.

Первый и второй процессы определения предпочтительно адаптируют так, что применение первого процесса определения к общему обнаруживаемому сигналу приводит к первому сигналу, который спектрально отличен от второго сигнала, который генерируют посредством применения второго процесса определения к общему сигналу обнаружения света. Первое и второе обнаруживаемые значения предпочтительно определяют на основе этих спектрально различных первого и второго сигналов.

В сцинтилляторе взаимодействующие фотоны увеличивают число электронов в возбужденном состоянии с заданным сроком жизни. Свет сцинтилляции генерируют, если электроны релаксируют в основное состояние. Этот процесс релаксации имеет постоянную времени спада, которая представляет собой постоянную времени спада, которой отвечает соответствующий свет сцинтилляции. Возможен один переход в основное состояние, которому соответствует одна постоянная времени спада, или несколько переходов в основное состояние, которым соответствуют несколько постоянных времени спада. Следовательно, характер изменения света сцинтилляции во времени можно соответствующим образом определять посредством одной или нескольких постоянных времени спада.

Первый и второй процессы определения предпочтительно зависят от первого и второго характера поведения во времени. В частности, первый и второй процессы определения могут включать первую и вторую процедуры частотной фильтрации, которые адаптируют к первому и второму характеру поведения во времени.

Например, первый частотный фильтр может представлять собой фильтр высоких частот для подавления относительно низких частот, которые могут соответствовать одной или нескольким постоянным времени спада более медленного из первого и второго света сцинтилляции, т.е. света сцинтилляции, который имеет более высокую одну или несколько постоянных времени спада. Это позволяет генерировать первый фильтрованный общий сигнал обнаружения света, который имеет больший вклад от более быстрого света сцинтилляции, т.е. более крупный вклад света сцинтилляции, который имеет более быстрый характер поведения во времени, в частности, меньшую постоянную времени спада. Кроме того, также более высокие частоты можно подавлять так, что первый частотный фильтр представляет собой полосовой фильтр. Это может снижать шум в первом фильтрованном общем сигнале обнаружения света. Предпочтительно, полосовой фильтр подавляет частоты, которые соответствуют более медленному свету сцинтилляции, который имеет более медленный характер поведения во времени, в частности, имеет более высокую постоянную времени спада, и для того, чтобы подавлять частоты, которые больше, чем частоты, которые соответствуют более быстрому свету сцинтилляции, т.е. которые соответствуют более быстрому характеру поведения во времени, в частности, меньшей временной постоянной более быстрого света сцинтилляции.

В одном из вариантов осуществления используют фильтр высоких частот, который подавляет частоты меньше среднего значения обратного значения постоянных времени спада первого и второго света сцинтилляции. В частности, фильтр высоких частот можно адаптировать для того, чтобы подавлять частоты, которые меньше геометрического среднего обратного значения первой постоянной времени спада первого света сцинтилляции и обратного значения второй постоянной времени спада второго света сцинтилляции.

Полосовой фильтр можно адаптировать для того, чтобы также подавлять частоты меньше среднего значения обратного значения первой постоянной времени спада и обратного значения второй постоянной времени спада, и полосовой фильтр можно адаптировать для того, чтобы подавлять частоты, которые более чем в десять раз превышают обратную вторую постоянную времени спада, где допускают, что вторая постоянная времени спада меньше первой постоянной времени спада.

В одном из вариантов осуществления первый процесс определения включает в себя a) возведение в квадрат или выпрямление первого фильтрованного по частоте общего сигнала обнаружения света, b) интегрирование возведенного в квадрат или выпрямленного первого фильтрованного по частоте общего сигнала обнаружения света, тем самым генерируя первое интегрированное значение, и c) определение первого обнаруживаемого значения в зависимости от первого интегрированного значения. Это позволяет определять первое обнаруживаемое значение относительно простым путем так, что вероятно, что более быстрый свет сцинтилляции вносит больший вклад в первое обнаруживаемое значение, чем более медленный свет сцинтилляции.

Второй процесс определения предпочтительно включает a) частотную фильтрацию общего сигнала обнаружения света посредством использования второго частотного фильтра, тем самым генерируя второй фильтрованный общий сигнал обнаружения света, и b) определение второго обнаруживаемого значения в зависимости от второго фильтрованного общего сигнала обнаружения света. Второй частотный фильтр предпочтительно представляет собой фильтр низких частот, и второй процесс определения предпочтительно дополнительно включает интегрирование второго фильтрованного общего сигнала обнаружения света, тем самым генерируя второе интегрированное значение, где второе обнаруживаемое значение определяют в зависимости от второго интегрированного значения. Фильтр низких частот предпочтительно адаптируют для того, чтобы подавлять частоты больше среднего значения обратного значения первой постоянной времени спада первого света сцинтилляции и обратного значения второй постоянной времени спада второго света сцинтилляции. Среднее значение предпочтительно представляет собой геометрическое среднее значение. Это позволяет определять второе обнаруживаемое значение, которое содержит увеличенный вклад более медленного света сцинтилляции, т.е. содержит вклад более медленного света сцинтилляции во второе обнаруживаемое значение, который больше, чем вклад более медленного света сцинтилляции в первое обнаруживаемое значение, относительно простым путем.

В другом варианте осуществления второй процесс определения включает в себя интегрирование общего сигнала обнаружения света, тем самым генерируя второе интегрированное значение, и определение второго обнаруживаемого значения в зависимости от второго интегрированного значения, без применения второго частотного фильтра. Это снижает вычислительные издержки для определения второго обнаруживаемого значения.

В одном из вариантов осуществления постоянная времени спада более быстрого света сцинтилляции составляет приблизительно 50 нс и постоянная времени спада более медленного света сцинтилляции составляет приблизительно 3 мкс.

Аппарат для обнаружения предпочтительно адаптируют для использования с системой компьютерной томографии, где система компьютерной томографии содержит источник излучения и аппарат для обнаружения. Источник излучения и аппарат для обнаружения можно вращать относительно объекта, подлежащего визуализации, для того, чтобы позволять аппарату компьютерной томографии получать первое и второе обнаруживаемые значения при различных положениях источника излучения относительно объекта. Интегрирование предпочтительно осуществляют по временному интервалу, который соответствует временному интервалу, в течение которого источник излучения находится в определенном угловом интервале, который соответствует проекции. Таким образом, интегрирование предпочтительно осуществляют в течение времени проецирования, которое определяют с помощью временного интервала, в течение которого источник излучения находится в определенном угловом интервале, для того, чтобы определять соответствующие проекционные первое и второе обнаруживаемые значения. Время проецирования и, таким образом, время интегрирования могут находиться в диапазоне от 50 до 500 мкс.

В одном из вариантов осуществления первый процесс определения адаптируют для частотной фильтрации общего сигнала обнаружения света так, что первый фильтрованный общий сигнал обнаружения света представляет собой меняющийся уровень общего сигнала обнаружения света, тогда как второй процесс определения адаптируют так, что применение второго процесса определения к общему сигналу обнаружения света дает постоянный уровень общего сигнала обнаружения света. Первый процесс определения можно адаптировать для возведения квадрат или выпрямления меняющегося уровня, который также можно рассматривать в качестве уровня переменного тока общего сигнала обнаружения света, и для интегрирования возведенного в квадрат или выпрямленного меняющегося уровня для определения первого обнаруживаемого значения.

Кроме того, второй процесс определения можно адаптировать для интегрирования постоянного уровня, который также можно рассматривать в качестве уровня постоянного тока общего сигнала обнаружения света, для определения второго обнаруживаемого значения.

Предпочтительно, первый сцинтиллятор, второй сцинтиллятор и блок обнаружения света сцинтилляции оптически связаны так, что оба, первый свет сцинтилляции и второй свет сцинтилляции, можно совместно обнаруживать посредством блока обнаружения света сцинтилляции. В частности, первый сцинтиллятор, второй сцинтиллятор и блок обнаружения света сцинтилляции формируют пакет так, что один из первого сцинтиллятора и второго сцинтиллятора располагают на блоке обнаружения света сцинтилляции и другой из первого сцинтиллятора и второго сцинтиллятор располагают на одном из первого сцинтиллятора и второго сцинтиллятора. Пакет предпочтительно располагают так, что излучение, подлежащее обнаружению, сначала проходит через один из первого сцинтиллятора и второго сцинтиллятора и затем входит в другой из первого сцинтиллятора и второго сцинтиллятора. Низкоэнергетическое излучение преимущественно будет поглощать тот сцинтиллятор, через который оно сначала проходит, так что соответствующий свет сцинтилляции описывает низкоэнергетическое излучение. Через дополнительный сцинтиллятор, который проходят во-вторых, в большей степени проходит высокоэнергетическое излучение, чем низкоэнергетическое излучение, поскольку большое количество низкоэнергетического излучения поглощено сцинтиллятором, через который оно проходило сначала. Соответствующий свет сцинтилляции, следовательно, описывает высокоэнергетическое излучение. Первое и второе обнаруживаемые значения, в которые первый свет сцинтилляции и второй свет сцинтилляции вносят различные вклады, следовательно, могут соответствовать различным энергиям. Первое и второе обнаруживаемые значения, следовательно, можно использовать для получения информации об энергии излучения, обнаруживаемого посредством аппарата для обнаружения.

Предпочтительно, характер изменения первого сцинтиллятора во времени характеризуется первой постоянной времени спада, а характер изменения второго сцинтиллятора во времени характеризуется второй постоянной времени спада, которая меньше первой постоянной времени спада, где первый сцинтиллятор, второй сцинтиллятор и блок обнаружения света сцинтилляции формируют пакет так, что второй сцинтиллятор располагают на блоке обнаружения света сцинтилляции, а первый сцинтиллятор располагают на втором сцинтилляторе. Поскольку верхний первый сцинтиллятор преимущественно обнаруживает низкоэнергетическое излучение, которое дает множество относительно маленьких импульсов первого света сцинтилляции, получаемый первый свет сцинтилляции соответствует относительно плавному сигналу обнаружения света. Кроме того, поскольку нижний второй сцинтиллятор обнаруживает более высокоэнергетическое излучение, нижний второй сцинтиллятор генерирует второй свет сцинтилляции, который более изменчив, чем первый свет сцинтилляции. Этот эффект относительно плавного первого света сцинтилляции и относительно изменчивого второго света сцинтилляции увеличивает эффект, обусловленный различными постоянными времени спада, поскольку также различные постоянные времени спада ведут к тому, что первый свет сцинтилляции является более плавным, чем более изменчивый второй свет сцинтилляции.

Первый сцинтиллятор, второй сцинтиллятор и блок обнаружения света сцинтилляции могут быть оптически связаны с использованием оптического соединительного материала. Оптический соединительный материал предпочтительно представляет собой оптически прозрачный клей, причем клей по меньшей мере прозрачен для первого света сцинтилляции и второго света сцинтилляции.

В дополнительном аспекте настоящего изобретения представлена система визуализации для визуализации объекта, причем система визуализации содержит:

аппарат для обнаружения, чтобы обнаруживать излучение, на которое влияет объект, как определено в пункте 1,

реконструирующий блок для реконструкции изображения объекта по первому и второму обнаруживаемым значениям.

Система визуализации предпочтительно дополнительно содержит источник излучения для генерации излучения, причем систему визуализации адаптируют для того, чтобы предоставлять излучение так, что оно проходит через объект до обнаружения посредством аппарата для обнаружения. Источник излучения предпочтительно представляет собой полихроматический рентгеновский источник для генерации полихроматических рентгеновских лучей, причем аппарат для обнаружения можно адаптировать для того, чтобы обнаруживать полихроматические рентгеновские лучи после того, как они прошли через объект, и для того, чтобы генерировать первое и второе обнаруживаемые значения в зависимости от обнаруживаемых полихроматических рентгеновских лучей.

Реконструирующий блок можно адаптировать для того, чтобы раскладывать первое и второе обнаруживаемые значения на составляющие обнаруживаемые значения, которые соответствуют различным компонентам, представляющим собой, например, различные физические эффекты и/или различные материалы. Например, различные компоненты могут соответствовать эффекту Комптона и фотоэлектрическому эффекту, или различные компоненты могут соответствовать мягким тканям и кости. Реконструирующий блок можно адаптировать для того, чтобы реконструировать составляющие изображения, которые соответствуют различным компонентам, посредством применения алгоритма компьютерной томографии к соответствующим составляющим обнаруживаемым значениям. В другом варианте осуществления перед разложением обнаруживаемых значений на составляющие обнаруживаемые значения, реконструирующий блок может преобразовывать первое и второе обнаруживаемые значения в первое и второе промежуточные обнаруживаемые значения, которые соответствуют интенсивностям первого и второго света сцинтилляции, соответственно. Таким образом, преобразование для количественного определения интенсивностей первого и второго света сцинтилляции можно предусматривать и применять к первому и второму обнаруживаемым значениям. Это преобразование можно определять посредством калибровочных измерений, и предпочтительно оно представляет собой линейное преобразование. Реконструирующий блок затем можно адаптировать для того, чтобы осуществлять процедуру разложения для генерации составляющих обнаруживаемых значений на основе генерируемых промежуточных обнаруживаемых значений.

В одном из вариантов осуществления преобразование для того, чтобы преобразовывать первое и второе обнаруживаемые значения в обнаруживаемые значения, которые соответствуют интенсивностям первого и второго света сцинтилляции, также можно осуществлять, после последующей реконструкции на основе этих обнаруживаемых значений. В этом случае, преобразование можно осуществлять, например, посредством блока определения обнаруживаемых значений, а аппарат для обнаружения можно адаптировать для того, чтобы предоставлять эти обнаруживаемые значения.

В одном из вариантов осуществления источник излучения и первый и второй сцинтилляторы аппарата для обнаружения адаптируют так, что интенсивности первого света сцинтилляции и второго света сцинтилляции схожи или различаются не более чем в десять раз. Этого можно достичь, например, посредством выбора сцинтилляционных материалов, их допирования, их толщины и так далее, соответственно. Это может гарантировать, что оба сцинтиллятора значительно вносят вклад в оба обнаруживаемых значения и что, например, в обнаруживаемом значении не преобладает только один сцинтиллятор и что вклад другого сцинтиллятора не ниже уровня шума, тем самым повышая качество первого и второго обнаруживаемых значений.

В дополнительном аспекте настоящего изобретения представлен способ обнаружения для обнаружения излучения, причем способ обнаружения включает в себя:

генерацию первого света сцинтилляции в зависимости от излучения посредством первого сцинтиллятора, причем первый свет сцинтилляции имеет первый характер поведения во времени,

генерацию второго света сцинтилляции в зависимости от излучения посредством второго сцинтиллятора, причем второй свет сцинтилляции имеет второй характер поведения во времени, отличающийся от первого характера поведения во времени,

обнаружение первого света сцинтилляции и второго света сцинтилляции и генерацию общего сигнала обнаружения света, который описывает первый свет сцинтилляции и второй свет сцинтилляции, посредством блока обнаружения света сцинтилляции,

определение первого обнаруживаемого значения и второго обнаруживаемого значения посредством блока определения обнаруживаемых значений, причем блок определения обнаруживаемых значений:

определяет первое обнаруживаемое значение посредством применения первого процесса определения к общему сигналу обнаружения света, причем первый процесс определения включает частотную фильтрацию общего сигнала обнаружения света посредством использования первого частотного фильтра, тем самым генерируя первый фильтрованный общий сигнал обнаружения света, и определения первого обнаруживаемого значения в зависимости от первого фильтрованного общего сигнала обнаружения света,

определяет второе обнаруживаемое значение посредством применения второго процесса определения к общему сигналу обнаружения света, где второй процесс определения отличается от первого процесса определения.

В дополнительном аспекте настоящего изобретения представлен способ визуализации для визуализации объекта, причем способ визуализации включает в себя:

обнаружение излучения, на которое влияет объект, как определено в пункте 12,

реконструкцию изображения объекта по первому и второму обнаруживаемым значениям посредством реконструирующего блока.

В дополнительном аспекте настоящего изобретения представлена компьютерная программа для обнаружения излучения, причем компьютерная программа для обнаружения содержит средство программного кода для побуждения аппарата для обнаружения, как определено в пункте 1, выполнять этапы способа обнаружения, как определено в пункте 12, когда компьютерную программу запускают на компьютере, управляющем аппаратом для обнаружения.

В дополнительном аспекте настоящего изобретения представлена компьютерная программа визуализации для визуализации объекта, причем компьютерная программа визуализации содержит средство программного кода для побуждения системы визуализации, как определено в пункте 11, выполнять этапы способа визуализации, как определено в пункте 13, когда компьютерную программу запускают на компьютере, управляющем системой визуализации.

Следует понимать, что аппарат для обнаружения по п. 1, система визуализации по п. 10, способ обнаружения по п. 12, способ визуализации по п. 13, компьютерная программа для обнаружения по п. 14 и компьютерная программа визуализации по п. 15 имеют схожие и/или идентичные предпочтительные варианты осуществления, в частности, как определено в зависимых пунктах формулы изобретения.

Следует понимать, что предпочтительный вариант осуществления изобретения также может представлять собой какую-либо комбинацию зависимых пунктов формулы изобретения с соответствующим независимым пунктом формулы изобретения.

Эти и другие аспекты изобретения видны из и разъяснены со ссылкой на варианты осуществления, описанные далее в настоящем документе.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 представлен схематически и в качестве примера вариант осуществления системы визуализации для визуализации объекта,

на фиг. 2 представлен схематически и в качестве примера вариант осуществления принимающего излучение пикселя принимающего излучение блока системы визуализации, и

на фиг. 3 представлена блок-схема, в качестве примера иллюстрирующая вариант осуществления способа визуализации для визуализации объекта.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

На фиг. 1 схематически и в качестве примера представлена система визуализации области, представляющей интерес, которая представляет собой систему 19 компьютерной томографии. Система компьютерной томографии содержит портал 1, который может вращаться вокруг оси вращения R, которая идет параллельно направлению z. Источник 2 излучения, который в этом варианте осуществления представляет собой рентгеновскую трубку, устанавливают на портале 1. В источнике 2 излучения, который генерирует полихроматическое излучение, предусмотрен коллиматор 3, который формирует в этом варианте осуществления конический пучок 4 излучения из излучения, генерируемого посредством источника 2 излучения. Излучение проходит через объект, такой как пациент, в исследуемой зоне 5, которая в этом варианте осуществления является цилиндрической. После прохождения через исследуемую зону 5, пучок 4 излучения падает на принимающий излучение блок 6, который содержит двухмерную поверхность обнаружения. Принимающий излучение блок 6 установлен на портале 1.

Система 19 компьютерной томографии содержит два двигателя 7, 8. Портал 1 приводят в движение с предпочтительно постоянной, но корректируемой угловой скоростью посредством двигателя 7. Двигатель 8 предусмотрен для смещения объекта, например, пациента, который расположен на столе пациента в исследуемой зоне 5, параллельно направлению оси вращения R или оси z. Этими двигателями 7, 8 управляет блок 9 управления, например, так, что источник 2 излучения и исследуемая зона 5, в частности, объект внутри исследуемой зоны 5, перемещают друг относительно друга вдоль спиральной траектории. Однако также возможно, что объект не перемещают, а только вращают источник 2 излучения, т.е. что источник 2 излучения двигается по круговой траектории относительной исследуемой зоны 5, в частности, относительно объекта. Кроме того, в другом варианте осуществления коллиматор 3 можно адаптировать для формирования другой геометрической формы пучка, в частности, веерного пучка, и принимающий излучение блок 6 может содержать поверхность обнаружения, которой придают геометрическую форму, соответствующую другой геометрической форме пучка, в частности, соответствующую веерному пучку.

Принимающий излучение блок 6 содержит несколько принимающих излучение пикселей 17, из которых один схематически и в качестве примера представлен на фиг. 2. Принимающий излучение пиксель 17 содержит первый сцинтиллятор 14 для генерации первого света сцинтилляции в зависимости от обнаруживаемого излучения и второй сцинтиллятор 15 для генерации второго света сцинтилляции в зависимости от обнаруживаемого излучения, где первый свет сцинтилляции соответствует первому времени спада, которое больше чем второе время спада, которому соответствует второй свет сцинтилляции, т.е. первый свет сцинтилляции и второй свет сцинтилляции имеют различные характеры поведения во времени, которые отличаются различными постоянными времени спада. Принимающий излучение пиксель 17 дополнительно содержит блок 16 обнаружения света сцинтилляции для обнаружения первого света сцинтилляции и второго света сцинтилляции и для генерации общего сигнала обнаружения света, который описывает первый свет сцинтилляции и второй свет сцинтилляции. Первый сцинтиллятор 14, второй сцинтиллятор 15 и блок 16 обнаружения света сцинтилляции оптически связаны так, что оба, первый свет сцинтилляции и второй свет сцинтилляции, можно совместно обнаруживать посредством блока 16 обнаружения света сцинтилляции. Блок 16 обнаружения света сцинтилляции предпочтительно представляет собой фотодиод, который адаптирован для обнаружения первого света сцинтилляции и второго света сцинтилляции. Фотодиод достаточно быстр для разрешения импульсов относительно короткого второго света сцинтилляции по времени.

Первый сцинтиллятор 14, второй сцинтиллятор 15 и второй блок 16 обнаружения света формируют пакет так, что второй сцинтиллятор 15 располагают на блоке 16 обнаружения света сцинтилляции, а первый сцинтиллятор 14 располагают на втором сцинтилляторе 15, где первый сцинтиллятор 14, второй сцинтиллятор 15 и блок 16 обнаружения света сцинтилляции оптически связаны посредством использования оптического соединительного материала 18, который в этом варианте осуществления представляет собой оптически прозрачный клей, который прозрачен для первого света сцинтилляции и второго света сцинтилляции.

Первый и второй сцинтилляторы 14, 15 адаптируют так, что интенсивности первого света сцинтилляции и второго света сцинтилляции схожи или различаются не более чем в десять раз. В частности, сцинтилляционные материалы, их допирование и их толщины адаптируют так, что выполняют это условие сходства в отношении интенсивностей первого света сцинтилляции и второго света сцинтилляции, в частности, в пределах типичного энергетического диапазона рентгеновских лучей, например, от 40 до 140 кэВ.

Во время относительного движения источника 2 излучения и объекта в пределах исследуемой зоны 5, принимающий излучение блок 6 совместно обнаруживает первый свет сцинтилляции и второй свет сцинтилляции и генерирует общий сигнал обнаружения света, который описывает первый свет сцинтилляции и второй свет сцинтилляции.

Генерируемый общий сигнал обнаружения света предоставляют блоку 12 определения обнаруживаемых значений для определения первого обнаруживаемого значения и второго обнаруживаемого значения. Блок 12 определения обнаруживаемых значений адаптируют для того, чтобы определять первое обнаруживаемое значение посредством применения первого процесса определения к общему сигналу обнаружения света, где первый процесс определения включает в себя частотную фильтрацию общего сигнала обнаружения света посредством использования первого частотного фильтра, тем самым генерируя первый фильтрованный общий сигнал обнаружения света, и определения первого обнаруживаемого значения в зависимости от первого фильтрованного общего сигнала обнаружения света. Блок определения обнаруживаемых значений дополнительно адаптируют для того, чтобы определять второе обнаруживаемое значение посредством применения второго процесса определения к общему сигналу обнаружения света, причем второй процесс определения отличается от первого процесса определения. В этом варианте осуществления первый частотный фильтр представляет собой фильтр высоких частот или полосовой фильтр, и первый процесс определения включает a) возведение в квадрат или выпрямление первого фильтрованного по частоте общего сигнала обнаружения света, b) интегрирование возведенного в квадрат или выпрямленного первого фильтрованного по частоте общего сигнала обнаружения света, тем самым генерируя первое интегрированное значение, и c) определение первого обнаруживаемого значения в зависимости от первого интегрированного значения. Второй процесс определения включает a) частотную фильтрацию общего сигнала обнаружения света посредством использования второго частотного фильтра, тем самым генерируя второй фильтрованный общий сигнал обнаружения света, и b) определение второго обнаруживаемого значения в зависимости от второго фильтрованного общего сигнала обнаружения света, где второй частотный фильтр представляет собой фильтр низких частот.

Предпочтительно, используют фильтр высоких частот, который подавляет частоты меньше среднего значения обратного значения постоянных времени спада первого и второго света сцинтилляции. В частности, фильтр высоких частот можно адаптировать для того, чтобы подавлять частоты меньше геометрического среднего обратного значения первой постоянной времени спада первого света сцинтилляции и обратного значения второй постоянной времени спада второго света сцинтилляции. Полосовой фильтр можно адаптировать для того, чтобы также подавлять частоты меньше среднего значения обратного значения первой постоянной времени спада и обратного значения второй постоянной времени спада, и полосовой фильтр можно адаптировать для того, чтобы подавлять частоты, которые больше чем десять раз превышают обратную вторую постоянную времени спада, где допустимо, что вторая постоянная времени спада меньше первой постоянной времени спада. Фильтр низких частот предпочтительно адаптируют для того, чтобы подавлять частоты больше среднего значения обратного значения первой постоянной времени спада первого света сцинтилляции и обратного значения второй постоянной времени спада второго света сцинтилляции. Среднее значение предпочтительно представляет собой геометрическое среднее значение.

Предпочтительно для каждого положения источника 2 излучения относительно объекта внутри исследуемой зоны 5 и для каждого принимающего излучение пикселя 17 блок определения обнаруживаемых значений определяет первое обнаруживаемое значение и второе обнаруживаемое значение, соответственно.

Первое и второе обнаруживаемые значения, которые определены для каждого положения источника 2 излучения относительно объекта внутри исследуемой зоны 5 и для каждого принимающего излучение пикселя 17, представляют в реконструирующий блок 10 для реконструкции изображения объекта на основе первого и второго обнаруживаемых значений. Изображени