Фиброгипсовермикулитобетонная сырьевая смесь для изготовления огнезащитного покрытия
Иллюстрации
Показать всеИзобретение относится к промышленности строительных материалов и может быть использовано промышленными и строительными организациями для огнезащиты строительных конструкций. Технический результат - повышение огнестойкости строительных конструкций за счет расширения сырьевой базы, повышения прочности и водостойкости гипсовермикулитобетона, повышения трещиностойкости и огнезащитных свойств покрытия во время пожара. Фиброгипсовермикулитобетонная сырьевая смесь для изготовления огнезащитного покрытия включает, мас.%: гипс 40,0-47,7; вспученный вермикулит 35,40-45,33; вулканический пепел 3,0-3,5; портландцемент 10,0-12,1; базальтовое волокно 1,2-1,5; смолу древесную омыленную 0,07-0,1. 3 табл.
Реферат
Изобретение относится к промышленности строительных материалов и предназначено для огнезащиты стальных, железобетонных и армоцементных конструкций в гражданском и промышленном строительстве.
Известны огнезащитные составы на портландцементе, гипсе, жидком стекле, глиноземистом цементе с различными добавками [1, 2, 3, 4]. В качестве пористых заполнителей используются вспученный вермикулит и перлит.
Наиболее близким являются сырьевые смеси для изготовления огнезащитных покрытий с использованием гипса, вспученного вермикулита, отходов пиления вулканического туфа, негашеной извести и смолы древесной омыленной [5].
Недостатками этих составов являются отсутствие достаточной сырьевой базы отходов пиления вулканического туфа, относительно низкая прочность на растяжение и изгиб гипсовермикулитобетона, относительно высокий коэффициент теплопроводности и низкая трещиностойкость покрытия при высоких температурах во время пожара.
Задачей изобретения является расширение сырьевой базы, повышение прочности и водостойкости гипсовермикулитобетона, повышение трещиностойкости и огнезащитных свойств покрытия во время пожара.
Задача решается за счет использования в огнезащитной сырьевой смеси гипса, вспученного вермикулита, вулканического пепла, портландцемента, базальтового волокна и смолы древесной омыленной (СДО).
В экспериментах были использованы гипсовое вяжущее Усть-Джегутинского гипсового комбината марки Г-5 БII, портландцемент ПЦ500-ДО производства ЗАО «Белгородский цемент». В качестве активной минеральной добавки применялся вулканический пепел Заюковского месторождения фракции 0-0,16 мм.
Химический состав вулканического пепла представлен в таблице 1.
Заполнитель - вспученный вермикулит Санкт-Петербургской слюдяной фабрики фракции 0,16-5 мм.
Гранулометрический состав вспученного вермикулита приведен в таблице 2.
Для дисперсного армирования композита применялось базальтовое волокно производства ОАО «Ивотстекло» марки РНБ-9-1200-4с, соотношение длины волокон к диаметру на основе предварительных экспериментов принималось l/d=1444.
Для улучшения реологических характеристик огнезащитной смеси и физико-механических свойств раствора и бетона использовалась поверхностно-активная воздухововлекающая добавка СДО, разработанная ВНИИжелезобетон и ЦНИИЛХИ (ТУ-81-05-2-78).
Приготовление смеси осуществляют в смесителе принудительного действия, в котором после подачи воды с добавкой СДО последовательно загружают смесь гипса, портландцемента, вулканического пепла, базальтового волокна, затем - вспученного вермикулита, или предварительно перемешанную всухую смесь гипса, портландцемента, вулканического пепла, базальтового волокна и вспученного вермикулита. Перемешивание всех компонентов продолжают до получения однородной фиброгипсовермикулитобетонной сырьевой смеси. Продолжительность перемешивания смеси составляет 1,5-2 мин.
Для исследования огнезащитной эффективности предлагаемых огнезащитных фиброгипсовермикулитобетонных составов формовались армоцементные плиты с огнезащитным слоем. Армоцементный слой формовали на стандартной виброплощадке, фиксацию мелкоячеистой сетки и стержневой арматуры выполняют известными способами. Огнезащитный слой формуют литьевым способом и осуществляют естественную сушку в воздушно-сухих условиях. Огнезащитное покрытие также наносят на металлические, железобетонные и армоцементные конструкции в условиях строительной площадки вручную или механизировано с использованием штукатурных агрегатов отечественного или зарубежного производства.
Испытания на огнестойкость проводили на образцах размерами 190×190 мм на электрической печи в горизонтальном положении по температурному режиму «стандартного» пожара, регламентированному ГОСТ 30247.0-94. Предел огнестойкости по несущей способности (R) армоцементных плит оценивали по прогреву тканой сетки в конструктивном слое (на границе слоев) до 300°С. Влажности мелкозернистого бетона армоцементного слоя и огнезащитного состава к моменту испытаний составляли соответственно 3-4% и 8-10%. Во время огневых испытаний двухслойных элементов нарушений их целостности не обнаружено.
Составы фиброгипсовермикулитобетонной огнезащитной сырьевой смеси согласно изобретению и их основные физико-механические свойства, пределы огнестойкости двухслойных армоцементных плит приведены в таблице 3. В таблице 3 приведены также результаты сравнительных испытаний армоцементных плит с огнезащитным слоем на основе контрольных составов с применением отходов пиления вулканического туфа фракции 0-2,5 мм.
Из таблицы 3 видно, что при меньшей средней плотности разработанные композиты имеют более высокие прочности на сжатие и изгиб. Это объясняется тем, что пепел используется фракции до 0,16 мм, что увеличивает содержание химически активной составляющей в отличие от туфового песка фракции до 2,5 мм, используемого в прототипе.
Введение базальтовых волокон повышает предел прочности при сжатии фиброгипсовермикулитобетонного композита в 1,17 раза, при изгибе - в 1,73 раза по отношению к прочности исходной матрицы. По сравнению с прототипом прочность на сжатие фиброгипсовермикулитобетонного композита повышается в 2,05 раза, на изгиб - в 2,12 раза. Это позволит изготавливать большеразмерные фиброгипсовермикулитобетонные изделия. Кроме того, армирование исходной матрицы базальтовыми волокнами повышает трещиностойкость и огнезащитные свойства покрытия за счет восприятия растягивающих температурных напряжений во время пожара. Разработанный фиброгипсовермикулитобетонный композит имеет повышенный коэффициент размягчения - 0,7-0,75, что также позволит расширить области их эффективного применения.
Источники информации
1. Страхов В.Л., Гаращенко А.Н. Огнезащита строительных конструкций: современные средства и методы оптимального проектирования // Строительные материалы. 2002. №6. С. 2-5.
2. Авторское свидетельство СССР №275342. МПК Е04В 1/94. Состав для покрытия металлических элементов / Щипанов А.И., Лабозин П.Г. // Б.И. №22, 03.07.1970.
3. Руководство по составам и применению теплоизоляционных и огнестойких перлитовых штукатурок. М.: Стройиздат, 1975. - 15 с.
4. Руководство по выполнению огнезащитных и теплоизоляционных штукатурок механизированным способом. М.: Стройиздат, 1977. - 46 с.
5. Хежев Т.А., Хежев Х.А. Патент РФ №2385851. Сырьевая смесь для изготовления огнезащитного покрытия // Бюл. №10. 2010.
Фиброгипсовермикулитобетонная сырьевая смесь для изготовления огнезащитного покрытия, включающая гипс и пористые заполнители, отличающаяся тем, что она содержит в качестве заполнителей вспученный вермикулит фракции 0,16-5 мм и вулканический пепел фракции 0-0,16 мм, являющийся одновременно и активной минеральной добавкой, а в качестве добавок - портландцемент, базальтовое волокно и смолу древесную омыленную при следующем соотношении компонентов, мас.%:
Гипс | 40,0-47,7 |
Вспученный вермикулит | 35,40-45,33 |
Вулканический пепел | 3,0-3,5 |
Портландцемент | 10,0-12,1 |
Базальтовое волокно | 1,2-1,5 |
Смола древесная омыленная | 0,07-0,1 |