Многослойное тело

Иллюстрации

Показать все

Изобретение относится к многослойному телу защитного элемента и к способу его изготовления. Многослойное тело имеет первый слой с первой поверхностью и лежащей противоположно первой поверхности второй поверхностью. Первая поверхность первого слоя задает проходящую через оси х и у координат основную плоскость, причем во второй поверхности первого слоя в первой зоне сформировано множество фасеточных поверхностей. Каждая из фасеточных поверхностей определена с помощью одного или нескольких параметров F, S, H, P, Ax, Ay и Az, причем параметры расположенных в первой зоне фасеточных поверхностей изменяются псевдослучайно внутри соответствующего заданного для первой зоны диапазона изменения, и причем на каждую из фасеточных поверхностей нанесен отражательный второй слой. 4 н. и 35 з.п. ф-лы, 13 ил.

Реферат

Изобретение относится к многослойному телу, в частности, в виде переводной пленки, пленки для ламинирования, упаковочной пленки, декоративного элемента или защитного элемента, а также к способу изготовления такого многослойного тела.

Защищенные документы с оптическим дифракционным элементом известны, например, из ЕР 0 105 099 В1 и ЕР 0 375 833 В1. В этих защитных элементах дифракционные решетки выполнены в одном слое многослойного тела и покрыты металлическим отражательным слоем. За счет дифракции падающего света на этих дифракционных решетках создается оптически изменяющийся эффект, который определяется пространственной частотой дифракционной решетки, а также азимутальным углом. Так, в защитном элементе, описание которого приведено в ЕР 0 105 099 В1, дифракционная структура выполнена так, что она при заданном направлении освещения и заданном направлении рассматривания движется с локально заданной скоростью по заданной траектории, когда подложку поворачивают в ее плоскости в определенном направлении поворота и с определенной скоростью. В ЕР 0 375 833 В1 различные поля растра с максимальным размером менее 0,3 мм покрыты различными дифракционными решетками, так что при рассматривании защитного элемента получаются различные изображения защитного элемента в различных направлениях рассматривания.

Описание другой возможности создания оптически изменяющегося эффекта приведено в WO 03/095657 А2. Здесь ахроматическая поверхностная структура комбинируется с расположением сверху тонкопленочной структуры. При этом ахроматические структуры имеют порядок величины, при которой явления дифракции оказывают лишь небольшое влияние на оптические свойства, и тем самым структуры действуют по существу как наклонные зеркала. В данном случае указанный защитный элемент имеет частичные поверхности, которые покрыты различными ахроматическими поверхностными структурами, например косозубыми структурами, которые на первой частичной поверхности имеют отличный от второй частичной поверхности азимутальный угол. Кроме того, эти различные частичные поверхности покрыты дополнительно тонкопленочной структурой, так что на частичных поверхностях создаются различные смены цвета и контраста и у наблюдателя при повороте или опрокидывании возникает впечатление заданной, почти дискретной смены цвета.

В основу изобретения положена задача создания пленочного тела, а также способа его изготовления, которое отличается своим оптически изменяющимся эффектом, который отличается от указанных выше известных оптически изменяющихся эффектов и тем самым имеет соответствующие преимущества при декоративных и защитных применениях.

Эта задача решена с помощью многослойного тела, которое имеет первый слой с первой поверхностью и лежащей противоположно первой поверхности второй поверхностью, при этом первая поверхность первого слоя определяет проходящую через оси х и у координат основную плоскость и во второй поверхности первого слоя в первой зоне сформировано множество фасеточных поверхностей, которые имеют каждая наименьший размер больше 1 мкм и наибольший размер меньше 300 мкм, при этом каждая из фасеточных поверхностей определена с помощью параметров: форма F фасеточной поверхности, величина S фасеточной поверхности, расстояние Н центра тяжести фасеточной поверхности от основной плоскости, положение Р центра тяжести фасеточной поверхности в проходящей через оси х и у системе координат, угол Ах наклона фасеточной поверхности к оси х относительно основной плоскости, угол Ау наклона фасеточной поверхности к оси у относительно основной плоскости и азимутальный угол Az фасеточной поверхности, заданный поворотом фасеточной поверхности вокруг проходящей перпендикулярно основной плоскости оси z, при этом один или несколько параметров F, S, H, P, Ax, Ay и Az, расположенных в первой зоне фасеточных поверхностей, изменяются в первой зоне псевдослучайно внутри соответствующего заданного для первой зоны диапазона изменения и на каждую из фасеточных поверхностей нанесен по меньшей мере один отражательный второй слой. Кроме того, эта задача решена с помощью способа изготовления многослойного тела, в котором изготавливают первый слой с первой поверхностью и лежащей противоположно первой поверхности второй поверхностью, при этом первая поверхность первого слоя определяет проходящую через оси х и у координат основную плоскость и во второй поверхности первого слоя в первой зоне сформировано множество фасеточных поверхностей, которые имеют каждая наименьший размер больше 1 мкм и наибольший размер меньше 300 мкм, при этом каждая из фасеточных поверхностей определена с помощью параметров: форма F фасеточной поверхности, величина S фасеточной поверхности, расстояние Н центра тяжести фасеточной поверхности от основной плоскости, положение Р центра тяжести фасеточной поверхности в проходящей через оси х и у системе координат, угол Ах наклона фасеточной поверхности к оси х относительно основной плоскости, угол Ау наклона фасеточной поверхности к оси у относительно основной плоскости и азимутальный угол Az фасеточной поверхности, заданный поворотом фасеточной поверхности вокруг проходящей перпендикулярно основной плоскости оси z, при этом один или несколько параметров F, S, H, P, Ax, Ay и Az, расположенных в первой зоне фасеточных поверхностей, изменяют в первой зоне псевдослучайно внутри соответствующего заданного для первой зоны диапазона изменения и на множество фасеточных поверхностей наносят отражательный второй слой.

При этом псевдослучайно означает, что соответствующий изменяющийся параметр F, S, H, P, Ax, Ay и Az не может принимать все возможные значения, а лишь значения из более узкого, заданного диапазона изменения. При этом псевдослучайное изменение может учитывать с одинаковой вероятностью все значения из этого более узкого, заданного диапазона изменений. Однако можно также использовать (математическую) функцию для вероятности учета значения из этого диапазона изменений. Примерами таких функций является функция Гаусса, а также инвертированная функция Гаусса.

При этом в основе изобретения лежит понимание того, что за счет формирования указанных выше фасеточных поверхностей в одном слое многослойного тела можно генерировать оптически изменяющийся эффект, который для наблюдающего человека отличается от достигаемого с помощью указанного выше способа согласно уровню техники оптически изменяющегося эффекта. Оптически изменяющийся эффект согласно изобретению может отличаться, например, в зависимости от выбора отражательного слоя, характерным глубинным действием и/или характерными цветными и/или сверкающими эффектами. В частности, оптически изменяющийся эффект характеризуется тем, что он не имеет или почти не имеет мешающих дифракционных составляющих, например эффектов радуги. Таким образом, оптически изменяющийся эффект является максимально ахроматическим. За счет этого можно обеспечивать максимально большое отличие от известных дифракционных эффектов. Дополнительно к этому, это позволяет неподготовленным лицам однозначно идентифицировать эффект. При этом особенно предпочтительно также, что с помощью изобретения эти оптически изменяющиеся эффекты можно особенно экономично выполнять с помощью серийных промышленных способов и с возможностью воспроизведения. Кроме того, создаваемые с помощью фасеточных поверхностей многослойного тела согласно изобретению оптически изменяющиеся эффекты можно также интегрировать в пленочное тело в списке с другими элементами, которые показывают другой оптически изменяющийся эффект.

Предпочтительные варианты выполнения изобретения указаны в зависимых пунктах формулы изобретения.

Отражательный второй слой может быть нанесен по всей поверхности на фасеточные поверхности и поверхности между фасеточными поверхностями, однако он может иметься также лишь на фасеточных поверхностях или лишь на части фасеточных поверхностей и отсутствовать в остальных зонах поверхности. Этого можно достигать с помощью, например, так называемых процессов деметаллизации, в частности с помощью известных способов травления или способов промывки. Кроме того, можно на параллельно имеющийся отражательный второй слой, например, из алюминия наносить другой отражательный второй слой, например, из ZnS, который может быть, в частности, прозрачным или просвечивающим.

Согласно одному предпочтительному примеру выполнения изобретения, отражательный второй слой в первой зоне предусмотрен в зоне фасеточных поверхностей и не предусмотрен в не занятой фасеточнными поверхностями зоне. Для этого второй отражательный слой нанесен, например, на всей поверхности по меньшей мере в первой зоне на первый слой, а затем снова удален в частичных зонах первой зоны, которые не покрыты фасеточными поверхностями.

Согласно одному предпочтительному примеру выполнения изобретения, отражательный второй слой в первой зоне предусмотрен в зоне фасеточных поверхностей и не предусмотрен в первой частичной зоне первой зоны, которая не покрыта фасеточными поверхностями. Кроме того, в первой зоне предпочтительно предусмотрена вторая частичная зона, которая не занята фасеточными поверхностями и в которой предусмотрен отражательный второй слой. За счет этого возможно также, что предусмотрено несколько первых и/или вторых таких частичных зон. По меньшей мере одна частичная зона и/или по меньшей мере одна вторая частичная зона предпочтительно выполнены в виде узоров. Предпочтительно, по меньшей мере одна частичная зона образует зону фона, и по меньшей мере одна вторая частичная зона образует зону узора, или наоборот. Предпочтительно, при этом по меньшей мере одна первая частичная зона и по меньшей мере одна вторая частичная зона выполнены так, что они при рассматривании в проходящем свете генерируют оптическую воспринимаемую человеком информацию, которая определяется формой по меньшей мере одной первой частичной зоны и по меньшей мере одной второй частичной зоны. Предпочтительно, при этом по меньшей мере одна первая частичная зона и по меньшей мере одна вторая частичная зона имеет поперечный размер больше 300 мкм.

Предпочтительно, многослойное тело выполнено прозрачным в первых частичных зонах или в первой частичной зоне.

При этом относительно расположения фасеточных поверхностей в первых частичных зонах и вторых частичных зонах исходным направлением является направление рассматривания, перпендикулярное основной плоскости.

За счет этого может быть дополнительно улучшен оптический внешний вид многослойного тела.

Согласно одному предпочтительному примеру выполнения изобретения, на второй поверхности первого слоя в частичной зоне первой зоны, которая не покрыта фасеточными поверхностями, сформирована структура заднего фона. При этом структура заднего фона предпочтительно образована дифракционной и/или преломляющей рельефной структурой, которая генерирует отличный от оптического эффекта фасеточных поверхностей второй оптический эффект.

Предпочтительно, покрытая структурой заднего фона частичная зона первой зоны сформирована в виде зоны заднего фона, которая окружает одну или несколько, предпочтительно все фасеточные поверхности.

Структура заднего фона предпочтительно содержит рельефную структуру, в частности дифракционную рельефную структуру, которая создает эффекты движения и/или эффекты трансформации в качестве оптических эффектов. Предпочтительно, при этом покрытая структурой заднего фона частичная зона разделена на множество участков, которые покрыты каждый дифракционной решеткой, при этом по меньшей мере один из параметров решетки соседних участков отличается, в частности отличается пространственная частота и/или азимутальный угол дифракционных структур соседних участков.

Кроме того, также предпочтительно, когда структура заднего фона содержит действующие дифракционно и/или рефракционно микроскопические рельефные структуры, которые генерируют макроскопическую трехмерность аналогично рефракционной искажающей линзе, или оптически искажающий эффект свободной формы, или другой трехмерно действующий эффект.

Доля покрытых фасеточными поверхностями частичных поверхностей первой зоны в покрытых структурами заднего фона и фасеточными поверхностями частичных поверхностях первой зоны предпочтительно составляет меньше 70%, более предпочтительно меньше 50%, еще более предпочтительно меньше 30% при рассматривании перпендикулярно основной плоскости.

Предпочтительно, центры тяжести соседних фасеточных поверхностей удалены друг от друга меньше чем на 300 мкм, более предпочтительно меньше чем на 100 мкм. Предпочтительно, центры тяжести соседних фасеточных поверхностей удалены друг от друга на 2-300 мкм, более предпочтительно на 5-100 мкм, еще более предпочтительно на 5-50 мкм.

Минимальное расстояние между точкой на наружной кромке фасеточной поверхности и точкой на наружной кромке соседней фасеточной поверхности составляет предпочтительно меньше 300 мкм, более предпочтительно меньше 100 мкм, еще более предпочтительно меньше 50 мкм и предпочтительно между 0 и 300 мкм, более предпочтительно между 0 и 100 мкм, еще более предпочтительно между 1 и 50 мкм. Эти размеры относятся предпочтительно ко всем фасеточным поверхностям в первой зоне.

За счет такого расположения фасеточных поверхностей относительно друг друга обеспечиваются, в частности, при расположении структуры заднего фона, преимущества относительно видимости и наложения друг на друга обеспечиваемых с помощью фасеточных поверхностей и структур заднего фона информаций.

Кроме того, в этой связи особенно предпочтительно формирование в частичных зонах первой зоны, которые не покрыты фасеточными поверхностями, рельефной структуры, которая образует дифракционную решетку нулевого порядка. Предпочтительно, эта структура имеет при этом расстояние между соседними элементами структуры, которое меньше длины волны видимого света. Кроме того, для этого в качестве структурных элементов для этой структуры предпочтительно применяются структуры, у которых отношение глубины к ширине больше 0,5, более предпочтительно больше 1.

С помощью таких структур можно, с одной стороны, управлять деметаллизацией частичных зон первой зоны, которые не покрыты фасеточными поверхностями.

Кроме того, особенно предпочтительно после частичного удаления отражательного слоя наносить на всю поверхность другой отражательный слой, так что второй слой в различных частичных зонах первой зоны имеет различные отражательные свойства и имеет различное построение слоев. Таким образом, при нанесении на первый слой сначала металлического слоя в качестве отражательного слоя и после частичного удаления этого металлического слоя нанесения на всю поверхность в непокрытых фасеточными поверхностями частичных зонах первой зоны диэлектрического отражательного слоя, например прозрачного или просвечивающего слоя HRI, например ZnS, обеспечиваются два различных оптических эффекта в покрытых фасеточными поверхностями частичных зонах первой зоны и в непокрытых фасеточными поверхностями частичных зонах первой зоны: в непокрытых фасеточными поверхностями частичных зонах на основании комбинации диэлектрического отражательного слоя и дифракционных структур нулевого порядка генерируется цветной эффект опрокидывания, который возникает при повороте многослойного тела. На этот оптический эффект затем накладывается уже указанный, вызванный фасеточными поверхностями оптический эффект.

Кроме того, при этом особенно предпочтительно, когда эти оба эффекта согласованы так, что под первым углом рассматривания они показывают один цвет, а под другим углом рассматривания - другой цвет. За счет этого обеспечивается легко контролируемый защитный признак.

Согласно одному предпочтительному примеру выполнения изобретения, второй слой имеет систему тонкопленочных слоев, которая создает зависящий от угла зрения эффект сдвига цвета, в частности, в видимом диапазоне волн. Такая система тонкопленочных слоев характеризуется, в частности, одним или несколькими дистанционными слоями. Оптически эффективная толщина этих дистанционных слоев предпочтительно соответствует при определенном угле рассматривания условию λ/2 или λ/4 для длины волны λ, в частности, в диапазоне видимого света. При этом система тонкопленочных слоев может состоять из одного единственного слоя, из системы слоев с одним или несколькими диэлектрическими слоями и одним или несколькими металлическими слоями или из штабеля слоев с двумя или больше диэлектрическими слоями.

Кроме того, возможно также, что эффект сдвига цвета создается с помощью комбинации, в частности, прозрачного или просвечивающего слоя HRI (HRI-High Refraction Index - большой коэффициент рефракции) с дополнительно введенными в фасеточные поверхности микроструктурами, например, решеток для субдлин волн.

При этом, наряду с системой тонкопленочных слоев, второй слой может иметь еще также один или несколько других слоев. За счет использования системы тонкопленочных слоев во втором слое обеспечиваются интересные эффекты смены цвета, которые при соответствующем изменении указанных выше параметров отличаются большим глубинным действием, а также цветными сверкающими эффектами.

Кроме того, предпочтительно также, что второй слой содержит ориентированный жидкокристаллический слой, в частности холестериновый жидкокристаллический слой, металлический слой, слой HRI или слой LRI (HRI - большой коэффициент рефракции, LRI - небольшой коэффициент рефракции), или слой, содержащий лак, магнитный пигмент, полимер с добавлением краски, наночастицы или люминесцентные материалы.

Первый слой предпочтительно является прозрачный слоем, в частности слоем из прозрачного репликационного лака. В репликационном лаке нанесены тиснением поверхностные структуры, которые выполняют оптическую функцию (дифракции, рефракции, отражения) и/или другую, не оптическую функцию. Такие структуры, например, в частности, нанесенная в виде узора дифракционная линейная решетка с 500-5000 линий на миллиметр, могут, например, служить для ориентации молекул жидкокристаллического слоя, в частности, в виде узора и тем самым задавать их поляризационное действие или, соответственно, их характеристику поляризации, в частности, в виде узора.

Согласно одному предпочтительному примеру выполнения изобретения, многослойное тело генерирует распознаваемую человеком оптически изменяющуюся первую информацию, при этом для генерирования первой информации изменяются углы наклона Ах и Ау фасеточных поверхностей в первой зоне в соответствии с функцией F(x, y). При этом, с одной стороны, возможно, что дополнительно изменяется один или несколько параметров F, S, H, P или Az в первой зоне псевдослучайно внутри своего соответствующего, заданного для первой зоны диапазона изменения.

Однако особенно интересный оптически изменяющийся эффект можно осуществлять дополнительно с помощью следующего предпочтительного варианта выполнения изобретения. В этом варианте выполнения углы Ах и Ау наклона фасеточных поверхностей в первой зоне определяются в соответствии с аддитивным или мультипликативным наложением на определяемые функцией F(x,y) углы Ах и Ау наклона псевдослучайного изменения угла Ах наклона и/или угла Ау наклона внутри соответствующего, заданного для первой зоны диапазона изменения. При этом функция F(x,y) выбрана так, что она изменяет углы Ах и Ау наклона для генерирования оптически изменяющейся первой информации.

При этом заданный диапазон изменения углов наклона Ах и Ау выбран меньше среднего подъема функции F(x,y) в первой зоне, в частности выбран равным, в частности, между 0,1 и 1,9 среднего подъема функции F(x,y). За счет этого обеспечивается, что на первую оптически изменяющуюся информацию накладываются не слишком сильные дополнительные оптически изменяющиеся эффекты, такие как повышенное впечатление глубины, сверкающий эффект и эффект текстурирования, и тем самым не оказывается отрицательного влияния на распознаваемость первой информации.

Следует учитывать, что различные последовательности различных изменений, например углов наклона Ах и Ау, а также азимутального угла Az фасеточных поверхностей, изменения подлежащей наложению функции F(x,y) и введение псевдослучайного изменения приводят к разным результатам.

Предпочтительно, функция F(x,y) описывает трехмерную поверхность свободной формы с одним или несколькими элементами свободной формы. При этом углы наклона Ах и Ау определяются соответствующей нормалью к трехмерной поверхности свободной формы в центре тяжести соответствующей фасеточной поверхности.

Элементы свободной формы имеют, например, форму или контур алфавитно-цифрового знака, геометрической фигуры или другого объекта. Кроме того, трехмерная форма элементов свободной формы предпочтительно выбрана так, что они создают линзоподобный эффект увеличения, уменьшения или искажения. Для этого элементы свободной формы имеют предпочтительно в плоскости разреза, проходящей перпендикулярно основной плоскости, форму линзы, например форму, которая соответствует соответствующему разрезу собирательной, рассеивающей или искажающей линзы. Трехмерная поверхность свободной формы предпочтительно имеет общую базовую плоскость, из которой поднимаются, соответственно, опускаются один или несколько элементов свободной формы.

Согласно одному предпочтительному примеру выполнения изобретения, функция F(x,y) описывает в зоне элемента свободной формы поверхность свободной формы в виде линзы или линзы, трансформированной для изображения алфавитно-цифрового знака, геометрической фигуры или другого объекта.

При этом линия контура элементов свободной формы предпочтительно соответствует первой информации и имеет, например, форму буквы, символа, геометрической фигуры или другого объекта.

Согласно одному предпочтительному примеру выполнения изобретения, функция F(x,y) описывает часть поверхности трехмерного объекта в качестве элемента свободной формы. Трехмерная форма элемента свободной формы соответствует, например, части скульптуры, орнаменту, рельефу или другому трехмерному объекту, например зданию, человеку и т.д.

Предпочтительно, соседние максимумы элемента свободной формы в направлении оси z относительно проекции на основную плоскость расположены на расстоянии друг от друга больше 0,5 мм, более предпочтительно больше 1 мм и еще более предпочтительно больше 3 мм. Кроме того, наименьший размер элемента свободной формы относительно проекции на основную плоскость составляет предпочтительно больше 2 мм, более предпочтительно больше 4 мм.

При этом под наименьшим размером относительно проекции на основную плоскость понимается ширина элемента свободной формы или, соответственно, расстояние между теми лежащими противоположно краевыми точками поверхности проекции, которые лежат на линии, проходящей через центр тяжести поверхности проекции, и имеют по сравнению с остальными лежащими противоположно точками наименьшее расстояние друг от друга.

При этом определяемые линией контура поверхности проекции элемента свободной формы на основную плоскость размеры (длина, ширина) элемента свободной формы лежат предпочтительно в диапазоне от 2 до 50 мм, более предпочтительно от 4 до 30 мм.

Согласно одному предпочтительному примеру выполнения изобретения, функция F(x,y) в зоне элемента свободной формы непрерывна и дифференцируема и/или функция F(x,y) в зоне элемента свободной формы состоит из плоских и изогнутых зон поверхности, при этом предпочтительно радиус кривизны изогнутых зон поверхности составляет не меньше 1 мм, более предпочтительно не меньше 3 мм.

Согласно одному предпочтительному примеру выполнения изобретения, для псевдослучайного изменения одного или нескольких параметров F, H, P, Ax, Ay и Az внутри заданного диапазона изменений псевдослучайно выбрано значение изменения параметра из заданной группы заданных значений изменения параметров. Заданная группа предпочтительно содержит между 3 и 30, в частности между 3 и 10, значениями изменения параметров. Таким образом, псевдослучайное изменение происходит не в смысле чисто случайного, встречающегося в природе процесса, в котором все возможные параметры могут принимать значения внутри диапазона изменений, а имеет заданную гранулярность. Неожиданным образом было установлено, что за счет этого проявляется особенно впечатляющий оптически изменяющийся эффект. Кроме того, было установлено, что уже с помощью 3 значений изменения параметров можно максимально разрушать дифракционные эффекты, которые могут возникать при очень небольших фасеточных поверхностях. Таким образом, с помощью этих небольших фасеточных поверхностей могут быть реализованы ахроматические эффекты. Такие ахроматические эффекты являются более однозначными, чем эффекты, на которые накладываются еще дифракционные эффекты. Тем самым их легче идентифицировать, и они эстетически более привлекательны.

Предпочтительно, углы наклона Ах и Ау фасеточных поверхностей в первой зоне изменяются псевдослучайно в диапазоне изменения от -45° до +45°, более предпочтительно от -30° до +30°, особенно предпочтительно от -15° до +15°, в частности, для достижения сверкающего эффекта.

Кроме того, предпочтительно изменять азимутальный угол Az в первой зоне псевдослучайно в диапазоне изменения от -90° до +90°, более предпочтительно от -45° до +45°, особенно предпочтительно от -15° до +15°.

Согласно одному предпочтительному примеру выполнения изобретения, расстояние Н центра тяжести фасеточных поверхностей от основной плоскости в первой зоне изменяется псевдослучайно. Задаваемый за счет разницы максимального расстояния Hmax и минимального расстояния Hmin, между которыми псевдослучайно изменяется расстояние Н между фасеточными поверхностями, диапазон изменения составляет при этом предпочтительно между 0,5 и 8 мкм, более предпочтительно между 0,5 и 2 мкм.

Согласно одному предпочтительному примеру выполнения изобретения, фасеточные поверхности расположены в соответствии с двухмерным, проходящим через ось х и ось у растром. Однако возможно также, что, как указывалось выше, положение Р фасеточных поверхностей изменяется псевдослучайно, так что фасеточные поверхности больше не расположены в соответствии с регулярным растром.

В этом случае, в соответствии с одним предпочтительным примером выполнения изобретения, положение каждой из фасеточных поверхностей в первой зоне определяется с помощью псевдослучайного сдвига центра тяжести соответствующей фасеточной поверхности из регулировочного положения в направлении х и/или направлении у. При этом регулярное положение центра тяжести соответствующей фасеточной поверхности предпочтительно также определяется с помощью двухмерного, проходящего через ось х и ось у растра, за счет чего расположенные в первой зоне фасеточные поверхности задают регулярное положение центра тяжести соответствующей фасеточной поверхности в основной плоскости.

Предпочтительно, предельные значения диапазона изменения псевдослучайного сдвига из соответствующего регулировочного положения в направлении х и/или y составляют между 0% и 100%, предпочтительно между 0% и 50% и особенно предпочтительно между 0% и 20% размера фасеточной поверхности в направлении оси х, соответственно, оси у. Таким образом, при размере Dx фасеточной поверхности в направлении оси х, предельные значения диапазона изменения составляют +Dx и -Dx, умноженные на указанный выше коэффициент. То же, соответственно, справедливо для размера в направлении оси y.

Ширина растра в направлении х и/или оси y предпочтительно в 1,2-2 раза больше размера фасеточной поверхности в направлении оси х или, соответственно, оси y. За счет псевдослучайного сдвига может получаться, что соседние фасеточные поверхности накладываются друг на друга. Это может достигаться, например, с помощью подходящих алгоритмов при генерировании системы фасеточных поверхностей в структуре узора. Например, алгоритм может генерировать последовательно фасеточные поверхности и всегда, когда вновь добавляемая фасеточная поверхность может занимать с одной из уже виртуально имеющихся фасеточных поверхностей по меньшей мере частично одну и ту же поверхность в многослойном теле, уменьшать эту вновь добавляемую фасеточную поверхность в ее боковой длине. В качестве альтернативного решения, алгоритм может также сдвигать вновь добавляемую фасеточную поверхность, например, в боковом направлении.

При этом особенно предпочтительно выбирать диапазон изменения случайного сдвига между +D/2 и -D/2, при этом D является размером фасеточной поверхности в направлении оси х или, соответственно, оси у, а ширину растра в направлении х и/или оси y устанавливать в 3/2 раза больше размера D фасеточной поверхности в направлении оси х или, соответственно, оси у.

Форма F фасеточной поверхности предпочтительно выбирается из группы, содержащей квадрат, прямоугольник, правильный многоугольник, круглый диск, сечение конуса и случайный многоугольник. При псевдослучайном выборе формы F фасеточной поверхности в первой зоне, псевдослучайный выбор осуществляется из группы имеющих различную форму фасеточных поверхностей, которые имеют одну или несколько указанных форм. Простым примером является прямоугольник с шириной а и длиной b, при этом а и b выбираются псевдослучайно.

Как указывалось выше, каждая из фасеточных поверхностей имеет наименьший размер больше 1 мкм, предпочтительно больше 3 мкм, и наибольший размер меньше 300 мкм. Целесообразно, что наименьший размер фасеточных поверхностей составляет между 1 мкм и 20 мкм, предпочтительно между 3 мкм и 10 мкм. Наибольший размер фасеточных поверхностей составляет предпочтительно между 5 мкм и 10 мкм, более предпочтительно между 5 мкм и 50 мкм и особенно предпочтительно между 5 мкм и 30 мкм.

При этом под наименьшим размером фасеточной поверхности следует понимать ширину, а под наибольшим размером фасеточной поверхности длину фасеточной поверхности. Наименьший размер задан расстоянием между теми краевыми точками фасеточной поверхности, которые лежат на линии разреза, проходящей через центр тяжести фасеточной поверхности, и по сравнению с другими соседними краевыми точками имеют наименьшее расстояние друг от друга.

Предпочтительно, наименьший размер проходит в направлении наибольшего подъема фасеточной поверхности.

Согласно одному предпочтительному примеру выполнения изобретения, высота Hf фасеточной поверхности, т.е. прохождение фасеточной поверхности в направлении z, изменяется в первой зоне псевдослучайно. При этом диапазон изменения, заданный разницей между максимальной высотой и минимальной высотой, между которыми псевдослучайно изменяется высота Hf фасеточной поверхности, разделенной на максимальную высоту (Δh=(hmax-hmin)hmax), предпочтительно составляет между 50% и 100%, более предпочтительно между 70% и 100% и особенно предпочтительно между 85% и 100%.

В одном предпочтительном варианте выполнения изобретения фасеточные поверхности выполнены так, что высота Hf меньше 2 мкм, предпочтительно меньше 1 мкм и особенно предпочтительно меньше 0,5 мкм. Такие структуры можно хорошо изготавливать не только посредством ультрафиолетовой репликации, но также с помощью термической репликации. При термической репликации фасеточные поверхности формируются с использованием нагревания и давления с помощью инструмента тиснения в репликационном лаке. При ультрафиолетовой репликации репликационный лак состоит из сшиваемого ультрафиолетом материала, и фасеточные поверхности формируются в поверхности слоя репликационного лака с помощью инструмента тиснения и одновременного и/или последующего ультрафиолетового облучения. Для обеспечения целесообразных значений углов наклона Ах и Ау, например, ±20°, фасеточные поверхности в направлении наибольшего подъема должны быть меньше 6 мкм, предпочтительно меньше 3 мкм и особенно предпочтительно меньше 1,5 мкм. Одновременно, каждая из фасеточных поверхностей имеет наименьший размер больше 1 мкм. При этом наибольший размер таких фасеточных поверхностей может быть значительно больше наименьшего размера. Неожиданным образом было установлено, что такие фасеточные поверхности почти не имеют дифракции, когда по меньшей мере один параметр F, H, P, Ax, Ay и Az фасеточных поверхностей изменяется псевдослучайно. Уже заданная группа значений изменения параметров, которая содержит, например, 3 значения, может предотвращать или подавлять создание дифракционных эффектов. Это объясняется тем, что псевдослучайное изменение разрушает регулярность, которая необходима для дифракционных эффектов.

Для всех вариантов выполнения, в которых максимальная высота Hmax фасеточных поверхностей должна удерживаться ниже определенного порогового значения, справедливо, что при генерировании системы фасеточных поверхностей необходимо разделять на две или более фасеточных поверхностей те фасеточные поверхности, которые превышают максимальную высоту Hmax.

Когда, например, по производственным причинам, например, на основании ограничений при термической репликации или ультрафиолетовой репликации, эта максимальная высота составляет 2 мкм и фасеточные поверхности имеют площадь S, равную 10 мкм×10 мкм, то по меньшей мере все фасеточные поверхности, которые имеют угол наклона больше sin-1(2/10)≈11,5°, должны быть разделены на две или больше фасеточных поверхностей. При этом эти меньшие фасеточные поверхности имеют такую форму, что они при желаемом угле наклона не превышают максимальную высоту Hmax. Этого можно достигать, например, с помощью подходящих алгоритмов при генерировании структуры узора для репликации.

Величина площади S фасеточных поверхностей составляет предпочтительно между 5 мкм2 и 6000 мкм2, более предпочтительно между 5 мкм2 и 300 мкм2. При псевдослучайном изменении величины площади S, диапазон изменения составляет предпочтительно 10-50% средней величины площади фасеточных поверхностей.

Согласно одному предпочтительному примеру выполнения изобретения, фасеточные поверхности имеют форму контура в виде символа, буквы или другого объекта. Эта дополнительная информация скрыта для глаза человека без применения вспомогательных средств. Таким образом, обеспечивается скрытая вторая оптическая информация, которая может быть сделана видимой с помощью вспомогательного средства, например увеличительной лупы.

Кроме того, возможно, что одна или несколько фасеточных поверхностей покрыты дифракционной структурой, дифракционной структурой нулевого порядка, изотропной или анизотропной матовой структурой или нанотекстом, наномотивами или функциональной, оптически не действующей структурой. При этом фасеточные поверхности могут быть покрыты по всей поверхности или лишь на некоторых участках такой дополнительной структурой. За счет этого можно генерировать другие интересные оптически изменяющиеся эффекты или функциональные эффекты. Примером этому являются оптические эффекты, описание которых приведено в US 4 484 797 и WO 03/059643 А1, базирующиеся на так называемых резонансных решетках, которые модифицированы с помощью фасеточных поверхностей. Другим примером является ориентация молекул в жидкокристаллическом материале, который нанесен на фасеточные поверхности, с целью получения поляризационных свойств жидкокристаллического материала.

Согласно одному предпочтительному примеру выполнения изобретения, многослойное тело имеет вторую зону, при этом один или несколько параметров F, S, H, P, Ax, Ay и Az каждой из расположенных во второй зоне фасеточных поверхностей изменяется псевдослучайно во второй зоне внутри соответствующего заданного для второй зоны диапазона изменения. При этом параметры, которые псевдослучайно изменяются в первой зоне и во второй зоне, предпочтительно выбираются различными, и/или по меньшей мере один диапазон изменения изменяемого параметра выбран различным в первой