Способ изготовления емкости прямого дутьевого формирования и упаковка

Иллюстрации

Показать все

Изобретение относится к способу изготовления практичной емкости прямого дутьевого формования, который имеет превосходные барьерные свойства в отношении топлива, химических соединений, различных газов, включая кислород. Способ изготовления емкости дутьевого формования, содержащей метаксилиленовую группу полиамид (C), который диспергирован и расслоен в полиолефине (A). Способ включает использование фильеры, имеющей корпус с каналом для потока, в котором течет расплавленный полимер, экструдированный из экструдера, и цилиндрическую полость, которая имеет отверстие в нижней стороне и канал для потока в верхней стороне. Дорн имеет кончик в верхней стороне, который указывает на отверстие конца канала для потока. Зазор пути потока сформирован между полостью корпуса фильеры и дорном. Зазор пути потока образует путь потока полимера и опорную часть, сформированную в зазоре пути потока. Опорная часть удерживает дорн в полости корпуса фильеры. Технический результат, достигаемый при использовании способа по изобретению, заключается в получении качественных многослойных емкостей на установках для изготовления однослойных емкостей. 3 з.п. ф-лы, 12 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к способу изготовления емкости посредством прямого формования с раздувом (также называемого "экструзионно-выдувным формованием") и к упаковке, включающей такую емкость.

УРОВЕНЬ ТЕХНИКИ

[0002] Емкости для содержания углеводородов, различных химических соединений, моющих средств для ванных комнат, чистящих средств, косметических средств, напитков и пастообразных пищевых продуктов включают, например, топливный бак для автомобилей или небольших двигателей, бутылку, банку и тюбик. Во многих случаях, металл и стекло, традиционно используемые в качестве материала, заменяют на пластик, поскольку пластик снижает вес упаковки, не требует антикоррозийной обработки, является менее хрупким и позволяет получать любые желаемые геометрические конфигурации.

[0003] Многие емкости для сохранения различных химических соединений, оборудования для ванных комнат, санитарных продуктов, косметических средств, напитков и пастообразных продуктов питания формируют с помощью полиолефинов, таких как полиэтилены высокой плотности (далее в настоящем документе иногда обозначаемые сокращением «HDPE»), линейные полиэтилены низкой плотности (далее иногда обозначаемые сокращением «LLDPE»), полипропилены (далее иногда обозначаемые сокращением «РР») и сложные полиэфиры, такие как полиэтилентерефталаты (далее иногда обозначаемые сокращением «PET»). Многие емкости имеют превосходную механическую прочность, формуемость, конструкцию и экономическую эффективность. Однако емкости имеют такие недостатки, что компонент хранимого объекта рассеивается в атмосфере через стенку емкости, что ослабляет функцию хранимого объекта, и что кислород проникает извне через стенку емкости, чтобы окислять хранимый объект, что ослабляет вкус.

[0004] Чтобы устранять эти недостатки, используют технологию, которая придает пластиковой емкости газобарьерные свойства. Например, известен способ формирования многослойной структуры посредством расслаивания барьерного полимера, такой как сополимер этилена и винилового спирта (далее в настоящем документе иногда обозначаемая сокращением «EVOH») в качестве промежуточного слоя пластиковой емкости (см. патентные документы 1 и 2). Также известен способ изготовления однослойной емкости из композиции, в которой полиамид, такой как нейлон 6 или 6/66, и HDPE смешивают с адгезивным полимером (см. патентные документы 3 и 4). Кроме того, раскрыт способ изготовления однослойной емкости посредством использования полиметаксилиленадипамида (далее иногда обозначаемого сокращением «N-MXD6») с более хорошими барьерными свойствами, чем таковые у полиамида, такого как нейлон 6 (см. патентные документы 5 и 6).

[0005] Традиционно такую емкость изготавливают на производственных установках, оборудованных экструдером 100 и цилиндрической фильерой 110, как показано на фиг. 5 и 7. Указанный полимер подают в экструдер 100, плавят и смешивают, придают цилиндрическую геометрическую форму, пропуская через цилиндрическую фильеру 110, и экструдируют в виде цилиндрической заготовки из выпуска 114 в нижней части 112 цилиндрической фильеры 110.

[0006] В целом, в цилиндрической фильере 110, которая создает однослойную емкость, предусмотрен корпус 120 фильеры, который имеет полость 122, и дорн 130, расположенный в полости 122 корпуса 120 фильеры, дорн 130 формирует пути 150 потоков полимера. Как показано на фиг. 5 и 6, дорн 130 имеет выемку 132 с геометрической формой сердца или спирали, которая закреплена на верхней части 116 цилиндрической фильеры 110 с тем, чтобы формировать пути 150 потоков полимера в полости 122. В цилиндрической фильере 110, оборудованной этими дорнами 130, расплавленный полимер, подаваемый из экструдера 100 в впуск полимера, предусмотренный в дорне 130, делят цилиндрической боковой стороной дорна 130, чтобы потоки протекали в двух направлениях. Разделенные потоки полимера вокруг дорна 130 вдоль путей 150 потоков полимера и выемки 132, сформированной на дорне 130, подлежат постепенному приданию цилиндрической геометрической формы и затем экструдированию из выпуска 114 цилиндрической фильеры 110 в качестве цилиндрического формованного изделия (заготовки).

[0007] Как показано на фиг. 7, в цилиндрической фильере 110 часть, где вместе соединяется расплавленный полимер, которому следует придать цилиндрическую геометрическую форму, в целом обозначают как «шов». Например, когда используют цилиндрическую фильеру 110, в которой предусмотрен дорн 130 в форме сердца, расплавленный полимер, который подают из экструдера 100 в цилиндрическую фильеру 110, протекает вниз от впуска, предусмотренного на дорне 130 для путей 150 потоков полимера, и разделяется цилиндрической боковой стороной дорна 130, чтобы течь в направлениях влево и вправо. Поскольку правый и левый пути потоков становятся уже в направлении своих концов, расплавленный полимер постепенно перетекает из путей потоков и течет наклонно вниз. Наконец, расплавленный полимер соединяется вместе на противоположной стороне относительно части, где расплавленный полимер делят. Эта часть, где расплавленный полимер соединяется вместе, представляет собой шов 160. Даже в цилиндрической фильере 110, в которой предусмотрен дорн 130 в форме двойного сердца или спирали, расплавленный полимер, подаваемый из экструдера, протекает от боковой стороны дорна к путям для потока полимера, обеспеченным на дорне 130, таким же образом. Конец потока полимера соединяется на участке вдоль дорна 130, формирующем шов 160.

Список патентных публикаций:

[0008] Патентный документ 1: JP 06-328634

Патентный документ 2: JP 07-052333

Патентный документ 3: JP 55-121017

Патентный документ 4: JP 58-209562

Патентный документ 5: JP 2005-206806

Патентный документ 6: JP 2007-177208 A

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0009] Многослойные емкости с EVOH, наслоенной в качестве промежуточного слоя, раскрытые в патентных документах 1 и 2, имеют более хорошие барьерные свойства, чем стандартные емкости, сформированные из полиолефина и сложного полиэфира. Кроме того, многослойные емкости позволяют контролировать барьерные свойства посредством толщины EVOH-ламинированного слоя. Соответственно, можно легко получать многослойную емкость, которая имеет желаемые барьерные свойства.

Однако эти многослойные емкости нельзя получать на производственных установках для стандартных однослойных емкостей, чтобы получать многослойную емкость на производственных установках для стандартных однослойных емкостей, по меньшей мере два или более экструдера необходимо добавить, чтобы экструдировать адгезивный полимер и EVOH, соответственно, и специальную цилиндрическую фильеру, способную формировать многослойные структуры, необходимо устанавливать в производственные установки. Следовательно, получение многослойной емкости в производственных установках для стандартных однослойных емкостей повышает экономическую нагрузку.

Кроме того, чтобы повторно использовать остающийся материал и счищенный материал, образующийся при получении многослойной емкости, необходим экструдер для остающегося материала, чтобы экструдировать остающийся материал и счищенный материал. Однако, исходя из баланса между инвестициями, необходимым, чтобы добавить экструдер для повторного использования, и стоимостью, обусловленной выбрасыванием остающегося материала и счищенного материала без повторного использования, последнее можно отбирать в соответствии с геометрической формой многослойной емкости. Это может служить причиной нагрузки на окружающую среду.

[0010] Согласно способам, раскрытым в патентных документах с 3 до 6, включая диспергирование и расслаивание полиамида в стенке емкости, облегчают получение стандартных однослойных емкостей, можно использовать с небольшим изменением, и диспергирование и расслаивание полиамидного полимера на композицию может придавать почти те же барьерные свойства, как таковые у многослойной структуры.

Кроме того, поскольку полимерные материалы, формирующие емкости, являются теми же самыми, что и те, которые формируют остающийся материал и счищенный материал, образуемые при получении емкости, то остающийся материал и счищенный материал можно распылять с использованием распылителя и смешивать с гранулами, подаваемыми в экструдер, и повторно использовать в качестве одного из материалов, образующих емкость. В частности, согласно способам, раскрытым в патентных документах 6 и 7, включающим использование N-MXD6, сам барьерный полимер имеет более высокие барьерные свойства, чем нейлон 6, чтобы придать емкости превосходные барьерные свойства.

Однако емкость с полиамидом, диспергированным и наслоенным на стенку, имеет такой недостаток, что полиамид едва присутствует около шва в стенке, что вызывает ухудшение барьерных свойств емкости. Кроме того, около шва снижается количество полиамида по сравнению с другими частями и, таким образом, разность скоростей усадки в формованном изделии во время способа формования вызывает проблему деформации емкости.

[0011] Цель настоящего изобретения состоит в том, чтобы предоставить способ изготовления емкости дутьевого формования с низкой стоимостью, превосходными барьерными свойствами и без деформации.

[0012] Настоящее изобретение относится к следующему способу изготовления емкости дутьевого формования.

Способ изготовления емкости дутьевого формования, емкость содержит от 60 до 90 вес.% полиолефина (A), от 5 до 30 вес.% модифицированного кислотой полиолефина (B) и от 2 до 35 вес.% содержащего метаксилиленовую группу полиамида (C), содержащий метаксилиленовую группу полиамид (C) диспергируют и расслаивают в полиолефин (A), способ включает: использование фильеры, в которой предусмотрен корпус фильеры, который имеет канал для потока, по которому протекает расплавленный полимер, экструдируемый из экструдера, и цилиндрическую полость, которая имеет отверстие на нижней стороне, и канал для потока на верхней стороне, отверстие и канал для потока открываются вниз и вверх, соответственно, дорн, который имеет кончик в верхней стороне, кончик указывает на отверстие конца канала для потока, и опорную часть, обеспеченную в зазоре пути потока так, что зазор пути потока, обеспеченный между полостью корпуса фильеры и дорном, определяет путь потока полимера, опорная часть удерживает дорн в полости корпуса фильеры; установление температуры фильеры так, чтобы она попадала в диапазон между температурой начала плавления и температурой окончания плавления содержащего метаксилиленовую группу полиамида (C), температуру начала плавления и температуру окончания плавления измеряют с использованием дифференциального сканирующего калориметра; подачу расплавленного полимера, полученного в экструдере в канал для потока; придание расплавленному полимеру, протекающему через канал для потока, цилиндрической геометрической формы, оборачивание вокруг дорна с помощью кончика дорна; пропускание цилиндрического расплавленного полимера через опорную часть в зазор пути потока, чтобы разделять цилиндрический расплавленный полимер непосредственно перед опорной частью; соединение разделенного полимера непосредственно после опорной части с тем, чтобы снова придавать соединяемому расплавленному полимеру цилиндрическую геометрическую форму; и экструдирование цилиндрического расплавленного полимера из отверстия.

[0013] Отформованная прямым раздувом емкость, изготовленная способом по изобретению, является практичной и без деформации, имеет превосходные барьерные свойства в отношении топлива, химических соединений, различных газов, включая кислород.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0014] На фиг. 1 (a) представлен вертикальный вид в разрезе области около цилиндрической фильеры из примера устройства прямого раздува, оборудованного цилиндрической фильерой, используемой в настоящем изобретении.

На фиг. 1(b) представлен горизонтальный вид в разрезе вдоль линии b-b на фиг. 1(a).

На фиг. 2 (a) представлена схематическая диаграмма в вертикальном виде в разрезе вдоль направления потока расплавленного полимера в цилиндрической фильере, представленной на фиг. 1(a).

На фиг. 2(b) представлена схематическая диаграмма, которая иллюстрирует пример состояния дисперсии содержащего метаксилиленовую группу полиамида (C) в горизонтальном виде в разрезе вдоль линии b-b на фиг. 2(a).

На фиг. 3 (a) представлен вертикальный вид в разрезе области около цилиндрической фильеры из примера устройства прямого раздува, оборудованного другой цилиндрической фильерой, используемой в настоящем изобретении.

На фиг. 3 (b) представлен горизонтальный вид в разрезе вдоль линии b-b на фиг. 3(a).

На фиг. 4 представлен график, иллюстрирующий установление температуры цилиндрической фильеры.

На фиг. 5 представлен вид в поперечном разрезе области около цилиндрической фильеры стандартного устройства прямого раздува.

На фиг. 6(a) представлен вертикальный вид в разрезе вдоль линии a-а на фиг. 5.

На фиг. 6(b) представлен вертикальный вид в разрезе вдоль линии b-b на фиг. 5.

На фиг. 7 (a) представлена схематическая диаграмма в вертикальном виде в разрезе вдоль направления потока расплавленного полимера в цилиндрической фильере, представленной на фиг. 5.

На фиг. 7(b) представлена схематическая диаграмма, которая иллюстрирует пример состояния дисперсии содержащего метаксилиленовую группу полиамида (C) в горизонтальном виде в разрезе вдоль линии b-b на фиг. 7(a).

ПРЕДПОЧТИТЕЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

[0015] Полиолефин (A)

Полиолефин (A), используемый в настоящем изобретении, представляет собой основной материал, образующий емкость. В качестве полиолефина (A) можно использовать какие-либо полиолефины, доступные для емкости дутьевого формования. Например, полиолефин (A) включает различные полиэтилены, такие как полиэтилены высокой плотности, полиэтилены средней плотности, линейные полиэтилены низкой плотности, полиэтилены низкой плотности и металлоценовые полиэтилены, и различные полипропилены, такие как пропиленовые гомополимеры, этилен-пропиленовые блок-сополимеры и этилен-пропиленовые статистические сополимеры.

[0016] Предпочтительно, вязкость расплава и молекулярную массу полиолефина (A) соответствующим образом выбирают с точки зрения предотвращения возникновения вытяжки, которая ведет к неравномерной толщине формованного изделия, и с точки зрения повышения прочности самой структуры.

Вязкость расплава и молекулярную массу полиолефина (A) типично указывают с помощью скорости течения расплава (MFR). MFR измеряют в соответствии со способом, описанным в JIS K7210. MFR полиэтилена и полипропилена измеряют при 190°C и 2,16 кгс и при 230°C и 2,16 кг, соответственно. MFR предпочтительно попадает в диапазон от 0,1 до 2,5 (г/10 минут), более предпочтительно от 0,15 до 2,0 (г/10 минут, при 190°C и 2,16 кгс), еще более предпочтительно от 0,2 до 1,5 (г/10 минут, при 190°C и 2,16 кгс).

В целом, содержащий метаксилиленовую группу полиамид имеет более высокую плотность, чем полиолефин, и, таким образом, полиэтилен, смешанный с содержащим метаксилиленовую группу полиамидом, вероятно, увеличивает вытяжку в способе формования, по сравнению с самим полиэтиленом. Полиолефин (A), используемый в настоящем изобретении, с a MFR от 0,1 до 2,5, позволяет избегать слишком большого увеличения вытяжки в способе формования с тем, чтобы предотвращать ухудшение точности толщины формованного изделия, а также позволяет улучшать состояние дисперсии содержащего метаксилиленовую группу полиамида (C).

[0017] В полиолефине (A), добавки, такие как антиоксидант, матирующее средство, термостойкий стабилизатор, стабилизатор атмосферостойкости, поглотитель ультрафиолетовых лучей, зародышеобразователь, пластификатор, замедлитель воспламенения, антистатическое средство, защищающее цвет средство и смазывающее средство можно добавлять без ослабления эффекта изобретения. Не ограничиваясь этими добавками, можно комбинировать различные материалы. Кроме того, с целью улучшения устойчивости к вытяжке и прочности при падении и ударе, устойчивости к напряжению под действием окружающей среды, и т.п., можно примешивать один или несколько типов полиолефинов, отличных от полиолефина (A).

[0018] Модифицированный кислотой полиолефин (B)

Модифицированный кислотой полиолефин (B), используемый в настоящем изобретении, может представлять собой полиолефин, модифицированный привитой ненасыщенной карбоновой кислотой или ее ангидридом, который широко используют в качестве адгезивного полимера, в целом. В настоящем изобретении, модифицированный кислотой полиолефин (B) выполняет функцию поддержания прочности структуры посредством образования связи между полиолефином (A) и содержащим метаксилиленовую группу полиамидом (C), диспергированным в полиолефине (A). Определенные типы модифицированного кислотой полиолефина (B) предпочтительно используют в зависимости от типов полиолефина (A). Например, когда полиолефин (A) представляет собой полиэтилен, предпочтительно используют полиэтилен, модифицированный привитой ненасыщенной карбоновой кислотой или ее ангидридом. Когда полиолефин (A) представляет собой полипропилен, предпочтительно используют полипропилен, модифицированный привитой ненасыщенной карбоновой кислотой или ее ангидридом.

[0019] Конкретные примеры ненасыщенной карбоновой кислоты или ее ангидрида включают акриловую кислоту, метакриловую кислоту, α-этилакриловую кислоту, маллеиновую кислоту, фумаровую кислоту, итаконовую кислоту, цитраконовую кислоту, тетрагидрофталевую кислоту, хлормаллеиновую кислоту, бутенилянтарную кислоту и их ангидриды. В частности, предпочтительно используют маллеиновую кислоту и малеиновый ангидрид. Различные известные способы полиолефина для получения привитого сополимера с ненасыщенной карбоновой кислотой или ее ангидридом используют, чтобы получать модифицированный кислотой полиолефин. Например, полиолефин плавят с использованием экструдера или тому подобного, растворяют в растворителе, суспендируют в воде или тому подобное, перед тем, как прививаемый мономер добавляют в полиолефин.

[0020] MFR модифицированного кислотой полиолефина (B), используемого в настоящем изобретении, больше таковой полиолефина (A) в от 1 до 10 раз, предпочтительно от 1,5 до 9 раз, более предпочтительно от 2 до 8 раз. Модифицированный кислотой полиолефин (B) с MFR меньше чем в 1 раз, чем у полиолефина (A), не является предпочтительным, поскольку содержащий метаксилиленовую группу полиамид (C) слишком сильно присутствует в заготовке, чтобы, возможно, снижать адгезионную прочность смыкания у структуры, как описано ниже. Модифицированный кислотой полиолефин (B) с MFR больше таковой полиолефина (A) больше чем в 10 раз также не является предпочтительным, поскольку содержащий метаксилиленовую группу полиамид (C) может выходить в поверхности структуры, чтобы вызывать ухудшение внешнего вида и барьерных свойств.

[0021] MFR модифицированного кислотой полиолефина (B) предпочтительно является относительно высокой с точки зрения сохранения стабильность способа формования и прочности структуры. MFR модифицированного кислотой полиолефина (B) измеряют аналогичным образом, как таковую полиолефина (A) в соответствии со способом, описанным в JIS K7210, который предпочтительно составляет от 0,5 до 5 (г/10 минут), более предпочтительно от 0,6 до 4 (г/10 минут), еще более предпочтительно от 0,7 до 3 (г/10 минут).

[0022] В модифицированном кислотой полиолефине (B) добавки, такие как антиоксидант, матирующее средство, термостойкий стабилизатор, стабилизатор атмосферостойкости, поглотитель ультрафиолетовых лучей, зародышеобразователь, пластификатор, замедлитель воспламенения, антистатическое средство, защищающее цвет средство и смазывающее средство, можно добавлять без ослабления эффекта изобретения. Не ограничиваясь этими добавками, можно комбинировать различные материалы 4.

[0023] Содержащий метаксилиленовую группу полиамид (C), используемый в настоящем изобретении, придает эффект улучшения барьерных свойств структуры. Диаминовое звено, образующее содержащую метаксилиленовую группу полиамид (C), содержит предпочтительно 70 моль.% или больше, более предпочтительно 80 моль.% или больше, еще более предпочтительно 90 моль.% или больше метаксилилендиаминового звена, с точки зрения газобарьерных свойств.

Диамины, отличные от метаксилилендиамина, включают п-ксилилендиамин, 1,3-бис(аминометил)циклогексан, 1,4-бис(аминометил)циклогексан, тетраметилендиамин, гексаметилендиамин, нонанметилендиамин и 2-метил-1,5-пентандиамин, но не ограничены этим.

[0024] Звено дикарбоновой кислоты, образующее содержащий метаксилиленовую группу полиамид (C), содержит предпочтительно 50 моль.% или больше, более предпочтительно 60 моль.% или больше, еще более предпочтительно 70 моль.% или больше α, ω-алифатической дикарбоновой кислоты с точки зрения кристалличности.

α, ω-алифатическая дикарбоновая кислота включает субериновую кислоту, адипиновую кислоту, азелаиновую кислоту, себациновую кислоту и додекановую кислоту. С точки зрения газового свойства и кристалличности, предпочтительно используют адипиновую кислоту и себациновую кислоту.

Звенья дикарбоновой кислоты, отличные α, ω-алифатического звена дикарбоновой кислоты, включают алициклические дикарбоновые кислоты, такие как 1,3-циклогександикарбоновая кислота и 1,4-циклогександикарбоновая кислотая; ароматические дикарбоновые кислоты, такие как терефталевая кислота, изофталевая кислота, o-фталевая кислота, ксилилендикарбоновая кислота, и нафталиндикарбоновая кислота, но не ограничены этим.

Среди них изофталевая кислота и 2,6-нафталиндикарбоновая кислота являются предпочтительными, поскольку эти кислоты могут легко обеспечивать полиамид превосходными газобарьерными свойствами без ингибирования реакции поликонденсации во время образования содержащего метаксилиленовую группу полиамида (C). Содержание звена изофталевой кислоты и 2,6-нафталиндикарбоновой кислоты предпочтительно составляет 30 моль.% или менее, более предпочтительно 20 моль.% или менее, еще более предпочтительно 15 моль.% или менее, основываясь на звене дикарбоновой кислоты, с точки зрения диспергируемости содержащего метаксилиленовую группу полиамида (С) и барьерных свойств структуры.

[0025] Помимо диаминовых звеньев и звеньев дикарбоновой кислоты, в качестве сополимеризуемых звеньев, образующих содержащий метаксилиленовую группу полиамид (C), можно использовать лактамы, такие как ε-капролактам и лауролактам; алифатические аминокарбоновые кислоты, такие как аминокапроновая кислота и аминоундекановая кислота; и ароматические аминокарбоновые кислоты, такие как п-аминометилбензойная кислота, без ухудшения эффекта настоящего изобретения.

[0026] Содержащий метаксилиленовую группу полиамид (C) получают посредством поликонденсации в расплаве (полимеризации в расплаве). Например, соль нейлона, состоящую из диамина и дикарбоновой кислоты, нагревают в присутствии воды при повышенном давлении и затем полимеризуют в состоянии расплава, при этом удаляя добавленную воду и конденсированную воду. Альтернативно, содержащий метаксилиленовую группу полиамид (C) получают посредством непосредственного добавления диамина в расплавленную дикарбоновую кислоту посредством поликонденсации. В этом случае, чтобы поддерживать реакционную систему в гомогенном состоянии, жидкость непрерывно добавляют в дикарбоновую кислоту, во время чего смесь нагревают, избегая понижения температуры реакционной системы ниже температуры плавления образуемого олигоамида и полиамида, чтобы содействовать поликонденсации.

[0027] В системе поликонденсации для образования содержащего метаксилиленовую группу полиамида (C), содержащее атом фосфора соединение можно добавлять, чтобы достигать эффектов, оказываемых на развитие реакции амидирования и на предотвращение развития окраски во время поликонденсации.

Содержащее атом фосфора соединение включает диметилфосфиновую кислоту, фенилметилфосфиновую кислоту, гипофосфористую кислоту, гипофосфит натрия, гипофосфит калия, гипофосфит лития, этилгипофосфит, фенилфосфонистую кислоту, фенилфосфонит натрия, фенилфосфонит калия, фенилфосфонит лития, этилфенилфосфонит, фенилфосфоновую кислоту, этилфосфоновую кислоту, фенилфосфонат натрия, фенилфосфонат калия, фенилфосфонат лития, диэтилфенилфосфонат, этилфосфонат натрия, этилфосфонат калия, фосфористую кислоту, гидрофосфит натрия, фосфит натрия, триэтилфосфит, трифенилфосфит и пирофосфористую кислоту. Среди них особенно предпочтительно используют гипофосфиты металлов, такие как гипофосфит натрия, гипофосфит калия и гипофосфит лития, из-за выраженных эффектов, оказываемых на развитие реакции амидирования и на предотвращение развития окраски. Особенно предпочтительным является гипофосфит натрия. Однако содержащее атом фосфора соединение, которое можно использовать в настоящем изобретении, не ограничено этими соединениями.

[0028] Добавляемое количество содержащего атом фосфора соединения, которое добавляют в поликонденсационную систему для образования содержащего метаксилиленовую группу полиамида (C), предпочтительно составляет от 1 до 500 ч./млн, более предпочтительно от 5 до 450 ч./млн, еще более предпочтительно 10 до 400 ч./млн, что эквивалентно концентрации атомов фосфора в содержащем метаксилиленовую группу полиамиде (C) с точки зрения защиты цвета содержащего метаксилиленовую группу полиамида (C) во время поликонденсации.

[0029] В поликонденсационной системе для образования содержащего метаксилиленовую группу полиамида, соединение щелочного металла или соединение щелочноземельного металла предпочтительно используют вместе с содержащим атом фосфора соединением. Для того чтобы предотвращать развитие окраски содержащего метаксилиленовую группу полиамида во время поликонденсации, содержащее атом фосфора соединение должно присутствовать в достаточном количестве. Однако, чтобы корректировать скорость реакции амидирования, соединение щелочного металла или соединение щелочноземельного металла предпочтительно существует совместно с содержащим атом фосфора соединением.

Такие соединения металлов включают, например, гидроксиды щелочных металлов/щелочноземельных металлов, такие как гидроксид лития, гидроксид натрия, гидроксид калия, гидроксид рубидия, гидроксид цезия, гидроксид магния, гидроксид кальция и гидроксид бария; и ацетаты щелочных металлов/щелочноземельных металлов, такие как ацетат лития, ацетат натрия, ацетат калия, ацетат рубидия, ацетат цезия, ацетат магния, ацетат кальция и ацетат бария, но их можно использовать, не ограничиваясь этими соединениями.

Когда соединение щелочного металла или соединение щелочноземельного металла добавляют в поликонденсационную систему для образования содержащего метаксилиленовую группу полиамида (C), значение, определяемое посредством деления числа молей соединения на таковое содержащего атом фосфора соединения, предпочтительно составляет от 0,5 до 2,0, более предпочтительно от 0,6 до 1,8, еще более предпочтительно от 0,7 до 1,5. Задавая количество добавления соединения щелочного металла или соединения щелочноземельного металла в указанном выше диапазоне, можно достигать эффекта, оказываемого на развитие реакции амидирования содержащим атом фосфора соединением, и можно подавлять образование геля.

[0030] После получения и гранулирования, содержащий метаксилиленовую группу полиамид (C), получаемый посредством поликонденсации в расплаве, можно сушить для использования или можно подвергать твердофазной полимеризации, чтобы дополнительно повышать степень полимеризации. В качестве нагревателя, используемого для сушки или твердофазной полимеризации, можно соответствующим образом использовать непрерывную сушилку с горячим воздухом; нагреватели с вращающимся барабаном, такие как барабанная сушилка, коническая сушилка и вращающаяся сушилка; и конический нагреватель, предоставленный как единое целое с лопаткой ротора, называемый смесителем Nauta. Однако общеизвестные способы и устройства можно использовать без ограничения этими нагревателями. В частности, когда полиамид подвергают твердофазной полимеризации, среди указанных выше устройств предпочтительно используют вращающийся барабанный нагреватель, поскольку этот нагреватель может герметизировать систему и легко способствует поликонденсации без присутствия кислорода, который вызывает развитие окраски.

[0031] Существуют некоторые показатели степени полимеризации содержащего метаксилиленовую группу полиамида, но в целом используют относительную вязкость. Относительная вязкость содержащего метаксилиленовую группу полиамида (C), используемого в настоящем изобретении, предпочтительно составляет от 2,5 до 4,5, более предпочтительно от 2,6 до 4,2, еще более предпочтительно от 2,7 до 4,0. Задавая относительную вязкость содержащего ксилиленовую группу полиамида (C) в пределах указанного выше диапазона, можно стабилизировать способ формования и можно обеспечивать структуру содержащим ксилиленовую группу полиамидом (C), который диспергируют и расслаивают, а также превосходным внешним видом.

В настоящем изобретении, чтобы повышать адгезионную прочность смыкания, точно определяют физические свойства каждого материала и уменьшают количество содержащего метаксилиленовую группу полиамида (C) в заготовке. Как результат, структура свободно имеет часть с высокой концентрацией содержащего метаксилиленовую группу полиамида, по сравнению со стандартной структурой. Следовательно, относительная вязкость меньше чем 2,5 не является предпочтительной, поскольку можно легко с высокой вероятностью снизить прочность структуры вероятно, по сравнению со стандартной технологией. Относительная вязкость больше чем 4,5 также не является предпочтительной, поскольку состояние дисперсии содержащего метаксилиленовую группу полиамида (C) можно контролировать с малой вероятностью, что дестабилизирует формуемость.

Относительную вязкость в настоящем документе обозначают как отношение времени свободного падения t 1 г полиамида, растворенного в 100 мл 96% серной кислоты, к времени свободного падения 96% серной кислоты, которую представляют с помощью следующего выражения. Время свободного падения t0 и t измеряют при 25°C с использованием вискозиметра Cannon-Fenske.

Относительная вязкость=t/t0 (a)

[0032] Содержащий метаксилиленовую группу полиамид (C), используемый в настоящем изобретении, содержит компонент со средней молекулярной массой 1000 или менее, которую измеряют с помощью GPC, в предпочтительно 2 вес.% или менее, более предпочтительно 1,5 вес.% или менее, еще более предпочтительно 1 вес.% или менее с точки зрения внешнего вида и барьерных свойств структуры, чтобы получать такой содержащий метаксилиленовую группу полиамид (C), олигомеры предпочтительно удаляют посредством промывания горячей водой, вакуумной сушки или твердофазной полимеризации после поликонденсации в расплаве.

[0033] В содержащем метаксилиленовую группу полиамиде (C), добавки, такие как антиоксидант, матирующее средство, термостойкий стабилизатор, стабилизатор атмосферостойкости, поглотитель ультрафиолетовых лучей, зародышеобразователь, пластификатор, замедлитель воспламенения, антистатическое средство, защищающее цвет средство, смазывающее средство и препятствующее гелеобразованию средство; глина, такая как ламинарный силикат; и нанонаполнитель, можно добавлять без ухудшения эффекта настоящего изобретения, чтобы модифицировать содержащий метаксилиленовую группу полиамид (C), различные полиамиды, такие как нейлон 6, нейлон 66 и некристаллический нейлон, образуемые из мономера ароматической дикарбоновой кислоты, и модифицированный полимер этих полиамидов; полиолефин и их модифицированные полимеры; эластомер с участием структуры стирола; и т.п. можно добавлять при необходимости. Однако материалы, подлежащие добавлению для этой модификации, не ограничены этими соединениями, и можно комбинировать различные материалы.

[0034] Отношение смешения материалов

Отношение смешения материалов, образующих структуру по настоящему изобретению, составляет от 60 до 90 вес.% полиолефина (A), от 5 до 30 вес.% модифицированного кислотой полиолефина (B) и от 2 до 35 вес.% содержащего метаксилиленовую группу полиамида (C). Предпочтительно, отношение смешения составляет от 65 до 90 вес.% полиолефина (A), от 5 до 25 вес.% модифицированного кислотой полиолефина (B), и от 5 до 30 вес.% содержащего метаксилиленовую группу полиамида (C). Более предпочтительно, отношение смешения составляет от 70 до 90 вес.% полиолефина (A), от 5 до 20 вес.% модифицированного кислотой полиолефина (B) от и 5 до 25 вес.% содержащего метаксилиленовую группу полиамида (C). Однако в общем три компонента с (A) до (C) не превышают 100 вес.%. Задавая отношение смешения материалов в пределах указанного выше диапазона, можно эффективно повышать барьерные свойства структуры и минимизировать снижение прочности структуры.

[0035] Другие полимеры

В дополнение к указанным выше материалам, например гомополимерам α-олефинов с 3-20 углеродными атомами, таким как полибутен-1 и полиметилпентен; сополимеры α-олефинов с 3-20 углеродными атомами; сополимеры α-олефинов с 3-20 углеродными атомами и циклических олефинов с 3-20 углеродными атомами; иономеры; различные модифицированные полиэтилены, такие как этилен-этилакрилатные сополимеры и этилен-метилакрилатные сополимеры; полистиролы; различные сложные полиэфиры, такие как полиэтилентерефталаты; различные полиамиды, такие как нейлон 6 и нейлон 66; стирол-бутадиеновые сополимеры и гидрированные стирол-бутадиеновые сополимеры; различные термопластические эластомеры и т.п., можно добавлять без ухудшения эффекта настоящего изобретения. Различные материалы можно комбинировать без ограничения этими материалами.

[0036] Способ изготовления емкости дутьевого формования

Емкость дутьевого формования, получаемая способом по изобретению, представляет собой формованное изделие, которое имеет геометрическую форму бутылки, тубы (тюбика) или тому подобного, в которой хранят и сохраняют объекты. Формованное изделие по настоящему изобретению можно формировать посредством обычного прямого формования раздувом, за исключением установления температуры фильеры в пределах конкретного диапазона. Например, используя формовочное устройство, в котором предусмотрен экструдер, адаптер, цилиндрическая фильера, устройство смыкания формы, форма, охлаждающее устройство и т.п., полиолефин (A), модифицированный кислотой полиолефин (B), содержащий метаксилиленовую группу полиамид (C) и необязательно смешиваемый материал, получаемый посредством сухого смешивания пульверизованного формованного изделия, подают в экструдер и затем плавят и смешивают. Расплавленный и смешанный материал экструдируют в виде цилиндрической геометрической формы (иногда обозначаемой как «заготовка») через адаптер и цилиндрическую фильеру. В момент, когда экструдируют до подходящей длины, экструдируемую заготовку плотно сжимают с использованием формы и затем подают воздух, чтобы надувать заготовку и приводить заготовку в контакт с охлажденной формы. После охлаждения форму открывают, чтобы извлечь отформованную емкость.

[0037] Когда получают емкость дутьевого формования по настоящему изобретению, можно применять стандартные экструдеры. Однако предпочтительно используют одношнековый экструдер, поскольку он может проводить умеренное перемешивание и стабильную экструзию даже при высоком давлении полимера. Шнек одношнекового экструдера типично состоит из трех частей: подающая часть для транспортировки сырья к кончику экструдера, сжимающая часть для полного расплавления полимера, размягченного посредством поглощения тепла, и измерительная часть для управления количеством экструзии. В настоящем изобретении, обычные шнеки можно использовать без ограничения. Однако шнек в целом, обозначаемый как «шнек со сплошным винтом» без перемешивающей части, такой как шнек типа Dulmadge или шнек типа Maddock, предпочтительно используют с точки зрения предотвращения чрезмерного диспергирование