Медицинский материал и половолоконный мембранный модуль
Иллюстрации
Показать всеГруппа изобретений относится к медицине. Описаны медицинский материал и устройство для очистки крови. Устройство получают, помещая в него медицинский материал, который содержит гидрофильный сополимеризационный полимер, присутствующий на его поверхности, где выступающие частицы, имеющие диаметр 50 нм или более, присутствуют на поверхности, которая должна контактировать с кровью, при плотности 3 частицы/мкм2 или менее, при этом время релаксации адсорбированной воды в гидрофильном сополимеризационном полимере составляет 2,5×10-8 секунд или менее и 5,0×10-10 секунд или более при -40°C. Медицинский материал и устройство обладают высокими антитромботическими свойствами и высокой безопасностью. 3 н. и 7 з.п. ф-лы, 7 ил., 3 табл., 18 пр.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к медицинскому материалу, обладающему антитромботическими свойствами, который может применяться в таких областях применения, в которых требуется обрабатывать кровь или компонент крови, в особенности в устройстве очистки крови, таком как искусственная почка, а также в других областях применения, в которых требуются высокие эксплуатационные характеристики мембран, совместимость с кровью и безопасность.
УРОВЕНЬ ТЕХНИКИ
Медицинский материал, контактирующий с биологической жидкостью, такой как искусственный кровеносный сосуд, катетер, пакет для крови и устройство для обработки крови, должен обладать высокими антитромботическими свойствами. Примеры устройства для обработки крови включают искусственную почку, искусственную печень, аппарат искусственного дыхания, устройство адсорбции компонента крови и плазмосепаратор. В настоящем изобретении устройство для обработки крови синонимично устройству очистки крови, а половолоконный мембранный модуль относится к устройству для обработки крови с мембраной из полого волокна.
Например, в мембране из полого волокна для применения в искусственной почке (схематические изображения которых в разрезе показаны на Фиг. 1 и 2), осаждение белка или осаждение/активация тромбоцитов могут вызвать свертывание крови. При осаждении белка или подобного на мембране, даже если это приводит к свертыванию крови, поры в мембране блокируются и становятся маленькими, что вызывает ухудшение рабочих характеристик. Если рабочие характеристики мембраны быстро изменяются в течение малого промежутка времени, то возникает беспокойство насчет увеличения нагрузки на живой организм.
С целью решения указанных задач были предприняты попытки повысить гидрофильность половолоконной мембраны, и с этой целью были проведены различные исследования. Например, раскрыт способ, в котором поливинилпирролидон, который является гидрофильным полимером, смешивают с полисульфоном на стадии приготовления исходного раствора для формирования мембраны, после чего полученную смесь формуют, чтобы, таким образом, придать мембране гидрофильность и предохранить мембрану от повреждений (Патентный документ 1). Впрочем, простое добавление гидрофильного компонента к исходному раствору для формирования мембраны не позволяет достичь удовлетворительного эффекта предотвращения образования отложений. Тогда были предприняты различные усовершенствования. Например, раскрыт способ, в котором полимер винилпирролидонового типа, а также полигликоль, добавляют к исходному раствору для формирования мембраны, чтобы таким образом увеличить количество полимера винилпирролидонового типа, присутствующего на внутренней поверхности мембраны (Патентный документ 2), и способ, в котором на поверхности мембраны присутствует винилацетатная группа (Патентный документ 3). Кроме того, также раскрыт способ, в котором гидрофильный мономер подвергают графт-полимеризации на поверхности материала (Непатентный документ 1). Впрочем, в результате обширных исследований, проведенных авторами настоящего изобретения, было обнаружено, что указанные способы недостаточны для развития антитромботических свойств. Это, вероятно, обусловлено тем, что внимание сосредоточено только на гидрофильном полимере на поверхности, адсорбируемая вода в полимере не учитывается, а физическая конфигурация поверхности мембраны недостаточна.
Кроме того, в случае искусственной почки, после завершения диализной терапии крови проводят процедуру возвращения крови, в которой физиологический раствор проходит через искусственную почку, при этом кровь остается в искусственной почке и контур циркуляции крови возвращают в тело пациента, проходящего диализ. Однако кровь, которую нельзя вернуть в тело, иногда все же остается в искусственной почке, что представляет собой феномен, называемым "остаточная кровь". Остаточная кровь, которая часто присутствует в искусственной почке, обладающей слабыми антитромботическими свойствами, может вызывать анемию у проходящего диализ пациента, и поэтому ее присутствия необходимо избегать. До настоящего времени, предлагали различные методы усовершенствования. В качестве изобретения для решения задачи остаточной крови, вызванной накоплением крови в зоне, которая максимально удалена от центральной оси основного корпуса 10 (также называемой ниже "внешней периферической частью"), во внутренних пространствах коллекторов 27 и 28 в устройстве для обработки крови 1, показанном на Фиг. 2, например, предложен способ, в котором зазор С между внешней периферической поверхностью пучка половолоконной мембраны 40 и внутренней периферической поверхностью каждого из коллекторов 21 и 23 в каждой из торцевых поверхностей разделительных перегородок 31 и 33 уменьшают, чтобы таким образом уменьшить накопление крови (Патентные документы 4 и 5).
Впрочем, в результате повторных экспериментов, проведенных авторами настоящего изобретения, было обнаружено, что накопление остаточной крови часто наблюдается даже в искусственной почке, имеющей достаточно малый зазор С, и поэтому вышеуказанные изобретения недостаточны для решения задачи остаточной крови.
ДОКУМЕНТЫ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
ПАТЕНТНЫЕ ДОКУМЕНТЫ
Патентный документ 1: Патентная публикация Японии 2-18695
Патентный документ 2: выложенная патентная публикация Японии 6-165926
Патентный документ 3: выложенная патентная публикация Японии 4-300636
Патентный документ 4: выложенная патентная публикация Японии 63-9448
Патентный документ 5: выложенная патентная публикация Японии 10-165777
НЕПАТЕНТНЫЙ ДОКУМЕНТ
Непатентный документ 1: Chiaki Yoshikawa et al., Macromolecules 2006, 39, 2284-2290
СУЩНОСТЬ ИЗОБРЕТЕНИЯ ЗАДАЧИ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ
Цель настоящего изобретения заключается в усовершенствовании решения вышеуказанных задач в предшествующем уровне техники и предоставлении медицинского материала и устройства очистки крови, обладающих высокими антитромботическими свойствами и высокой безопасностью.
СПОСОБЫ РЕШЕНИЯ ЗАДАЧ
Авторы настоящего изобретения провели обширные исследования с целью решения вышеуказанных задач. В результате было обнаружено, что медицинский материал и половолоконный мембранный модуль, обладающие высокими антитромботическими свойствами и высокой безопасностью, могут быть достигнуты согласно следующим положениям.
[1] Медицинский материал, имеющий гидрофильный сополимеризационный полимер на своей поверхности, которая должна контактировать с кровью (также называется ниже "поверхность, контактирующая с кровью", для удобства), где выступающие частицы, каждая из которых имеет диаметр 50 нм или более, присутствуют на контактирующей с кровью поверхности при плотности 3 частицы/мкм2 или менее, и время релаксации адсорбированной воды в гидрофильном сополимеризационном полимере составляет 2,5×10-8 секунд или менее и 5,0×10-10 секунд или более при -40°С.
Предпочтительно, что гибкий слой присутствует на контактирующей с кровью поверхности, когда материал находится в увлажненном состоянии, при этом гибкий слой имеет толщину 7 нм или более.
Предпочтительно, что количество гидрофильного сополимеризационного полимера на контактирующей с кровью поверхности составляет 5-30% по весу включительно.
В качестве варианта осуществления медицинского материала может быть указана половолоконная мембрана, при этом половолоконный мембранный модуль, включающий медицинский материал, может применяться в качестве искусственной почки или подобного.
В качестве полимера, из которого состоит материал, предпочтительно может применяться полимер полисульфонового типа.
[2] В настоящем изобретении внимание сосредоточено на общем улучшении антитромботических свойств половолоконного мембранного модуля, при этом было обнаружено, что половолоконный мембранный модуль, в котором степень наполнения половолоконной мембраны в зоне, лежащей между внешней периферией и положением, расположенном на расстоянии 1 мм от внешней периферии в направлении к внутренней периферии на части торцевой поверхности модуля, составляет 15% или более, а разность между степенью наполнения половолоконной мембраны в данной зоне и степенью наполнения в центральной части составляет 40% или менее, обеспечивая существенное улучшение накопления крови во внешней периферической части модуля.
[3] Другой вариант осуществления согласно настоящему изобретению исследован более подробно, с сосредоточением внимания на распределении и расположении половолоконных мембран в половолоконном мембранном модуле [2]. В результате было обнаружено, что улучшение накопления крови может быть достигнуто более надежно путем оптимизации структуры половолоконного мембранного модуля [2] следующим образом.
"Половолоконный мембранный модуль, включающий: пучок половолоконных мембран; основной корпус, в котором хранится пучок половолоконных мембран; разделительные перегородки, которые позволяют пучку половолоконных мембран удерживаться в непроницаемом для жидкости состоянии на обоих концах основного корпуса, с сохранением полых концов в открытом состоянии; и коллекторы, которые соответственно присоединены по обоим концам основного корпуса и через которые кровь может входить и выходить;
где степень наполнения половолоконной мембраны в каждой из зон А-Н, которые являются зонами, полученными при делении зоны, лежащей между положением, соответствующим внутреннему диаметру каждого из коллекторов, и положением, расположенным на расстоянии 1 мм от вышеуказанного положения в направлении внутренней периферии, на 8 равных частей, равноугольных по отношению к центральной оси основного корпуса в качестве его центра, на торцевой поверхности каждой из разделительных перегородок, на стороне, обращенной к каждому из коллекторов, находится в пределах от 13 до 40%.
В вышеуказанном варианте осуществления эффект может стать максимальным при сочетании с технологией расположения гидрофильного сополимеризационного полимера, имеющего время релаксации адсорбированной воды 2,5×10-8 секунд или менее и 5,0×10-10 или более при -40°С, на контактирующей с кровью поверхности каждой из половолоконных мембран.
Если выступающие частицы, каждая из которых имеет диаметр 50 нм или больше, присутствуют на контактирующей с кровью поверхности каждой из половолоконных мембран при плотности более 3 частиц/мкм2, эффект накопления крови не может проявляться существенно. Кроме того, предпочтительно, что гибкий слой присутствует, когда материал находится в увлажненном состоянии, при этом гибкий слой имеет толщину 7 нм или больше. Также предпочтительно, что количество гидрофильного сополимеризационного полимера на контактирующей с кровью поверхности каждой из половолоконных мембран составляет 5-30% по весу включительно.
Термин "внутренний диаметр коллектора", используемый в настоящем описании, относится к величине, которую определяют на поперечном сечении, взятом в положении, которое перекрывается с торцевой поверхностью на стороне разделительной перегородки, обращенной к коллектору. Когда диаметр коллектора изменяется в поперечном сечении, минимальная величина различных диаметров коллектора определяется как "внутренний диаметр коллектора". Если коллектор снабжен кольцевидным эластичным корпусом, таким как 0-кольцо, и при этом кольцевидный эластичный корпус находится в контакте с разделительной перегородкой по ее внутренней периферической стороне, диаметр в положении кольцевидного упругого корпуса определяется как "внутренний диаметр коллектора". Термин "внутренний диаметр части основного корпуса", используемый в настоящем описании, относится к величине, которую определяют на поперечном сечении, в котором внутренний диаметр становится минимальным в части основного корпуса.
ЭФФЕКТЫ ИЗОБРЕТЕНИЯ
Медицинский материал согласно настоящему изобретению обладает высокими антитромботическими свойствами и высокой безопасностью. В особенности в искусственной почке, в случае применения половолоконной мембраны, обладающей высокими антитромботическими свойствами, накопление крови в зоне, которая является наиболее удаленной от центральной оси основного корпуса во внутреннем пространстве коллектора, уменьшается, и поэтому становится возможным получить искусственную почку, обладающую повышенной эффективностью мембраны и превосходными характеристиками по остаточной крови.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг. 1 показано схематическое изображение в поперечном разрезе варианта осуществления устройства для обработки крови.
На Фиг. 2 показано схематическое изображение в поперечном разрезе, более подробно иллюстрирующее вариант осуществления устройства для обработки крови.
На Фиг. 3 показана кривая, иллюстрирующая зависимость между силой, действующей на рычаг, и величиной смещения рычага при измерении кривой силы с использованием атомно-силового микроскопа.
На Фиг. 4 показано схематическое изображение зоны, для которой требуется измерить степень наполнения на торцевой поверхности разделительной перегородки.
На Фиг. 5 показано схематическое изображение варианта осуществления волнистой структуры половолоконной мембраны.
На Фиг. 6 показана схема, которая будет использоваться при измерении зазора.
На Фиг. 7 показан пример снимка поверхности половолоконной мембраны, полученного с помощью сканирующего электронного микроскопа.
ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Изобретение, описанное в настоящей заявке, было осуществлено на основе открытия, согласно которому не только физическая структура, но также и состав поверхности медицинского материала важны для улучшения антитромботических свойств медицинского материала.
Медицинский материал согласно изобретению, описанному в настоящей заявке, содержит гидрофильный сополимеризационный полимер. "Гидрофильный" полимер в гидрофильном сополимеризационном полимере относится к полимеру, который содержит по меньшей мере одно гидрофильное звено и может быть растворен в количестве 0,1 г или больше в 100 г воды при 20°С. Таким образом, гидрофильный сополимеризационный полимер представляет собой полимер, в котором множество мономерных звеньев связаны сополимеризацией, где по меньшей мере одно из мономерных звеньев является гидрофильным звеном.
Медицинский материал относится к материалу, который будет применяться в медицинском устройстве, которое контактирует с биологической жидкостью, таком как искусственный кровеносный сосуд, катетер, пакет для крови и устройство для обработки крови. Примеры устройства для обработки крови включают искусственную почку, искусственную печень, аппарат искусственного дыхания, устройство адсорбции компонента крови и плазмосепаратор. Что касается материала, предпочтительно может применяться полимер полисульфонового типа, такой как полисульфон, полиэфирсульфон и полиарилат, полистирол, полиэтилен, полипропилен, поликарбонат, полиуретан, поливинилхлорид, акриловая смола, такая как полиметилметакрилат, фторкаучук, такой как поливинилиденфторид, полиакрилонитрил, сложный полиэфир, такой как полиэтилентерефталат, и полиамид. Материал может быть сополимеризован с другим мономером или может быть модифицирован, при условии, что эффект изобретения, описанного в настоящей заявке, не будет ослаблен. Предпочтительное количество другого сополимеризационного мономера составляет, без ограничения, 10% по весу или меньше.
В случае, когда гидрофильный полимер присутствует на поверхности, на поверхности формируется диффузный слой. Известно, что осаждение компонента крови можно ингибировать посредством эффекта исключенного объема диффузного слоя. Авторы настоящей заявки обнаружили, что эффект исключенного объема диффузного слоя, содержащего гидрофильный сополимеризованный сополимер, более высок, чем у диффузного слоя, содержащего гидрофильный гомополимер. Это, вероятно, обусловлено тем, что, например, в гомополимере, таком как поливинилпирролидон (PVP), взаимодействие между пирролидоновыми кольцами слишком сильное, и поэтому межмолекулярное или внутримолекулярное ограничение становится большим, а радиус поворота молекулярной цепи становится малым, что приводит к недостаточному проявлению эффекта исключенного объема диффузного слоя.
Кроме того, в результате интенсивных исследований, проведенных авторами настоящей заявки, было обнаружено, что осаждение компонента крови только эффектом исключенного объема иногда ингибируется в недостаточной степени. Было обнаружено, что адсорбированная вода гидрофильного сополимеризационного полимера важна для решения данной задачи. Термин "адсорбированная вода" относится к воде, которая взаимодействует с полимером и подвижность которой понижается (то есть, имеет более длительное время релаксации) по сравнению с объемной водой. В изобретении, описанном в настоящей заявке, время релаксации адсорбированной воды в гидрофильном сополимеризационном полимере предпочтительно составляет 2,5×10-8 секунд или менее, предпочтительно 2,0×10-8 секунд или менее и 5,0×10-11 секунд или более, предпочтительно 8,0×10-11 секунд или более при -40°С. Хотя причина, по которой время релаксации адсорбированной воды считается важным, неясна, поскольку время релаксации адсорбированной воды составляет приблизительно 10-9-10-10 секунд, предполагается, что влияние поверхности мембраны на белок мало, когда подвижность адсорбированной воды в белке близка к подвижности адсорбированной воды в поверхности мембраны.
Время релаксации адсорбированной воды является величиной, полученной при измерении диэлектрической релаксации, и измеряется при охлаждении водного раствора гидрофильного сополимеризационного полимера, имеющего концентрацию 20% по весу или более, до -40°С. Причина охлаждения до -40°С заключается в том, что объемная вода замерзает при данной температуре, и поэтому можно легко выполнить измерение адсорбированной воды. При использовании гидрофильного сополимеризационного полимера, который не может быть растворен при концентрации 20% по весу или более, измерение может быть выполнено при использовании суспендированного водного раствора.
Что касается гидрофильного сополимеризационного полимера, содержащего адсорбированную воду, предпочтительно используется гидрофильный сополимеризационный полимер, включающий водорастворимое звено и гидрофобное звено. Термин "водорастворимое звено", используемое в настоящей заявке, относится к звену, которое включено в рамки вышеуказанного гидрофильного звена и имеет высокую растворимость в воде, при этом гомополимер вышеуказанного звена может быть растворен в количестве 10 г или более в 100 г воды при 20°С. "Гидрофобное звено", используемое в настоящей заявке, относится к такому звену, что гомополимер вышеуказанного звена может быть растворен в количестве меньше 0,1 г в 100 г воды при 20°С. Примеры водорастворимого звена включают винилпирролидон, виниловый спирт и этиленгликоль. Примеры гидрофобного звена включают винилкапролактам, пропиленгликоль, винилацетат, стирол, гидроксиэтилметакрилат и метилметакрилат.
Хотя причина, по которой предложен гидрофильный сополимеризационный полимер, включающий водорастворимое звено и гидрофобное звено, неясна, это можно объяснить следующим образом: взаимодействие гидрофильного сополимеризационного полимера, включающего только водорастворимое звено, с молекулой воды слишком сильное, и поэтому подвижность адсорбированной воды снижается, но молекула воды может быть нестабилизирована, если присутствует гидрофобное звено, и поэтому подвижность молекулы воды, присутствующей вокруг гидрофильного звена, может возрастать. Если содержится только гидрофобное звено, считается, что гидрофобное взаимодействие становится слишком сильным, и поэтому может быть вызвана денатурация белка. По указанным причинам, с учетом типа сополимеризационного полимера, чередующийся сополимеризационный полимер или статистический сополимеризационный полимер могут использоваться более предпочтительно, чем графт-сополимеризационный полимер или блок-сополимеризационный полимер. В этом отношении, сополимеризационный полимер нельзя расценивать как блок-сополимер, если в среднем 10 звеньев, каждое из которых является одним из составляющих звеньев сополимеризационного полимера и содержится в более малом отношении компонентов, не расположены последовательно.
(Молярное) отношение гидрофобного звена ко всем звеньям предпочтительно составляет 0,3-0,7 включительно. Наиболее предпочтительно используется сополимеризационный полимер винилпирролидон-винилкапролактама, сополимеризационный полимер винилпирролидон-винилацетата, сополимеризационный полимер винилпирролидон-гидроксиэтилметакрилата, винилпирролидон-метилметакрилата и этиленгликоль-полипропиленгликоля. Сополимер может быть двухкомпонентного типа или многокомпонентного типа.
Если количество гидрофильного сополимеризационного полимера на поверхности материала слишком мало, осаждение компонента крови невозможно предотвратить. Если количество является слишком большим, напротив, есть беспокойство насчет элюции гидрофильного сополимеризационного полимера. Кроме того, в данном случае теряется гладкость поверхности, и поверхность становится в значительной степени неровной. В результате количество выступающих частиц, каждая из которых имеет диаметр 50 нм или более, увеличивается. Поэтому количество гидрофильного сополимеризационного полимера, присутствующего на поверхности, предпочтительно составляет 5% по весу или более, более предпочтительно 8% по весу или более, еще более предпочтительно 10% по весу или боле, и предпочтительно составляет 30% по весу или менее, более предпочтительно 20% по весу или менее, еще более предпочтительно 15% по весу или менее. В случае, когда материал применяется для искусственной почки, то при увеличении гидрофобности половолоконной мембраны ухудшаются показатели пропускания воды, и поэтому снижаются рабочие характеристики мембраны. С этой точки зрения слишком большое количество гидрофильного сополимеризационного полимера является нежелательным. Также предпочтительно, что гидрофильный сополимеризационный полимер присутствует только на контактирующей с кровью поверхности. Поэтому, в целях сохранения высоких рабочих характеристик мембраны, важно, чтобы отношение количества гидрофильного сополимеризационного полимера (также называемого ниже "количеством полимера"), присутствующего во внутренней поверхности, которая является поверхностью, контактирующей с кровью, половолоконной мембраны было выше, чем на внешней поверхности половолоконной мембраны. Отношение количества гидрофильного сополимеризационного полимера во внутренней поверхности предпочтительно больше в 1,1 раза, предпочтительно в 2 раза, более предпочтительно в 5 раз или больше, чем во внешней поверхности. Отношение количества гидрофильного сополимеризационного полимера во внешней поверхности составляет меньше 10% по весу, предпочтительно меньше 5% по весу.
Причина, по которой необходимо обеспечить наличие гибкого слоя на контактирующей с кровью поверхности, когда материал находится в увлажненном состоянии, можно объяснить следующим образом: тромбоциты и клетки крови с меньшей вероятностью подойдут ближе к материалу и с меньшей вероятностью будут оседать или активироваться в том случае, если гибкий слой, который составляет материал, станет более толстым. Если гибкий слой слишком толстый, то напротив, белок может улавливаться гибким слоем. По этим причинам толщина гибкого слоя предпочтительно составляет 5 нм или более, более предпочтительно 7 нм или более и предпочтительно составляет 30 нм или менее, более предпочтительно 20 нм или менее, еще более предпочтительно 15 нм или менее. Увлажненное состояние относится к такому состоянию, в котором содержание воды составляет 65% по весу или более.
Толщина гибкого слоя на поверхности функционального слоя разделительной мембраны в увлажненном состоянии может быть вычислена с помощью измерения кривой сил при использовании атомно-силового микроскопа. Кривая сил выражается величиной смещения рычага по горизонтальной оси, где сила, действующая на рычаг, отложена на вертикальной оси. Пока более короткое плечо рычага находится в контакте с поверхностью функционального слоя, кривая сил смещается параллельно оси X. После того, как рычаг приходит в контакт с поверхностью функционального слоя, когда там присутствует гибкий слой, появляется изогнутая нелинейная часть. Затем получают линейную зависимость между силой смещения рычага и силой рычага. Толщина гибкого слоя определяется как расстояние от точки пересечения линии, продолженной из части, которая становится линейной после контакта более короткого плеча рычага с поверхностью, и продолжением линии, которая смещена параллельно оси X перед контактом более короткого плеча рычага с поверхностью, до точки, в которой более короткое плечо рычага приходит в контакт с поверхностью (Фиг. 3).
Примеры способа получения материала, имеющего поверхность с толщиной гибкого слоя, включают: способ нанесения покрытия гидрофильного сополимеризационного полимера на поверхность материала; способ иммобилизации гидрофильного сополимеризационного полимера на поверхности материала путем поперечного сшивания; и способ смешивания гидрофильного сополимеризационного полимера с исходным раствором полимера для формирования медицинского материала и формования полученной смеси.
При выполнении последующей обработки с применением гидрофильного сополимеризационного полимера путем нанесения покрытия или подобного, концентрация гидрофильного полимера в растворе для нанесения покрытия, время контакта и температура, используемые при нанесении покрытия, влияют на количество нанесенного (на поверхность) полимера или подобного, и так далее. Например, нанесение покрытия производят с применением раствора сополимеризационного полимера винилпирролидон-винилкапролактама, сополимеризационного полимера винилпирролидон-винилацетата или этиленгликоль-полипропиленгликоля, концентрация в водном растворе предпочтительно составляет 1-5000 м.д., время контакта предпочтительно составляет 10 секунд или больше, и температура предпочтительно составляет 10-80°С. В случае, когда нанесение покрытия производят в непрерывном режиме, а не в периодическом режиме, водный раствор для нанесения покрытия могут наносить более равномерно, когда скорость потока водного раствора для нанесения покрытия более высокая. Впрочем, если скорость потока слишком высокая, достаточное количество нанести нельзя. Поэтому скорость потока предпочтительно находится в пределах от 200 до 1000 мл/мин. При нанесении покрытия в данном диапазоне, может быть получено однородное покрытие. Необходимо следить за тем, чтобы не было сформировано неровное покрытие, иначе могут образоваться выступающие объекты.
При нанесении покрытия на половолоконную мембрану, предпочтительно, чтобы гидрофильный сополимеризационный полимер наносили только на контактирующую с кровью поверхность половолоконной мембраны. В случае искусственной почки или подобного, внутренняя часть половолоконной мембраны соответствует контактирующей с кровью поверхности. Таким образом, предпочтителен способ, в котором перепад давления создается с внутренней части половолоконной мембраны в направлении внешней поверхности половолоконной мембраны, чтобы нанести покрытие гидрофильного сополимеризационного полимера на половолоконную мембрану, поскольку гидрофильный сополимеризационный полимер может быть эффективно введен на внутреннюю поверхность половолоконной мембраны. Перепад давления предпочтительно составляет 10 мм рт. ст. или больше, более предпочтительно 50 мм рт. ст. или больше, между стороной введения раствора для нанесения покрытия (внутренняя часть полого волокна) и стороной выхода раствора для нанесения покрытия (внешняя поверхность полого волокна) в половолоконном мембранном модуле. Кроме того, процедура пропускания газа (например, сжатого воздуха), воды, водного раствора, который не содержит гидрофильного сополимеризационного полимера или подобного, в направлении, противоположном направлению нанесения покрытия гидрофильного полимера (то есть, в направлении снаружи полого волокна внутрь полого волокна), является наиболее предпочтительной методикой, поскольку такая процедура обеспечивает концентрацию полимера, который в один слой наносится только на внутреннюю поверхность. Скорость потока газа (например, сжатого воздуха), поступающего снаружи полого волокна внутрь полого волокна, предпочтительно составляет 70 нл/мин или меньше, более предпочтительно 50 нл/мин или меньше, при этом газ предпочтительно подается в течение 10 минут или меньше. В случае воды или водного раствора, вода или водный раствор предпочтительно подаются при расходе 1 л/мин или меньше, более предпочтительно 0,5 л/мин или меньше, предпочтительно в течение 1 минуты или меньше. Операция создания давления снаружи половолоконной мембраны для прерывистого нагнетания газа внутрь половолоконной мембраны предпочтительна, так как избыточная часть полимера может потемнеть и его можно будет удалить, и поэтому может быть получено однородное покрытие. Термин "прерывистый", используемый в настоящем описании, относится к тому, что увеличение и уменьшение скорости потока газа многократно изменяется с изменением давления, при этом предпочтительно повторять продувку на максимальном давлении и продувку на минимальном давлении в пределах некоторого размаха колебания. Отношение наибольшей скорости потока к наименьшей скорости потока или отношение максимального давления к минимальному давлению предпочтительно составляет 1,5 или больше, более предпочтительно 2 или больше. Наименьшая скорость потока газа, проходящего через внутреннюю часть половолоконной мембраны, составляет предпочтительно 0,1 нл/мин или больше и 10 нл/мин или меньше, а наибольшая скорость потока предпочтительно составляет 0,15 нл/мин или больше и 30 нл/мин или меньше.
В случае, когда производят только нанесение покрытия, гидрофильный сополимеризационный полимер может вымываться из материала при эксплуатации. Поэтому предпочтительно, чтобы после нанесения покрытия было выполнено поперечное сшивание при обработке нагреванием или радиоактивным излучением. Впрочем, если поперечное сшивание проводят просто облучением радиоактивным излучением, состояние воды, адсорбированной на гидрофильном сополимеризационном полимере, может изменяться. При этом в качестве радиоактивного излучения используют γ-излучение или электронное излучение. В случае использования γ-излучения, предпочтительный диапазон дозы составляет 2500000-10000000 Ки или больше, предпочтительно 3000000-7500000 Ки. В случае использования электронного излучения, ускоряющее напряжение равно 5 МэВ или больше, предпочтительно 10 МэВ или больше. Предпочтительная доза облучения составляет 5-50 кГр, предпочтительно 10-35 кГр, и предпочтительная температура облучения составляет 10-60°С, предпочтительно 20-50°С. Также предпочтительно, чтобы облучение радиоактивным излучением производилось в течение двух недель, предпочтительно одной недели, после нанесения покрытия. После нанесения покрытия желательно, чтобы изделие с нанесенным покрытием хранили при 0°С-60°С, предпочтительно 5-50°С или ниже, а затем немедленно подвергали обработке поперечным сшиванием с использованием радиоактивного излучения. Если нагревание требуется для удобства процесса, желательно выполнять нагревание в пределах короткого промежутка времени. В частности, когда нагревание проводят при 100°С или выше, время нагревания предпочтительно составляет 10 минут или меньше. Это обусловлено тем, что состояние полимера, присутствующего на поверхности, может изменяться после нанесения покрытия вследствие молекулярного движения полимера или подобного. Кроме того, если присутствует ион, состояние адсорбированной воды также изменяется. Поэтому предпочтительно, чтобы какие-либо неорганические ионы, такие как ион натрия и ион кальция, не присутствовали во время облучения радиоактивным излучением. В частности, когда материал находится в увлажненном состоянии, концентрация ионов в воде предпочтительно составляет 1000 м.д. или меньше, более предпочтительно 100 м.д. или меньше. Количество воды, которая будет содержаться в материале, в 6 раз или меньше, предпочтительно в 4 раза или меньше, превосходит сухой вес материала. Материал может быть облучен радиоактивным излучением в высушенном состоянии (то есть, состоянии, в котором материал не увлажнен с водой), но при этом количество воды, которое будет содержаться в материале, предпочтительно составляет 0,05 или больше от сухого веса материала.
С целью контроля поперечного сшивания может использоваться антиоксидант, то есть, ловушка радикалов, применяемая в настоящем изобретении. Термин "ловушка радикалов", используемый в настоящем описании, относится к молекуле, которая обладает свойством передавать электрон другой молекуле. Примеры ловушек радикалов включают, без ограничения: водорастворимый витамин, такой как витамин С; полифенол; спирт, такой как метанол, этанол, пропанол, этиленгликоль, пропиленгликоль и глицерин; сахарид, такой как глюкозу, галактозу, маннозу и трегалозу; неорганическую соль, такую как гидросульфит натрия, пиросульфит натрия и дитионат натрия; мочевую кислоту; цистеин и глутатион. В случае, когда используется неорганическая соль, особое внимание необходимо обращать на верхний предел добавляемой концентрации, как указано выше. Такие ловушки радикалов могут использоваться отдельно, или может использоваться смесь двух или более ловушек радикалов. Ловушку радикалов предпочтительно добавляют в форме водного раствора. В данном случае концентрация кислорода в водном растворе предпочтительно составляет 10 мг/л или меньше, более предпочтительно 5 мг/л или меньше, так как кислород, растворенный в водном растворе, или кислород в атмосфере может ускорять окислительное разложение. Концентрация кислорода в газе, контактирующем с разделительной мембраной при облучении радиоактивным излучением, предпочтительно составляет 5% или меньше, более предпочтительно 3% или меньше. Из вышеуказанных ловушек радикалов предпочтительно используется одноатомный спирт, такой как этанол, пропанол, бутанол, пентанол и гексанол. При использовании этанола, н-пропанола или 2-пропанола, концентрация в водном растворе предпочтительно составляет 0,01% по весу или больше и 10% по весу или меньше, более предпочтительно 0,05% по весу или больше и 1% по весу или меньше. В случае использования пропиленгликоля или глицерина, концентрация предпочтительно составляет 0,1% по весу или больше и 90% по весу или меньше, более предпочтительно 0,5% по весу или больше и 70% по весу или меньше.
Далее описан способ смешивания гидрофильного сополимеризационного полимера с исходным раствором полимера в целях формования медицинского материала и формования полученной смеси. Например, для половолоконной мембраны используется способ вытягивания волокна из исходного раствора для формирования мембраны, включающего полимер полисульфонового типа и гидрофильный сополимеризационный полимер. В данном случае может быть добавлен третий компонент, такой как PVP. Кроме того, гидрофильный сополимеризационный полимер может быть добавлен к раствору для введения в сердцевину во время формирования мембраны из полых волокон. Способ, в котором формуют половолоконную мембрану полисульфонового типа и затем гидрофильный сополимеризационный полимер вводят в поверхность половолоконной мембраны при последующей обработке, также является одним из предпочтительных способов.
При добавлении гидрофильного сополимеризационного полимера к исходному раствору для формирования мембраны, условия вытягивания волокна являются следующими: температура формы предпочтите