Гондола ветровой энергетической установки

Иллюстрации

Показать все

Изобретение относится к области ветроэнергетики, в частности к гондоле ветровой энергетической установки и способу сооружения ветровой энергетической установки с гондолой. Гондола (1) ветровой энергетической установки (100), при этом ветровая энергетическая установка (100) имеет башню (102) или мачту, аэродинамический ротор (106) и генератор (46), включающий в себя роторный элемент (50) генератора и статор (48), и гондола (1) снабжена обшивкой (2, 4) гондолы, причем гондола (1), в частности обшивка (2, 4) гондолы, является самонесущей, причем обшивка (2, 4) гондолы имеет вращающуюся часть (4), на которую опирается по меньшей мере одна лопасть (56) аэродинамического ротора (106) и/или роторный элемент (50) генератора (46), и неподвижную часть (2), на которую опирается статор (48) генератора (46), и причем вращающаяся часть (4) гондолы (1) посредством заднего подшипника (70) и переднего подшипника (72) оперта с возможностью вращения вокруг по существу горизонтальной оси на неподвижную часть (2). Изобретение направлено на повышение устойчивости и упрощение конструкции гондолы ветровой энергетической установки. 3 н. и 15 з.п. ф-лы, 17 ил.

Реферат

Настоящее изобретение касается гондолы ветровой энергетической установки.

Ветровые энергетические установки общеизвестны. В характерной ветровой энергетической установке, которая показана на фиг. 1, аэродинамический ротор (106) вращается ветром и при этом посредством генератора вырабатывает электрическую энергию. Такой генератор и другие, необходимые для эксплуатации ветровой энергетической установки элементы расположены в гондоле. К другим элементам может, например, относиться управление установки, такое как азимутальные приводы и их управление, при необходимости выпрямители или частотные преобразователи и их управление и системы обогрева или охлаждения и их управление. Это лишь некоторые примеры конструктивных элементов ветровой энергетической установки. При этом электрические устройства размещены преимущественно в соответствующих распределительных шкафах, которые расположены в гондоле. Кроме того, предусмотрены области для прохода и местонахождения людей, чтобы сервисный персонал мог входить в гондолу и производить работы по техническому обслуживанию, исследования или ремонтные работы. Все эти устройства расположены в гондоле и защищены обшивкой гондолы, в частности, от ветра и дождя. Причем обшивка гондолы по существу полностью охватывает все приборы и опирается при этом на конструкцию гондолы, в которой также имеются области для прохода и местонахождения людей и другие устройства.

В безредукторной ветровой энергетической установке, кроме того, некоторое место занимает генератор. Например, диаметр воздушного зазора Enercon Е126 составляет примерно 10 м. Но несколько меньшие по размеру типы часто имеют диаметр воздушного зазора, равный примерно 5 м. При этом генератор может своим статором опираться на машинный держатель. На машинном держателе, кроме того, закреплена осевая цапфа, на которую посредством подшипника оперт ротор генератора, который может также называться роторным элементом.

Такой машинный держатель вследствие своего размера, в зависимости от вида и размера ветровой энергетической установки, может занимать в гондоле значительное пространство, при этом вокруг машинного держателя остается относительно мало площади.

Кроме того, машинный держатель часто закреплен на азимутальном подшипнике по всему его периметру, так что доступ к гондоле с башни и вместе с тем через азимутальный подшипник возможен только через машинный держатель.

Немецкое ведомство по патентам и торговым маркам произвело исследование следующего уровня техники: DE 102006035721 А1, DE 102009056245 А1 и ЕР 1356204 В1.

Таким образом, в основе настоящего изобретения лежит задача, решить по меньшей мере одну из вышеназванных проблем. В частности, необходимо усовершенствовать конструкцию гондолы ветровой энергетической установки. Должно быть предложено по меньшей мере одно альтернативное решение.

При этом в соответствии с изобретением предлагается гондола ветровой энергетической установки согласно п. 1 формулы изобретения. Такая гондола имеет обшивку гондолы, которая известным образом представляет собой по существу наружную оболочку гондолы. Предлагается, чтобы эта обшивка гондолы была выполнена самонесущей. Тем самым, во-первых, отпадает необходимость в опорных структурах внутри гондолы. При этом упрощается также и конструкция гондолы, и отпадает необходимость в подпирающих поперечных и диагональных распорках, предназначенных для удержания обшивки гондолы внутри гондолы, и благодаря этому может обеспечиваться или, соответственно, может предоставляться для другого применения дополнительная площадь в гондоле.

Предпочтительно гондола выполнена так, что обшивка гондолы непосредственно или, во всяком случае, с помощью средств крепления закреплена на азимутальном подшипнике ветровой энергетической установки. В частности, таким образом силы, действующие на обшивку гондолы, передаются от обшивки гондолы непосредственно в азимутальный подшипник, и от азимутального подшипника дальше в башню или мачту ветровой энергетической установки. Эти силы включают в себя по меньшей мере силы тяжести обшивки гондолы и, в частности, также действующие на обшивку гондолы силы ветра и/или силы тяжести и при известных условиях динамические силы устройств, закрепленных на обшивке гондолы, и/или силы тяжести и динамические силы генератора ветровой энергетической установки, с помощью которого из ветра вырабатывается электрическая энергия. Предпочтительно также силы аэродинамического ротора, а именно, действующие на него силы тяжести, силы, возникающие в результате его движения, и отведенные силы ветра, воспринимаются обшивкой гондолы и отводятся через азимутальный подшипник.

Согласно одному из вариантов осуществления предлагается, чтобы на обшивку гондолы опирался генератор. Таким образом известные до сих пор элементы, такие как машинный держатель и обшивка гондолы, объединяются в один новый компонент, который называется держателем гондолы. Таким образом, держатель гондолы по существу принимает форму обшивки гондолы, а именно, образует наружную оболочку гондолы и при этом, однако, выполнена настолько стабильной, что она обладает несущей способностью предусматриваемого в ином случае машинного держателя. В частности, он выполняется из материала и с толщиной материала, которая обеспечивает эту несущую способность. Таким образом, обходятся без специального держателя или специальной несущей конструкции для генератора, и вместо этого он крепится к обшивке гондолы. Обшивка гондолы служит, таким образом, опорой для генератора и выполняет предпочтительно по существу функцию машинного держателя для генератора. Таким образом, гондола, за исключением обшивки гондолы, не имеет машинного держателя, на который опирается генератор ветровой энергетической установки. Вместо машинного держателя, расположенного по существу внутри гондолы, на котором раньше был закреплен генератор и вокруг которого были закреплены другие устройства, гондола имеет наружную оболочку, выполненную настолько прочной, устойчивой и жесткой, и которая выполняет функцию машинного держателя и охватывает опирающиеся части.

Благодаря этому такая несущая обшивка гондолы имеет существенно большие наружные размеры по сравнению с прежним, расположенным внутри гондолы машинным держателем. При этом благодаря такой несущей обшивке гондолы по сравнению с прежним, находящимся внутри машинным держателем, можно реализовать одинаковую устойчивость и жесткость при значительно меньших толщинах материала. Кроме того, при одинаковых наружных размерах получается существенно больше пространства, имеющегося в распоряжении внутри предлагаемой самонесущей обшивки гондолы, по сравнению с внутренним пространством не самонесущей обшивки гондолы, в которой должен помещаться по меньшей мере один машинный держатель.

Согласно одному из предпочтительных вариантов осуществления предлагается, чтобы ветровая энергетическая установка была безредукторной, так, чтобы роторный элемент генератора вращалось аэродинамическим ротором без механической передачи. В такой безредукторной ветровой энергетической установки обычно предусмотрен соответственно большой, медленно вращающийся генератор. Номинальная частота вращения может лежать в пределах от 5 до 25 оборотов в минуту, в частности, в пределах от 10 до 20 оборотов в минуту, более предпочтительно в пределах от 12 до 14 оборотов в минуту. В частности, генератор выполнен в виде кольцевого генератора, в котором элементы магнитного действия статора и роторного элемента по существу всегда расположены в одном кольце вдоль воздушного зазора. Обычно это генератор с большим числом полюсов, у которого число пар полюсов равно по меньшей мере 24, в частности, по меньшей мере 48, по меньшей мере 72 или по меньшей мере 192.

В частности, такой генератор сравнительно тяжел и может иметь вес свыше 10 т, в частности, свыше 50 т, в частности, свыше 70 т. Такой большой вес в соответствии с изобретением может опираться на предлагаемую самонесущую обшивку гондолы, при этом силы отводятся через соответственно прочную наружную структуру. Поэтому обшивка гондолы является несущей частью и может также называться корпусом гондолы.

Согласно одному из предпочтительных вариантов осуществления обшивка гондолы имеет вращающуюся часть и неподвижную часть. На вращающуюся часть опирается по меньшей мере одна, в частности, три лопасти аэродинамического ротора. Причем вращающаяся часть обшивки гондолы образует так называемый обтекатель аэродинамического ротора и при этом образует часть аэродинамического ротора. Кроме того, или по меньшей мере альтернативно этому, на вращающуюся часть обшивки гондолы опирается роторный элемент генератора в том смысле, что роторный элемент аэродинамического ротора жестко соединено с вращающейся частью обшивки гондолы и воспринимает по меньшей мере силы тяжести роторного элемента, а также другие возникающие при эксплуатации механические силы, прилагаемые роторным элементом. Предпочтительно роторный элемент образует по меньшей мере один несущий участок роторного элемента, часть вращающейся части обшивки гондолы.

На неподвижную часть опирается статор генератора. При этом предусмотрен по меньшей мере один подшипник ротора, посредством которого вращающаяся часть обшивки гондолы и вместе с тем также роторный элемент генератора вращается относительно неподвижной части обшивки гондолы и вместе с тем относительно статора. Предпочтительно роторный элемент и статор расположены вблизи этого подшипника ротора или, соответственно, вблизи одного из подшипников ротора, чтобы они могли вращаться друг относительно друга, будучи отделены друг от друга только небольшим воздушным зазором. При этом посредством подшипника ротора или, соответственно, посредством нескольких подшипников ротора вращающаяся часть обшивки гондолы опирается на неподвижную часть обшивки гондолы. Посредством этого или, соответственно, этих подшипников ротора на неподвижную часть обшивки гондолы опирается вращающаяся часть обшивки гондолы, включающая в себя роторный элемент генератора и одну или несколько лопастей ротора, а также другие расположенные на вращающейся части обшивки гондолы устройства, такие как, например, двигатели для установки угла наклона лопастей. При этом силы, передаваемые через этот или, соответственно, эти подшипники ротора на неподвижную часть, затем также отводятся от неподвижной части посредством азимутального подшипника или тому подобного, в частности, непосредственно от неподвижной части на азимутальный подшипник. Поэтому под неподвижной частью обшивки гондолы следует понимать, что она неподвижна относительно вращательного движения ротора. С точки зрения азимутального движения, то есть установки ориентацией на ветер, неподвижная часть также является подвижной, в частности подвижно опертой на вышеназванный азимутальный подшипник.

Предпочтительно генератор, в частности, в случае безредукторной ветровой энергетической установки, выполнен в виде внешнего роторного элемента. Соответственно этому роторный элемент вращается снаружи вокруг расположенного радиально внутри относительно него статора, с имеющимся между ними воздушным зазором. Такой вариант осуществления является особенно предпочтительным для генератора, имеющего, например, кольцевое роторный элемент, которое, в принципе, из-за воздушного зазора имеет меньшую радиальную протяженность, чем соответствующий статор, который предпочтительно может также представлять собой кольцевой статор. В этом случае может быть сконструирован генератор, который может иметь больший диаметр воздушного зазора по сравнению с внутренним роторным элементом при одинаковом наружном диаметре.

В этом случае, а также в других случаях роторный элемент может помещаться на несущую обшивку гондолы снаружи и устойчиво опираться не нее. Особенно предпочтительно такая конструкция функционирует вместе с синхронным генератором с посторонним возбуждением, в котором за счет постоянного тока создается магнитное поле в роторном элементе. В частности, при этом роторный элемент может нагреваться, и благодаря помещению в окружающую снаружи обшивку гондолы, по меньшей мере часть этого тепла может простым образом отводиться через нее наружу. Например, путем теплопередачи через самонесущую обшивку гондолы.

Предпочтительно вся несущая обшивка гондолы, а по меньшей мере часть вращающейся части и/или часть неподвижной части, выполнена в виде литой детали, в частности, в виде литой детали с шаровидным графитом или скомпонована из нескольких деталей, отлитых из чугуна с шаровидным графитом. В частности, части обшивки гондолы, которые должны обладать меньшей несущей способностью, такие как, например, отвернутая от ротора задняя часть или, соответственно, задняя обшивка, могут быть изготовлены из другого материала, такого как, например, алюминий. Применение детали, отлитой с шаровидным графитом, способствует теплопередаче и поэтому может, в частности, при применении с наружным роторным элементом, способствовать отводу тепла из наружного роторного элемента. Могут также применяться одна или несколько сварных деталей.

Согласно одному из предпочтительных вариантов осуществления предлагается, чтобы гондола была снабжена зубчатым венцом, имеющим внутренние зубья для перестановки гондолы по азимуту. Этот зубчатый венец жестко соединен с гондолой и имеет внутренние зубья, с которыми могут входить в зацепление один или несколько азимутальных приводов каждый посредством одной шестерни, чтобы тем самым устанавливать гондолу с ориентацией на ветер. В данном варианте, таким образом, азимутальные приводы стационарно расположены в башне или, например, мачте и выполняют установку с ориентацией на ветер посредством того, что зубчатый венец, снабженный внутренними зубьями, соответственно вращается вокруг по существу вертикальной оси. Зубчатый венец жестко соединен с гондолой, которая при этом вращается вместе с ним.

При этом в гондоле создается дополнительная площадь в отличие от обычных из уровня техники вариантов, в которых азимутальные приводы размещены в гондоле. Кроме того, возможно равномерное распределение азимутальных приводов в окружном направлении. Азимутальные приводы могут распределяться на равных угловых расстояниях, например, 12 азимутальных приводов могут равномерно распределяться так, чтобы через каждые 30° располагался один азимутальный привод. Благодаря этому обеспечивается равномерная передача усилий в зубчатый венец, вследствие чего может уменьшаться нагрузка на азимутальный подшипник и вместе с тем его износ.

Согласно одному из вариантов осуществления предлагается, чтобы гондола имела рабочую платформу, проходящую через генератор. Соответственно этому гондола выполнена так, чтобы доступ к областям впереди и позади генератора и вместе с тем также к области в направлении аэродинамического ротора был возможен с одной и той же рабочей платформы. Таким образом, эта рабочая платформа установлена постоянно и по ней может перемещаться персонал. Предпочтительно по всей ее протяженности можно ходить также в текущем режиме эксплуатации установки.

Кроме того, предлагается, чтобы гондола была предусмотрена для ветровой энергетической установки, которая имеет генератор с номинальной мощностью, равной более 1 МВт. Это достигается за счет конструктивного исполнения гондолы как самонесущей гондолы в том смысле, что она может служить опорой для тяжелых лопастей ротора и элементов генератора. Конструкция гондолы для ветровой энергетической установки с номинальной мощностью, равной 1 МВт или больше, имеет размер, определяемый конкретными исследованиями устойчивости несущей структуры. Такие исследования устойчивости может выполнять специалист, когда он имеет информацию об основной структуре этой гондолы, такую, которая, например, содержится на фигурах. Для ветровых энергетических установок меньшего размера, в частности, значительно меньшего размера, такие вопросы устойчивости и жесткости основной структуры по многим причинам играют второстепенную роль. К этому надо добавить, что генератор меньшего размера может быть выполнен более компактным, и вместе с тем обеспечивается основная жесткость генератора, которую, в принципе, не нужно дополнительно усиливать. Кроме того, ветровые энергетические установки меньшего размера имеют более низкий вес и меньшие длины лопастей ротора и поверхностей лопастей ротора, вследствие чего также снижается сила ветра, действующая на лопасти ротора. Поэтому необходимы меньшие силы для возможных несущих структур, благодаря чему эти несущие структуры, в свою очередь, могут выполняться менее мощными и вместе с тем более легкими. Кроме того, для ветровых энергетических установок меньшего размера в принципе не существует проблем транспортировки. Проблемы транспортировки возникают, в частности, вследствие определенных максимальных наружных размеров, которые заданы системой дорог и при этом практически не поддаются влиянию производителя ветровых энергетических установок. Так, например, наружный диаметр генератора, равный 5 м, является критическим размером, за пределы которого зачастую нельзя выходить при транспортировке по дороге. У ветровых энергетических установок меньшего размера подобных проблем, связанных с транспортировкой при максимальных размерах, не возникает.

Предпочтительно возможен проход по гондоле. Это означает, что гондола имеет такой размер, что взрослый человек, не нагибаясь, может ходить в гондоле. Причем этот человек ходит внутри несущей структуры, а именно, внутри несущей обшивки гондолы. Этим предлагаемая гондола существенно отличается даже от небольших ветровых энергетических установок, в которых иногда трудно сделать различие между машинным держателем и гондолой. Поэтому, в частности, ветровые энергетические установки, доступ к которым в целях технического обслуживания осуществляется снаружи, относятся к другой категории.

Согласно одному из вариантов осуществления гондола отличается тем, что между участком осевой цапфы и башней имеется соединительный участок, соединяющий участок осевой цапфы с башней, который имеет наружную форму, изогнутую или отогнутую от башни к участку осевой цапфы. В частности, предусмотрена, например, изогнутая на 90° или отогнутая на 90° трубчатая форма. Участок ступицы расположен в области генератора и аэродинамического ротора и предусмотрен для опирания генератора и аэродинамического ротора. Это может осуществляться посредством по меньшей мере одного или двух подшипников. Участок осевой цапфы может, например, быть предусмотрен в виде конического участка или конусообразного участка, в частности, в виде переднего конического участка. Этот участок осевой цапфы может при этом иметь по существу горизонтальную центральную ось, которая может совпадать с осью вращения аэродинамического ротора и/или роторного элемента генератора.

При этом соединительный участок выполнен по существу трубчатым, причем эта труба или, соответственно, эта трубчатая форма, в частности, изогнута или отогнута примерно на 90°. Эта трубчатая форма или, соответственно, этот трубчатый соединительный участок имеет при этом предпочтительно с одной стороны кольцеобразную область присоединения к башне, а на другом своем конце кольцеобразную область присоединения к осевой цапфе. Эти две кольцеобразные области присоединения, которые расположены примерно под 90° друг к другу, соединяет этот трубчатый соединительный участок и тем самым соединяет башню с участком осевой цапфы.

Согласно одному из вариантов осуществления предлагается, чтобы вращающаяся часть имела места для присоединения лопастей для крепления каждой лопасти ротора к вращающейся части. Эта часть ступицы является, в частности, описанной вращающейся частью гондолы или, соответственно, является участком этой вращающейся части гондолы. Места для присоединения лопастей проходят в осевом направлении, а именно, относительно оси вращения аэродинамического ротора, которая предпочтительно совпадает с осью вращения генератора, по области присоединения лопастей, которая также может называться осевой областью присоединения лопастей. Внутри этой области присоединения лопастей или осевой области присоединения лопастей расположен также генератор в осевом направлении. При этом генератор может быть также в осевом направлении короче, чем осевая область присоединения лопастей. В любом случае предлагается, чтобы генератор в осевом направлении не находился впереди или позади места для присоединения лопастей. Благодаря этому улучшается и даже оптимизируется силовой поток от аэродинамического ротора на роторный элемент и затем через магнитное поле также на статор. В частности, предотвращается силовой поток, подаваемый от лопастей ротора, должен течь от мест для присоединения лопастей частично в осевом направлении к роторному элементу генератора.

Места для присоединения лопастей могут быть, кроме того, выполнены в виде адаптеров для присоединения лопастей или, соответственно, быть соединены с такими адаптерами. В этом случае каждая лопасть ротора сначала крепится к адаптеру для присоединения лопастей, а этот адаптер для присоединения лопастей затем крепится к месту присоединения лопастей. Адаптер для присоединения лопастей образует при этом, в частности, примерно короткий трубчатый участок, то есть имеет короткую по сравнению с его периметром длину.

Кроме того или альтернативно предлагается, чтобы генератор относительно оси вращения в радиальном направлении был расположен в пределах мест для присоединения лопастей. Таким образом, места для присоединения лопастей и вместе с тем лопасти ротора окружают генератор.

В частности, при этом предлагается вариант осуществления, в котором у генератора часть наружного роторного элемента ступицы ротора является наружным роторным элементом и установлена непосредственно в пределах мест для присоединения лопастей или, соответственно, мест для присоединения адаптеров ступицы. Статор, который соответственно находится внутри, становится частью участка осевой цапфы гондолы. Эта часть, в частности, выполнена на гондоле в виде переднего конического участка. Статор становится при этом частью осевой цапфы или, соответственно, участка осевой цапфы самонесущей гондолы, которая соответствует осевой цапфе. В частности, в данном случае также имеет место интеграция генератора и области присоединения лопастей.

Благодаря этому может, в частности, обеспечиваться по возможности меньшее количество конструктивных элементов и соответственно по возможности меньший вес, что, в свою очередь, может приводить к снижению затрат. Это позволяет отказаться от слишком большого количества деталей, трудоемкой в монтаже дополнительной обшивки и ненужного расхода материала вследствие неблагоприятного силового потока в трансмиссии. Вместо этого достигается по меньшей мере обеспечивается возможность упрощения монтажа, уменьшения количества деталей на стройплощадке и по возможности непосредственной передачи сил от лопасти ротора в генератор.. Кроме того, можно также отказаться от необходимого дополнительного кожуха гондолы, когда область присоединения лопастей также конструктивно охватывает генератор так, что генератор при этом достаточно герметизирован и защищен от погодных воздействий.

В частности, тогда, когда генератор имеет очень длинную конструкцию и большую осевую длину, чем область присоединения лопастей, генератор в осевом направлении по меньшей мере с одной стороны может также проходить за пределы области присоединения лопастей. Кроме того, предлагается ветровая энергетическая установка, включающая в себя башню или мачту и гондолу по одному из описанных выше вариантов осуществления. Предпочтительно, если такая ветровая энергетическая установка имеет по меньшей мере один азимутальный привод, в частности, несколько азимутальных приводов, которые жестко установлены в башне или, соответственно, мачте и каждый одной шестерней входят в зацепление с жестко соединенным с гондолой зубчатым венцом, имеющим внутренние зубья. При этом предлагается прочная конструкция ветровой энергетической установки, сооружаемой с относительно низкими затратами.

Также предлагается способ сооружения ветровой энергетической установки, в частности, сооружения описанной выше ветровой энергетической установки. При этом предлагается, чтобы роторный элемент и статор генератора уже перед подъемом для инсталляции на башне посредством подшипника были соединены друг с другом. При этом монтаж роторного элемента и статора друг с другом осуществляется не на большой высоте гондолы на башне, а вместо этого предлагается предварительное изготовление на заводе и/или предварительное изготовление на стройплощадке.

Предпочтительно электрические устройства уже предварительно установлены в гондоле, прежде чем она будет поднята для монтажа на башне. Благодаря этому также может упрощаться монтаж и, кроме того, при этом также сводятся к минимуму источники ошибок при монтаже.

Ниже изобретение в качестве примера более подробно поясняется на вариантах осуществления со ссылкой на прилагаемые чертежи, на которых показано:

Фиг. 1 - упрощенно ветровая энергетическая установка на виде в перспективе.

Фиг. 1а - упрощенно предлагаемая изобретением ветровая энергетическая установка на виде в перспективе.

Фиг. 2 - предлагаемая изобретением гондола схематично на виде в перспективе в сечении.

Фиг. 3 - гондола, как на фиг. 2, но частично в покомпонентном изображении, в соответствии с компонентами конструкции при сооружении ветровой энергетической установки.

Фиг. 4 - увеличенный фрагмент передней части гондолы фиг. 2.

Фиг. 5 - сегмент части гондолы, изображенной на фиг. 2 и 3, который предусмотрен для крепления лопасти ротора.

Фиг. 6 - фрагмент гондолы в соответствии с фиг. 2, а именно место для присоединения лопасти для крепления лопасти ротора.

Фиг. 7 - фрагмент гондолы, показанной на фиг. 2 и 3, в области части помещенного в гондолу генератора.

Фиг. 8 - гондола на виде в перспективе снаружи.

Фиг. 9 - соответствует изображению фиг. 2, при этом дополнительно на чертеже схематично показан машинный держатель согласно уровню техники, для пояснения отличия от решений, известных из предшествующего уровня техники.

Фиг. 10 - предлагаемая изобретением гондола другого варианта осуществления схематично на виде сбоку в сечении.

Фиг. 11 - предлагаемая изобретением гондола другого варианта осуществления схематично на виде сбоку в сечении.

Фиг. 12 - гондола с фиг. 11 на виде в перспективе.

Фиг. 13a-13d - разные варианты осуществления изогнутой области гондолы.

Фиг. 14 - для наглядного пояснения имеющейся свободной площади известная из предшествующего уровня техники гондола сравнивается с предлагаемой изобретением гондолой одинакового класса мощности.

Фиг. 15 - предлагаемая изобретением гондола на виде сбоку для наглядного пояснения потока охлаждающего воздуха.

Фиг. 16 - один из вариантов осуществления предлагаемой изобретением гондолы на виде в перспективе в сечении.

Фиг. 17 - вариант осуществления фиг. 16 на виде в перспективе без сечения.

Ниже идентичные ссылочные обозначения могут указывать аналогичные, но не идентичные элементы. Кроме того, одинаковые элементы могут быть изображены в различном масштабе.

На фиг. 1 и 1а показана в каждом случае ветровая энергетическая установка 100, 100′, имеющая башню 102, 102′ и гондолу 104, 104′. На гондоле 104, 104′ расположен ротор 106, 106′, снабженный тремя лопастями 108, 108′ ротора и обтекателем 110, 110′. Ротор 106, 106′ при эксплуатации приводится ветром во вращательное движение и при этом также осуществляет привод генератора в гондоле 104, 104′.

Гондола 104, 104′ имеет неподвижную часть 2 и вращающуюся часть 4. Неподвижная часть 2 проходит вовнутрь вращающейся части 4. Неподвижная часть 2 посредством азимутального фланца 6 закреплена на азимутальном подшипнике 8, который, в свою очередь, закреплен на фланце 10 башни 12. У башни 12 изображена только ее верхняя область, а именно, ее головная часть 26 башни, снабженная рабочей платформой 14.

В башне 12 вблизи фланца 10 башни и вблизи азимутального подшипника 8 расположены азимутальные приводы 16. Азимутальные приводы 16 имеют каждый только условно обозначенную шестерню 18, которая воздействует на зубчатый венец 20, имеющий внутренние зубья. Внутренние зубья детально не изображены. Зубчатый венец 20 может быть соединен с внутренним кольцом 22 азимутального подшипника 8 и тем самым или иным образом жестко соединен с азимутальным фланцем 6 и вместе с тем с гондолой 1, а именно, с неподвижной частью 2 гондолы 1. Азимутальные приводы 16, которые жестко установлены в двух кольцевых дисках 24 в башне 12, могут, таким образом, устанавливать гондолу с ориентацией на ветер путем соответствующей перестановки по азимуту.

Кольцевые диски 24 жестко установлены на высоте фланца 10 башни и при этом обеспечивают также высокую жесткость башни 12 в показанной головной части 26 башни. Изображенные люди 28 наглядно поясняют соотношения размеров в головной части 26 башни, а также в гондоле 1.

Посредством трубчатого несущего участка 30, который также служит для повышения жесткости и устойчивости гондолы 1, неподвижная часть 2 гондолы 1 прикреплена к описанному азимутальному фланцу 6 на азимутальном подшипнике 8 и вместе с тем к головной части 26 башни. Таким образом, посредством этого трубчатого несущего участка 30 в башню 12 отводятся также силы, которые действуют на гондолу 1. Из башни 12 человек 28 может, например, по лестнице 32 через кольцевые диски 24, азимутальный подшипник 8 и трубчатый несущий участок 30 иметь доступ в гондолу 1. Все эти элементы предоставляют достаточно площади, чтобы человек 28 смог попасть в гондолу 1, а также чтобы предметы из башни 12 могли попадать в гондолу 1.

Неподвижная часть 2 гондолы 1 имеет трубчатую окружную область 34. В соединительной области 36, которая в математическом смысле образует область пересечения трубчатого несущего участка 30 и трубчатой окружной области 34, трубчатый несущий участок 30 и трубчатая окружная область 34 жестко соединены друг с другом. Трубчатый несущий участок 30 и трубчатая окружная область 34 могут быть также по меньшей мере на отдельных участках изготовлены из одной части, например, в виде литой детали. Соединительная область 36 проходит в трех измерениях в пространстве и благодаря этому может воспринимать силы из гондолы 1 в самых разных направлениях и отводить в башню 12.

Начинающийся от башни 12 трубчатый несущий участок 30 заканчивается на уровне платформы 38. Платформа 38 служит по существу для того, чтобы персонал, в частности, сервисный персонал, мог входить в гондолу 1 и работать в ней. Кроме того, на платформе 38 расположены приборы, такие как, например, шкафы 40 управления для разных целей. Дополнительно платформа 38 может также способствовать повышению устойчивости и, в частности, жесткости гондолы 1. По платформе 38 люди в гондоле могут передвигаться в дальние ее участки и предоставляется большое пространство для передвижения.

Гондола 1 имеет задний участок 42, который по определению отвернут от ветра. Этот задний участок 42 может способствовать устойчивости и, в частности, жесткости гондолы 1, но в остальном воспринимает меньше механических сил, чем трубчатый несущий участок 30 и трубчатая окружная область 34. По этой причине задний участок 42 может быть также выполнен, например, меньшим по толщине материала или из менее прочного вида материала. Например, для этого заднего участка 42 предлагается применение алюминия.

Спереди к окружной области 34 примыкает генераторный участок 44. В генераторном участке 44 расположен генератор 46. Генератор 46 включает в себя статор 48 и роторный элемент 50 генератора, которое выполнено в виде наружного роторного элемента, то есть распложено снаружи вокруг статора 48. Как статор 48, так и роторный элемент 50 выполнены примерно кольцеобразно. Статор 48 жестко соединен с неподвижной частью 2 гондолы 1. Благодаря этому статор 48, который имеет сравнительно большую массу и вместе с тем большой вес, опирается на неподвижную часть 2 и вместе с тем на гондолу 1. Изображение на чертеже человека 28 поясняет, что соотношения размеров вполне допускают, чтобы персонал мог проходить по платформе 38 до генератора 46 и сквозь него. Платформа 38 граничит при этом по существу только с элементами неподвижной части 2, и поэтому такой проход возможен также в режиме текущей эксплуатации ветровой энергетической установки.

К генераторному участку 44 неподвижной части 2 примыкает передний участок 52, который также может обозначаться передним коническим участком 52. Этот конический участок 52 по существу заменяет известную до сих пор осевую цапфу. Передний конический участок 52, который является частью неподвижной части 2 гондолы 1, находится в области аэродинамического ротора 106, имеющего три лопасти 56 ротора, из которых изображена только одна. Передний конический участок 52 имеет рядом с платформой 38 отверстие 58 для технического обслуживания, через которое персонал от неподвижной части 2 может попадать во вращающуюся часть 4 и, в частности, к лопасти 56 ротора или, соответственно, в предусмотренные устройства.

С переднего конического участка 52, кроме того, доступен корпус 60 контактного кольца, который служит для того, чтобы передавать электрические сигналы, будь то информационные сигналы или энергетические сигналы, от неподвижной части 2 к вращающейся части 4 или наоборот. Кроме того, в гондоле 1 и вместе с тем в неподвижной части 2 расположен крановый рельс 62, который проходит от заднего участка 42 до переднего конического участка 52 и от переднего конического участка 52 до корпуса 60 контактного кольца. На крановом рельсе 62 установлена электрическая лебедка 64 для управления тяжелыми предметами, включая инструмент, которая показана в двух положениях. Лебедка 64 может по существу смещаться по крановому рельсу 62 до корпуса 60 контактного кольца и при этом, например, поднимать грузы в башне 12 и транспортировать к переднему коническому участку 52 и от переднего конического участка 52, например, к лопасти 56 ротора.

Вращающаяся часть 4 гондолы 1 посредством заднего подшипника 70 и переднего подшипника 72 оперта с возможностью вращения вокруг по существу горизонтальной оси на неподвижную часть 2. Задний подшипник 70 расположен вблизи генератора 46 примерно рядом со статором 48. На вращающейся части 4 в области заднего подшипника 70 предусмотрен защитный фартук 74, который защищает задний подшипник 70 от погодных воздействий.

От участка 76 корпуса роторного элемента, служащего опорой для роторного элемента 50 и охватывающего его в виде цилиндрического корпуса, к заднему подшипнику 70 проходит кольцеобразная несущая структура 78. Благодаря этому вращающаяся часть 4 гондолы 1 в этой задней области вращающейся части 4 опирается на задний подшипник 70.

К участку 76 корпуса роторного элемента примыкает участок 80 ступицы. Этот участок 80 ступицы прикреплен к участку 76 корпуса роторного элемента, и в этой области предусмотрен также тормозной диск 82, который с помощью средства 84 торможения может фиксировать роторный элемент 50, что, в частности, может быть необходимо для работ по техническому обслуживанию. На этом участке 80 ступицы расположены крепления 86 лопастей ротора, имеющие каждая место 88 для присоединения лопасти для крепления в каждом случае одной лопасти 56 ротора. В креплении 86 лопасти ротора расположен привод 90 угла наклона, в каждом случае имеющий соответствующий блок 92 для установки угла наклона. Такой блок 92 для установки угла наклона применяется для эксплуатации двигателей для установки угла наклона и может содержать блоки управления и/или аккумуляторы энергии для аварийной перестановки или иное. В данном случае в качестве примера изображен блок 92 для установки угла наклона для других модулей управления или электроснабжения приводов угла наклона. Благодаря этому может изменяться угол установки лопасти 56 рот