Способ и система управления полосой пропускания

Иллюстрации

Показать все

Изобретение относится к области связи и может быть использовано для управления распределением полосы пропускания потокам трафика, передаваемым в узле доступа системы связи. Способ управления потоками неоднородного трафика, осуществляющими доступ к сети связи (WN), в котором узел (G) доступа сети управляет агрегацией потоков ( f i L 3 ) трафика в по меньшей мере действительной очереди ( Q i L 2 ) передачи на заданном протокольном уровне (L2) сети, включающий в себя этапы, на которых распределяют заданную полосу пропускания ( θ i M a x ) очереди ( Q i L 2 ) передачи, чтобы гарантировать связанное качество обслуживания ( Q o S i L 3 ), установленное согласно соглашению об уровне обслуживания. Способ также содержит этапы, на которых: формируют виртуальную очередь ( Q i V L 2 ) передачи в плоскости данных (UPL2) системы для управления потоками ( f i L 3 ) трафика, осуществляющими доступ к сети, включающую в себя текущую репликацию агрегированного потока трафика в действительной очереди передачи ( Q i L 2 ), измерение по меньшей мере параметра, представляющего текущее качество обслуживания ( Q o S i L 3 o L 2 ), полученного на виртуальной очереди передачи ( Q i V L 2 ), в множестве заданных последовательных горизонтов наблюдения (OHi(k)); и динамически оценивают потребности ( θ i * ) полосы пропускания для виртуальной очереди ( Q i V L 2 ) передачи, удовлетворяющей качеству обслуживания, в виде функции значения, предполагаемого вышеупомянутым параметром в каждом горизонте наблюдения (OHi(k)); следовательно, согласно оцененной потребности ( θ i * ) полосы пропускания изменяют полосу пропускания , распределенную действительной очереди ( Q i L 2 ) передачи для последующего горизонта наблюдения (OHi(k+1)), или ограничивают поток ( f i L 2 ) трафика к очереди ( Q i L 2 ).Технический результат - обеспечение более эффективного распределения полосы пропускания в точке доступа, оперирующей агрегацией потоков неоднородного трафика. 5 н. и 22 з.п. ф-лы, 9 ил.

Реферат

Настоящее изобретение относится к области связи и более конкретно - к способу и системе для управления распределением полосы пропускания потокам трафика, передаваемым в узле доступа системы связи.

Более конкретно, изобретение направлено на способ управления потоками неоднородного трафика, осуществляющими доступ к сети связи, в соответствии с преамбулой пункта 1 формулы, и систему для управления потоками трафика, осуществляющими доступ к сети связи, в соответствии с преамбулой пункта 19 формулы.

В сети связи аспектами обмена информацией между узлами управляют согласно заданной парадигме на основе стека протоколов с выполнением «поуровневого» обмена данными.

Комплект протоколов, реализующих стек протоколов согласно общепризнанной парадигме (например, модель взаимодействия открытых систем ISO/OSI или комплект протоколов TCP/IP, используемым в сети Интернет), представляет группу связанных друг с другом стандартов, которые определяют эталонную архитектуру системы связи, и состоит из различных функциональных уровней (или слоев). Например, известная эталонная модель ISO/OSI разделяет различные функциональности процесса обмена информацией на семь отдельных уровней, физический уровень (L1) и уровень (L2) канала данных в отношении формирования сетевого соединения, сетевой уровень (L3), транспортный уровень (L4) и сеансовый уровень (L5) в отношении логической передачи данных между сетевыми устройствами, уровень представления данных (L6) в отношении способа, с помощью которого передаваемые данные взаимодействуют с сетевыми приложениями, и прикладной уровень (L7) в отношении приложений, доступных всем пользователям сети.

Множество параметров, коррелированных с сетевым трафиком (обычно коэффициент (процент) потери пакетов данных, задержка передачи, доступная ширина полосы пропускания), определяет качество обслуживания (QoS), предлагаемое в управлении трафиком в сети связи. Это зависит от рабочей характеристики, достигаемой на каждом уровне стека протоколов, и характеризуется параметрами на основе функций, реализованных на различных уровнях стека протоколов и с интерфейсами между его уровнями. Например, в отношении модели OSI, качество обслуживания исходит от конфигурации физического уровня и канального уровня, которые предлагают конкретные транспортные услуги по отношению к более высоким сетевым уровням. Контракт на обслуживание, который предусматривает соблюдение заданных параметров качества обслуживания, обычно указывается в виде соглашения об уровне обслуживания (SLA).

В оперативной области системы связи, потоками трафика, формируемыми верхними сетевыми уровнями, управляют на сетевом уровне и канальном уровне в узлах сети посредством модулей обработки, реализованных специализированными электронными устройствами, или посредством электронных устройств обработки и хранения, запрограммированных согласно одному или более модулям кода, которые соответственно образуют плоскость управления (используемую для управления информацией сигнализации) и плоскость пользователя или данных (используемую для транспортирования данных пользователя). Плоскость данных оперирует непосредственно потоком трафика под управлением и контролем плоскости управления, чтобы пересылать потоки трафика на физический интерфейс, приспособленный переносить (транспортировать) информацию по каналу передачи. Даже если сетевой уровень осуществляет эффективные механизмы для поддержания заданного качества обслуживания (например, согласно протоколам IP IntServ (интегрированных услуг), IP DiffServ (дифференцированных услуг), MPLS (многопротокольной коммутации дейтаграмм по меткам)), для нижних уровней является необходимым обеспечить соединение с физическим каналом с поддержанием конкретных ограничений рабочей характеристики качества обслуживания. Если это не происходит, создание сложных механизмов для поддержания качества обслуживания на верхних уровнях может быть недостаточным и, следовательно, абсолютно бесполезным.

Следовательно, требования к качеству обслуживания должны «проецироваться» вертикально по стеку протоколов и должны удовлетворяться всеми уровнями стека протоколов.

Это означает, что протоколы на канальном уровне (второй уровень стека протоколов, далее в документе сокращенно называемый L2), должны осуществлять подходящие механизмы агрегации (объединения) логически различных потоков трафика от верхних уровней, чтобы соблюдать соглашение об уровне обслуживания, заданное на верхнем сетевом уровне (третий уровень стека протоколов, или сокращенно L3). В некоторых случаях, в особенности в средах радиосвязи (также называемых беспроводными), следует дополнительно отметить, что уровень L2 действует совместно с физическим уровнем (L1) благодаря применению конкретных решений межуровневого типа (известных как «кросс-уровневые» решения).

Взаимодействие между уровнями в этом контексте уточняет так называемое «отображение качества обслуживания» или более часто «отображение QoS». Понятие отображения исходит от технологического «скачка» (резкого изменения), встречающегося в узле доступа сети, в котором выполняются операции агрегации потока данных. Точка доступа (узел) сети, в последующем обобщенно идентифицируемая «логическое шлюзовое устройство», может действительно соединить между собой две различные части сети (или части той же сети), в которой соответствующие различные схемы агрегации пакетов данных применяются к потокам трафика. Кроме того, что касается шлюза, даже может быть модификация формата инкапсуляции данных, обусловленная конкретными используемыми протоколами, например, если часть сети основывается на протоколе IP, тогда как другая часть основывается на протоколе асинхронной передачи (ATM).

Во всех этих случаях должны быть приняты подходящие механизмы для вычисления точной ширины полосы пропускания, необходимой для потоков трафика, передаваемых на уровень L2, чтобы обеспечить качество обслуживания, заданное на уровне L3.

Задача отображения QoS конкретно заставляет заниматься технологическим аспектом распределения полосы пропускания рассматриваемым потокам трафика, или предпочтительнее - регулировкой полосы пропускания, назначенной одиночным потокам трафика, в условиях неоднородного трафика. Задача в частности касается регулировки полосы пропускания в случае, в котором агрегируют различные классы обслуживания. Такая агрегация ведет к формированию неоднородных каналов с точки зрения источников трафика и требований QoS.

Поскольку каждый поток трафика вынуждают соблюдать конкретное гарантированное QoS, в сети должно предсказываться когерентное распределение полосы пропускания и до, и после операций агрегации потоков трафика. В целом, распределение полос пропускания потокам трафика до входа в шлюзовое устройство сети регулируется согласно заданным способам, специфическим для технологии связи вне сети, которые не являются объектом настоящего изобретения. Изобретение касается аспекта, коррелированного с распределением полосы пропускания потокам трафика, агрегированным в шлюзовом устройстве, для распространения в конкретной сети.

Регулировка полосы пропускания в однородных условиях является задачей, которая широко рассмотрена в научной и патентной литературе.

Напротив, аспект регулировки полосы пропускания в условиях неоднородного трафика является в настоящий момент вопросом, который еще открыт для обсуждения, и который не получил необходимого внимания.

В патентной литературе можно найти различные документы, посвященные задаче адаптивного управления для полосы пропускания, с целью удовлетворения требованиям QoS к передаче пакетов данных. Однако применение решений из уровня техники для решения задачи регулировки полосы пропускания в условиях неоднородного трафика в качестве объекта настоящего изобретения, ведет к субоптимальному использованию доступных ресурсов полосы пропускания для сети.

Среди документов из уровня техники, касающихся задач отображения QoS, следует в частности упомянуть патентную заявку EP 1 113 628, которая относится к механизму для управления качеством обслуживания по протоколам IP для беспроводной сети. Более конкретно, этот документ предлагает многоуровневую архитектуру для управления качеством обслуживания на всем стеке протоколов связи для сети. Описание, однако, непосредственно не занимается задачей оценки и распределения полосы пропускания и не входит в явные подробности того, каким образом можно оптимизировать управление для полосы пропускания, которое должны выполнять различные уровни управления для качества обслуживания в стеке протоколов.

Действительно, следует также отметить, что если часть сети основана на системе беспроводной связи, в формировании относительного формата инкапсуляции данных, применяются специфические механизмы ухудшения характеристик канала. Все эти элементы делают проблему определения полосы пропускания в шлюзе очень трудной задачей.

Изобретатели Mario Marchese и Maurizio Mongelli занимались аспектами отображения QoS, с конкретным обращением к созданию интерфейсов между сетевыми уровнями и канальными уровнями протокола связи и определению алгоритмов распределения полосы пропускания канальному уровню, соблюдающих ограничения QoS.

Статьи "Vertical QoS Mapping over Wireless Interfaces" в трудах Института инженеров по электротехнике и радиоэлектронике (IEEE) Wireless Communications, том 16, № 2, 1 апреля 2009 г., страницы 37-43, "Neural Bandwidth Allocation Function (NBAF) Control Scheme at WiMAX MAC Layer Interface", International Journal of Communication Systems, том 20, № 9, 12 декабря 2006 г., страницы 1059-1079 и "Optimal Bandwidth Provision at WiMAX MAC Service Access Point on Uplink Direction", IEEE International Conference on Communications, 24 июня 2007, страницы 80-85, описывают закон управления, который совершает действия над очередями канального уровня, непосредственно назначая им скорость передачи, например, чтобы соблюдать качество обслуживания по соглашению.

Общим назначением настоящего изобретения является оптимизация распределения ресурсов полосы пропускания в сети связи, и конкретно - в точке доступа сети, оперирующей агрегацией потоков неоднородного трафика, поддерживающей качество обслуживания по соглашению, в соответствии с установленным соглашением об уровне обслуживания для услуг, предоставляемых сетью.

Более конкретно, одной задачей изобретения является предложение лучшей координации между протоколами на различных уровнях стека протоколов, на котором базируется система связи, чтобы обеспечить более эффективное распределение полосы пропускания в точке доступа сети, оперирующей агрегацией потоков неоднородного трафика, и обеспечить заданное качество обслуживания по отношению к установленному соглашению об уровне обслуживания, предлагаемого сетью.

Задача настоящего изобретения также состоит в вычислении наиболее надежным образом возможной точной потребности полосы пропускания, требуемой агрегированным потоком трафика, в точке доступа к сети связи с тем, чтобы соответствовать заданному качеству обслуживания при минимальной возможной величине полосы пропускания.

Согласно настоящему изобретению, такие задачи решаются способом управления потоками трафика с характеристиками, заявленными в пункте 1 формулы.

Конкретные варианты осуществления составляют предмет зависимых пунктов формулы изобретения, содержимое которых следует считать неотъемлемой или составной частью настоящего описания.

Другим объектом изобретения является система для управления потоками трафика с характеристиками, заявленными в пункте 19 формулы.

Изобретение также относится к компьютерной программе или группе компьютерных программ для выполнения вышеупомянутого способа управления потоками трафика, а также к точке доступа системы связи и системе связи, содержащей систему для управления потоками трафика, как заявлено в формуле изобретения.

Кратко, настоящее изобретение основывается на принципе изменения структуры плоскости управления и плоскости данных на уровнях стека протоколов, участвующих в агрегации потоков неоднородного трафика, и по этой причине оно определяет дополнительно объекты, действующие в области стека протоколов устройства для осуществления доступа к сети связи (шлюза), роль которого состоит в управлении вычислением точной потребности полосы пропускания для потока трафика, входящего в устройство.

В частности, эти объекты представлены компонентами или модулями обработки в администраторе ресурсов (RM) соответственной плоскости управления на уровнях L3 и L2 шлюзового устройства. Администратор ресурсов уровня L2 (далее в документе сокращенно L2RM) действует, чтобы обеспечить качество обслуживания, установленное на уровне L3 и отображенное на уровень L2, вычисляя в режиме реального времени точную потребность полосы пропускания для потоков, передаваемых на уровне L2, и в результате изменяя соответствующее распределение ресурсов полосы пропускания.

Для выполнения этого, в отличие от уровня техники, администратор ресурсов уровня L2 применяет процесс динамического оценивания полосы пропускания на основании периодических измерений текущего качества обслуживания, применяемых к виртуальной очереди передачи (или очереди трафика), которая является копией действительной очереди передачи (или очереди трафика), одновременно управляемой плоскостью данных того же уровня. Полоса пропускания, обеспечиваемая для пересылки действительного трафика, первоначально завышена по величине и периодически адаптируется в зависимости от результата динамической оценки, полученной во время предыдущего вычисления, на основе измерений, выполняемых на виртуальной очереди передачи.

Преимущественно, скорость передачи для очередей на канальном уровне поддерживается в пределах порога безопасности по отношению к скорости передачи для виртуальных очередей с тем, чтобы избежать возможных погрешностей самого алгоритма управления.

Неограничительные примеры возможных математических форм, используемых для выполнения процесса оценки, приведены в нижеследующем настоящем описании. Администратор ресурсов уровня L2 использует результат процесса оценки, и вследствие этого изменяет распределение ресурсов полосы пропускания шлюзовому устройству. В этом контексте администратор ресурсов уровня L2 пользуется техническими описаниями примитивов связи, используемых для передачи результата процесса изменения полосы пропускания на администраторы ресурсов верхних уровней.

В случае, в котором администратор ресурсов уровня L2 определяет, что недостаточно ресурсов полосы пропускания являются доступными для поддержки необходимого качества обслуживания, он информирует администратор ресурсов верхнего уровня L3. Модальность, в которой администратор ресурсов уровня L3 реагирует на такое сообщение, находится, однако, вне области настоящего изобретения.

Объекты администратора ресурсов уровня L2 и администратора ресурсов уровня L3 можно инсталлировать в соответственных плоскостях управления, подобных, например, плоскости управления для IP на уровне 3 или плоскости управления по стандарту DVB цифрового телевидения без воздействия, по сути, на известную исходную структуру таких плоскостей. Эти объекты могут создаваться посредством модулей обработки, которые приспособлены исполнять компьютерные программы, возможно в форме обновлений программы, посредством чего они приспособлены загружаться на плоскости управления шлюза с тем, чтобы не вмешиваться в исходную архитектуру.

Изобретение преимущественно имеет применение в различных осуществлениях, относительно различных типов точек доступа сетей связи, в которых происходит агрегация сетевого трафика, в любой форме, включая шлюзовые устройства, маршрутизаторы или подобное, которые приспособлены для выполнения преобразований протоколов связи между узлами локальных и/или глобальных сетей, имеющих различную архитектуру, в которых различные потоки трафика, входящие в сеть, агрегируют вместе и пересылают на узлы сети, и это не зависит от исполнения устройства.

Возможные примеры содержат точки доступа беспроводных наземных сетей (например: Tetra, WiFi, WiMAX) или спутниковых сетей связи, которые рассматривают технологический скачок между третьим и вторым уровнем стека протоколов. Дополнительным примером на уровне L2, который не относится к беспроводным технологиям, является инкапсуляция IP трафика по кабельным сетям технологий Ethernet, действующих согласно модели 802.1p (то есть Ethernet с поддержкой качества обслуживания). Изобретение представляет особый интерес для отображения качества обслуживания в беспроводных средах, где полоса пропускания является дефицитным ресурсом, по сравнению с кабельными системами, в которых оптимизация полосы пропускания не является критической проблемой и может обеспечиваться посредством подходящего завышения величины для доступных ресурсов (полосы пропускания и буферов сетевых узлов).

В другом варианте осуществления изобретения, в котором имеется агрегация потоков неоднородного трафика без изменения формата инкапсулирования данных и без использования контрмер (помех) для ухудшения характеристик канала, примеры устройств для осуществления доступа к сети связи представлены устройствами граничных маршрутизаторов, например, действующими в технологических сценариях агрегации трафика IntServ поверх DiffServ, IntServ поверх MPLS или DiffServ поверх MPLS. В этом контексте, не только шлюзы (именуемые также граничными маршрутизаторами) действуют на основании операций отображения качества обслуживания между уровнем L3 и уровнем L2, но также заключают в себе операции отображения, обращающиеся только к различным сетевым технологиям и протоколам, действующим на уровне L3.

Дополнительные характеристики и преимущества изобретения будут показаны подробно в следующем подробном описании, приведенном в качестве примера, а не с целями ограничения, со ссылкой на прилагаемые чертежи, на которых:

Фиг. 1 - схематичное представление архитектуры для осуществления доступа к сети связи, содержащей шлюзовое устройство, организованное между частью наземной сети и частью беспроводной сети;

Фиг. 2 - схематичное представление объектов уровня L3 для структуры протокола для шлюза согласно изобретению;

Фиг. 3 - схематичное представление объектов уровня L2 для структуры протокола для шлюза согласно изобретению;

Фиг. 4 - схематичное представление объектов, действующих одновременно для операций отображения QoS между уровнем L3 и уровнем L2 стека протоколов, согласно изобретению;

Фиг. 5 - схематичное представление структуры для администратора ресурсов уровня L3;

Фиг. 6 - блок-схема способа вычисления потребности полосы пропускания для потоков трафика на протокольном уровне L2 согласно изобретению;

Фиг. 7 - блок-схема способа верификации стабилизации вычисления потребности полосы пропускания, верификации приближающейся перегрузки (затора) или освобождения полосы пропускания на протокольном уровне L2 согласно изобретению;

Фиг. 8 - схематичный показ сигналов связи между объектами на протокольном уровне L2 согласно изобретению; и

Фиг. 9 - показ связных сигналов между объектами протокольных уровней L2 и L3 согласно изобретению.

Изобретение относится к способу и системе, которые приспособлены для выполнения регулирования полосы пропускания для агрегированного потока трафика в шлюзовом устройстве, в котором применяются операции отображения качества обслуживания (отображение QoS). Более конкретно, изобретение касается случаев, в которых два или большее число потоков трафика, заданных на сетевом уровне (например, L3) стека протоколов, объединяются вместе в одиночный поток трафика на том же уровне (L3) или на более низком канальном уровне (L2), для которого точная полоса пропускания, которую нужно сделать доступной для агрегированного потока, не является известной.

Изобретение, во-первых, относится к операциям отображения предварительно установленного качества обслуживания между первым, более высоким уровнем и вторым, более низким уровнем стека протоколов, или предпочтительнее - между различными протоколами, действующими на одинаковом сетевом уровне стека. Во-вторых, изобретение определяет физические и/или логические объекты, или предпочтительнее - физические аппаратные устройства и/или программные модули обработки, которые могут использоваться на уровне L3 и на уровне L2, соответственно, в устройстве для осуществления доступа к сети, таком как шлюзовое устройство, для координации действий, необходимых для оптимизации регулировки полосы пропускания, назначенной объединенному потоку трафика.

Настоящее изобретение теперь будет описано со ссылкой на текущий предпочтительный вариант осуществления, который рассматривает отображение качества обслуживания от уровня L3 на уровень L2 заданного стека протоколов.

На Фиг. 1 схематично представлено предрасположение сетевого устройства G, действующего в качестве шлюза между первой и второй сетью связи, например между частью наземной сети TN и частью беспроводной сети WN.

Примерами представляющих интерес беспроводных сетей являются спутниковые сети связи, сети связи стандарта WiFi, сети связи стандарта WiMAX или беспроводные сенсорные сети.

Трафик, формируемый пользователями сетей, переносится через часть наземной сети TN в направлении шлюза G. Отсюда, трафик маршрутизуется за пределы части наземной сети TN в направлении беспроводной сети WN. В шлюзовом устройстве нижние уровни стека протоколов передачи, применяемого самим устройством, указаны подробно.

Задача изобретения состоит в том, чтобы поддерживать конкретный уровень качества обслуживания (QoS) по всей цепочке связи. Это означает, что установленное качество обслуживания в первый момент должно обеспечиваться и в наземной сети TN, и в беспроводной сети WN, как если бы не было изменения в технологии в шлюзе G между этими двумя сетями. Изменение в технологии происходит вследствие различных протоколов, используемых для предложения услуги связи, в наземной сети TN, и в беспроводной сети WN.

Качество обслуживания гарантируется в терминах количественных показателей посредством указания допустимого порога потери пакетов данных, допустимой задержки (среднего значения) передачи пакета данных или допустимого «джиттера» (дисперсии задержки) в передаче пакета данных. Различные контракты (условия) трафика могут задаваться между поставщиком (услуг) наземной сети связи, поставщиком (услуг) сети беспроводной связи и одним или более конечными пользователями. Качество обслуживания для контракта трафика устанавливается соглашением об уровне обслуживания (соглашение об уровне обслуживания, SLA), в котором объявляются вышеупомянутые термины показателя оценки качества обслуживания. У каждого класса трафика имеется свое собственное соглашение об уровне обслуживания. Это означает, что объявляется контракт трафика для каждого конкретного класса трафика.

В области настоящего изобретения считается, что контракт трафика безусловно удовлетворяется в части наземной сети TN посредством подходящего распределения ресурсов полосы пропускания в устройствах маршрутизации в сети (следовательно, на уровне L3 стека протоколов). Следовательно, показатели, которые задают заданное SLA, обращаются к рабочей характеристике в терминах качества обслуживания на уровне L3 (например, потеря IP пакетов), поскольку конечные пользователи не должны быть способными замечать технологический скачок между уровнями L3 и L2 в шлюзе.

Обычно, уровень L3 является сетевым уровнем на основе технологии IP (протоколы IPv4 или IPv6). Примерами протоколов уровня L2 являются стандарты WiMAX, DVB, ATM или другие специализированные инкапсуляции для специфического беспроводного канала, такие как Stanag 5066 или WHDLC для IP поверх радиосвязи.

Шлюзовое устройство G, или подобная точка доступа к сети действует в качестве интерфейса между двумя уровнями L3 и L2, и отвечает за отображение трафика от уровня L3 на уровень L2. Такая операция отображения по существу состоит в инкапсуляции пакетов, передаваемых на уровне L3, в кадре данных на уровне L2 и в выборе конкретной очереди передачи на уровне L2 для кадра данных, соответствующего пакетам, которые задаются на уровне L3.

Ниже уровня L2 находится физический канал передачи (в этом примере, беспроводной канал), который имеет свои собственные возможности передачи, идентифицированные на уровне L1: частотный спектр, способы кодирования, частоту ошибок в битах (BER), характеристики замирания и так далее. Характеристики уровня L1, однако, выходят за рамки объема охраны настоящего изобретения, и не будут дополнительно обсуждаться подробно в остальной части описания, поскольку они не являются необходимыми для его понимания. Единственные вещи, которые должны быть известны способу и системе объекта изобретения относительно характеристик физического канала, относятся к формату кодов исправления ошибок, например, заголовок прямого исправления ошибок (FEC), применяемый к уровню L2, и будет обсуждаться в остальной части описания со ссылкой на Фиг. 4.

На Фиг. 2 представлена подробно, в схематичной форме, конфигурация уровня L3 со ссылкой на плоскость данных UPL3 и на соответственную плоскость управления CPL3.

На уровне плоскости данных установлено множество очередей Q1L3,...,QNL3, приспособленных для разделения различных классов трафика и обеспечения различных уровней качества обслуживания согласно соглашению об уровне обслуживания, относящемуся к каждому классу трафика.

Каждая одиночная очередь QiL3(i=1,...N) состоит из соответственного буфера BiL3, в котором пакеты данных, заданные на уровне L3, сохраняются прежде, чем быть переданными, и сервера SiL3 буфера. Скорость обслуживания задает скорость передачи выходящих пакетов, переносимых в направлении к уровню L2, и является синонимом для «способности обслуживания» и «распределения полосы пропускания».

Очереди на уровне L3 получают с помощью аппаратных средств или программного обеспечения в шлюзовом устройстве G. Например, в типичных устройствах маршрутизации очереди, в которых качество обслуживания гарантируется подходящим распределением полосы пропускания, являются выходными очередями, созданными с помощью программного обеспечения до передачи в направлении к выходным каналам. В так называемых архитектурах «открытого маршрутизатора», на основе операционных систем с открытым исходным кодом (обычно, на основе операционной системы Linux) очереди на уровне L3 создаются посредством программных модулей, включенных в операционную систему.

Конкретный способ используется на уровне плоскости управления CPL3 для классификации трафика и распределения ресурсов полосы пропускания на уровне L3, например способ DiffServ. Более конкретно, на уровне плоскости управления администратор ресурсов (L3RM) является ответственным за распределение ресурсов на уровне L3 шлюза и осведомлен о соглашении относительно уровня обслуживания, доступного сетью. Он может также применять протоколы сигнализации, подобные протоколу резервирования ресурсов (RSVP), чтобы управлять всей цепочкой связи наземной части сети. DiffServ, IntServ, MPLS являются возможными примерами способов проектирования трафика и качества обслуживания, используемых администратором ресурсов на уровне L3.

Снова со ссылкой на плоскость данных UPL3, потоки различных классов трафика идентифицируются f i L 3 и Q o S i L 3 указывает соответствующий уровень качества обслуживания для i-ой очереди. Здесь, поток состоит из последовательности пакетов, развитие во времени которых следует стохастическому процессу, статистические характеристики которого (среднее значение, дисперсия) могут использоваться администратором ресурсов L3RM для управления распределением ресурсов полосы пропускания на уровне L3.

Следует отметить, что формирование пакетов и на уровне L3, и на уровне L2, является статистическим процессом, и как таковой будет рассматриваться в остальной части описания. Эта характеристика лежит в основе потенциала и рабочей характеристики способа по объекту изобретения.

На Фиг. 3 представлена подробно, в схематичной форме, конфигурация уровня L2 для шлюза со ссылкой на плоскость данных UPL2 и на соответственную плоскость управления CPL2.

В целом, структура может быть сравнимой с таковой по Фиг. 2 в отношении уровня L3 протокола, и по аналогии одинаковые ссылочные позиции были назначены компонентам.

На уровне плоскости данных установлено множество очередей QiL2,...,QNL2 уровня L2, причем каждая одиночная очередь QiL2(i=1,...,N) состоит из соответственного буфера BiL2 и сервера SiL2 буфера.

Администратор ресурсов L2RM осведомлен о полной емкости канала, доступной на физическом канале (беспроводной канал в настоящем примере), и является ответственным за распределение полосы пропускания на уровне L2.

Процесс распределения ресурсов полосы пропускания на уровне L2 согласно изобретению содержит следующие операции:

i) отображение конкретного потока трафика, присутствующего на уровне L3, по отношению к конкретной очереди передачи, обеспеченной на уровне L2;

ii) выделение полосы пропускания каждой очереди уровня L2;

iii) оценивание точной потребности полосы пропускания для каждой очереди уровня L2, достаточной для удовлетворения соглашения относительно уровня обслуживания.

Более конкретно, в остальной части описания будет пояснено, каким образом реализуются операции в точке iii) и каким образом результаты таких операций влияют на операции i) и ii), независимо от конкретных способов, используемых для реализации таких операций в первичных экземплярах, в которых исполняется шлюзовое устройство.

Обычно, очереди на уровне L2 создаются с помощью аппаратных средств и доступны в количестве, которое меньше относительно очередей на уровне L3. Следовательно, является необходимым выполнять некоторые операции агрегации классов трафика от уровня L3 к уровню L2, и подробности операций отображения QoS, применяемых между уровнем L3 и уровнем L2, описываются со ссылкой на Фиг. 4.

Без выхода за рамки обобщения формы, на Фиг. 4 показано, что происходит для обобщенной очереди Qi на уровне L2.

Подмножество потоков трафика, поступающих от уровня L3, индексами которого являются i 1 ,..., i n i , перемещаются вдоль соответствующей i-ой очереди. Потоки на уровне L3 обозначаются f i 1 L 3 ,…, f i n i L 3 и соответствующие уровни качества обслуживания, обозначаются Q o S i 1 L 3 ,…, Q o S i n i L 3

Очередь на уровне L2 переносит, например, два типа трафика, соответственно речевой трафик, переносимый по протоколу передачи речи поверх IP (VoIP), который требует потерю пакетов не более 1%, и трафик видео (на IP), который требует потерю пакетов не более 0,1%. Потоки f i 1 L 3 ,…, f i n i L 3 агрегируют вместе в одиночный поток f i L 2 , входящий в i-ую очередь, в модуле EF инкапсуляции и формирования кадра. Пакеты на уровне L3 для потоков инкапсулируют в одиночный кадр передачи к уровню L2 (например, IP поверх ATM), возможно применяя некоторые необязательные процессы инкапсуляции, как например в случае формата инкапсуляции CS (подуровень конвергенции) в технологии WiMAX.

Другой представляющий интерес процесс, который выполняется в операции отображения от уровня L3 к уровню L2, касается информации, добавляемой с тем, чтобы противопоставить замирание физического канала и ограничить частоту появления ошибочных битов (BER) на уровне L2, например, кодов прямого исправления ошибок, обычно содержащихся в служебной области уровня. Вышеупомянутые коды защиты могут быть с переменным размером в зависимости от мгновенного значения отношения сигнал/помеха, поступающего от уровня L1 через связной примитив, обычно доступный в интерфейсе L2-L1, идентифицированного на фигуре посредством модуля SIR (отношение сигнал-помеха).

Вследствие операций агрегации и инкапсуляции на уровне L2, соответствующие статистические характеристики стохастических процессов на уровне L3 относительно потоков f i 1 L 3 ,…, f i n i L 3 являются смешанными вместе, так что оценка статистических свойств стохастических процессов, которые входят в i-ую очередь, и соответственного качества обслуживания на уровне L2 является очень трудной задачей.

Такая задача решается благодаря обеспечению копии плоскости данных на уровне L2, в контексте изобретения, идентифицированной как виртуальная копия, в сравнении с действительной плоскостью данных.

Действительная плоскость данных, UPL2, содержит действительные очереди Q1L2,...,QNL2, которые соответствуют очередям, фактически созданным в шлюзовом устройстве. Соответственная скорость обслуживания i-ой очереди, или лучше - соответственная полоса пропускания, распределенная i-ой очереди, обозначена символом θ i M a x . Для каждой очереди скорость обслуживания или распределенная полоса пропускания θ i M a x , устанавливается администратором ресурсов уровня L2 (L2RM) в начале периода обслуживания шлюзового устройства G на основе планирования, которое зависит от доступного прогноза трафика на приемлемо продленный период времени. Например, путем применения принципа предупредительного завышения величины, параметр θ i M a x для i-ой очереди может быть установлен в виде функции прогноза наихудшего условия трафика, входящего в i-ую очередь. Другими словами, это означает рассмотрение всех возможных источников, активных одновременно, и установление в результате θ i M a x , необходимого для одновременного удовлетворения всем требованиям к услугам. Например, для десяти всех активных источников VoIP, с соответственной входной скоростью передачи, равной 100 кбит/с, и заголовка на уровне L2 с служебными данными в 20% в наихудшем условии замирания физического канала, принцип завышения величины