Высокопрочный эпоксидный пленочный клей
Иллюстрации
Показать всеИзобретение относится к области высокопрочных эпоксидных клеев повышенной теплостойкости конструкционного назначения. Эпоксидная клеевая композиция для соединения металлов и/или ПКМ включает эпоксидную основу и отвердитель. В качестве эпоксидной основы содержит смесь эпоксидной диановой смолы с одной или несколькими эпоксидными смолами, выбранными из группы N,N-тетраглицидиловое производное 3,3′-дихлор-4,4′-диаминодифенилметана, триглицидилпроизводное парааминофенола. В качестве отвердителя - дициандиамид, содержащий углеродные нанотрубки типа «Таунит-М». Композиция дополнительно содержит модификатор полиэфирсульфон или его смесь с одним из полиарилсульфонов с концевыми гидроксильными группами. Композиция включает следующее соотношение компонентов, мас.%: смесь эпоксидной диановой смолы с одной или несколькими эпоксидными смолами, выбранными из группы N,N-тетраглицидиловое производное 3,3′-дихлор-4,4′-диаминодифенилметана, триглицидилпроизводное парааминофенола: 63-70, дициандиамид с введенными углеродными нанотрубками - 8-10, полиэфирсульфон или его смесь с одним из полиарилсульфонов: 20-29. Технический результат, достигаемый композицией по изобретению, заключается в возможности создания клеевых соединений и изделий из ПКМ со стабильно высоким уровнем прочностных характеристик, как при комнатной температуре, так и при температуре 180°C. 3 з.п. ф-лы, 2 табл., 5 пр.
Реферат
Изобретение относится к области высокопрочных эпоксидных клеев повышенной теплостойкости (рабочей температурой 180°C вместо 150°C) конструкционного назначения, а также технологии изготовления и применения клеев для теплонагруженных деталей, в том числе из полимерных композиционных материалов (ПКМ), слоистых и сотовых конструкций. Предназначен для соединения металлов и ПКМ методом склеивания, применяемых в изготовлении деталей и сборочных единиц авиационной техники, в том числе, когда склеивание и формование изделий из ПКМ происходит за один технологический цикл. Предлагаемый эпоксидный клей можно использовать при изготовлении монолитных и трехслойных панелей агрегатов одинарной и сложной кривизны, а также при создании клеевых соединений металлических материалов, предназначенных для применения в авиационной, космической, машино-, авто-, судостроительной промышленности и других отраслях техники.
Из уровня техники (патент US 2011313082 А1, 523/443; 153/330 МПК В32В 37/12, МПК C09J 163/00, С08К 3/36; опубл. 22.12.2011) известна клеевая композиция при следующем соотношении компонентов, вес.%:
Компонент А
4,7,10-триокса-1,13-тридекан-диамин | 18,38 |
Анкамин 2264 (отверждающий агент) | 33,55 |
Анкамин К54 (катализатор) | 2,80 |
Красный пигмент 380 | 0,03 |
Аэросил R 202 (тиксотропная добавка) | 5,51 |
Стекл. микросферы (наполнитель) | 4,60 |
Эпикот 828 (эпоксидная смола) | 5,51 |
Хайкар 1300X21 (сополимер) | 29,62 |
Компонент В
Эпикот 828 (эпоксидная смола) | 45,89 |
КейнЭйс MX 257 (упрочняющий агент) | 22,22 |
Альбидур ЕР 2240 (упрочняющий агент) | 16,99 |
Силан Z6040 (промоутер адгезии) | 0,57 |
Каб-О-Сил TS 720 (тиксотропная добавка) | 4,61 |
Минсил SF20 (наполнитель) | 9,71 |
Недостатком данной клеевой композиции является ухудшение физико-механических характеристик при температуре 180°X.
Известна клеевая эпоксидная композиция, содержащая эпоксидную диановую смолу, отвердитель дициандиамид, термопластичный модификатор и алюмосиликатную глину (патент РФ 2495898 С1, МПК C09J 163/02; опубл. 20.10.2013). Указанная клеевая композиция характеризуется пониженной влагостойкостью и невысокой температурой стеклования (не более 150°C). Такие характеристики не обеспечивают надежную эксплуатацию склеенных ПКМ конструкционного назначения во влажных условиях при температурах выше 150°C.
Наиболее близким аналогом (патент РФ 2230764 С1, МПК C09J 163/00, 163/02, МПК C08J 5/24, МПК В32В 27/38, МПК B32BJ 3/12; опубл. 12.03.2003), взятым за прототип, является клеевая композиция следующего химического состава, масс. %:
Эпоксидная диановая смола | 13 |
N,N-тетраглицидиловое производное 3,3′-дихлор-4,4′- | |
диаминодифенилметана | 45 |
Триглицидилпроизводное парааминофенола | 6 |
Полиарилсульфон | 28 |
Дициандиамид | 8 |
Недостатком указанной клеевой композиции также является снижение прочностных характеристик при температуре 180°C.
Технической задачей и техническим результатом заявленного изобретения является создание технологичной эпоксидной пленочной клеевой композиции, обеспечивающей образование клеевого соединения со стабильно высоким уровнем прочностных (прочность при сдвиге и при равномерном отрыве обшивки от сотового заполнителя, устойчивого к тепловлажностному старению, способного в достаточной мере сохранять термомеханические свойства после указанных воздействий при температуре 180°C.
Для решения поставленной задачи и достижения технического результата предлагается эпоксидная клеевая композиция для металлов и/или полимерных композиционных материалов, включающая эпоксидную основу и отвердитель, причем в качестве эпоксидной основы содержит смесь эпоксидной диановой смолы с одной или несколькими эпоксидными смолами, выбранными из группы N,N-тетраглицидиловое производное 3,3′-дихлор-4,4′-диаминодифенилметана, тригли-цидилпроизводное параами-нофенола, в качестве отвердителя - дициандиамид, содержащий углеродные нанотрубки, причем композиция дополнительно содержит модификатор - полиэфирсульфон или его смесь с одним из полиарилсульфонов с концевыми гидроксильными группами, с температурой стеклования 210-230°C, при следующем соотношении компонентов, масс. %:
смесь эпоксидной диановой смолы с одной или несколькими эпоксидными смолами, выбранными из группы N,N-тетраглицидиловое производное 3,3′-дихлор-4,4′-диаминодифенилметана, триглицидилпроизводное парааминофенола | 63-70 |
дициандиамид с углеродными нанотрубками | 8-10 |
полиэфирсульфон или его смесь с одним из полиарилсульфонов | 20-29 |
Отвердитель может содержать углеродные нанотрубки в количестве 0,25-0,5 масс. %, с наружным диаметром 8-15 нм, с внутренним диаметром 4-8 нм и длиной не более 2 мкм, например, типа «Таунит-М».
Молекулярная масса модификатора полиэфирсульфона или его смеси с одним из полиарилсульфонов с концевыми гидроксильными группами может составлять 25000-70000.
В качестве эпоксидной диановой смолы в предлагаемом изобретении могут быть использованы смолы с массовой долей эпоксидных групп от 10 до 23,5%. В примерах осуществления были использованы смолы ЭД-20 с массовой долей эпоксидных групп 22%, ЭД-16 с массовой долей эпоксидных групп 18%, ЭД-22 с массовой долей эпоксидных групп 23,5% (ГОСТ 10587). Использование жидких эпоксидных смол различной структуры и функциональности в составе эпоксидной клеевой композиции значительно улучшает технологические свойства клея, такие как жизнеспособность, липкость, а также эксплуатационные свойства получаемых изделий (трещиностойкость, тепло- и атмосферостойкость, усталостная и длительная прочность).
В качестве модифицирующей добавки в составе эпоксидной клеевой композиции используют полиэфирсульфон или его смесь с полиарилсульфонами с молекулярной массой 25000-70000 и температурой стеклования 210-230°C. В примерах осуществления использованы полиэфирсульфон марки ПСК-1(ТУ 6-06-46-90), и полиарилсульфоны марок ПСФФ-30 (ТУ 2224-455-0020349-2006), ПСФФ-40, ПСФФ-70.
Применение полиарилсульфонов вместе с полиэфирсульфоном в качестве модифицирующих добавок в составе эпоксидной композиции обуславливает повышение теплостойкости материалов, трещиностойкости, вязкости разрушения обшивок в составе сотовых конструкций.
Установлено, что используемый в клеевом связующем-прототипе в качестве модификатора Полиарилсульфон-1 совмещается с эпоксидными смолами при температуре 170-180°C в течение 75 минут, что обеспечивает получение гомогенной полимерной системы, но значительно повышает вязкость полимерной системы. Такая технология получения клеевого связующего-прототипа приводит к образованию высоконаполненной суспензии, обладающей повышенной вязкостью, что делает затруднительным растекание и равномерное распределение клеевого связующего в процессе формирования клеевого шва. Неравномерное распределение компонентов клеевого связующего и повышенная вязкость может привести к разбросу в значениях прочности формируемого клеевого шва.
В заявленной эпоксидной клеевой композиции совмещение термопластичных модификаторов полиэфирсульфона и полиарилсульфона с эпоксидными смолами осуществляется при температуре 150-160°C в течение 60-70 минут, что обеспечивает полное совмещение компонентов и получение гомогенной полимерной системы с оптимальными реологическими характеристиками для обеспечения равномерного распределения клеевой композиции в процессе формирования клеевого шва.
Кроме того, сочетание в заявленном изобретении наряду с модификатором полиэфирсульфоном более жесткоцепного полиарилсульфона, также дает возможность значительно увеличить устойчивость к воздействию повышенных температур отвержденной клеевой композиции в клеевых швах без понижения прочности клеевых соединений.
С целью повышения теплостойкости клеевой композиции был использован отвердитель дициандиамид ДЦЦА (ГОСТ 6988) с введенными в него функцианализованными углеродными нанотрубками типа «Таунит-М» (ТУ 2166-001-02069289-2006, ООО «Нанотехцентр», г. Тамбов). Актуальной задачей является повышение теплостойкости клеевых композиций конструкционного назначения. В прототипе был использован традиционный подход для решения этой задачи - создано связующее с максимально возможной частотой сетки химических сшивок. Недостатком данного подхода является то, что с увеличением частоты сетки и повышением температуры стеклования, происходит уменьшение разрывной деформации и ударной вязкости полимерной матрицы, что отрицательно сказывается на свойствах клеевых соединений. Как известно, предел прочности определяется балансом между частотой химических сшивок, обеспечивающих увеличение модуля упругости и температуры стеклования, и количества узлов физической сетки зацепления, обеспечивающих равномерное перераспределение напряжений между узлами химической сетки в результате протекания процессов релаксации. Поэтому, при одинаковом количестве узлов физической сетки с увеличением частоты сшивок предел прочности растет, а затем, когда частота химических сшивок становится достаточно плотной для «замораживания» релаксационных процессов, прочность падает. В настоящее время общепризнанно, что наибольшего эффекта усиления эпоксидных композиций можно добиться использованием нанотрубок, поверхность которых функцианализирована аминогруппами, поскольку аминогруппы эффективно раскрывают эпоксидные циклы и обеспечивают ковалентное присоединение молекул олигомера к поверхности углеродных нанотрубок (УНТ). При этом температура стеклования модифицированного олигомера определяется не только химическим строением амина, который используется для функцианализации УНТ, но и основного отвердителя эпоксидного олигомера. Использование в данном изобретении отвердителя ДЦДА с введенными в него функцианализованных УНТ типа «Таунит-М» позволило получить в клеевой композиции увеличение температуры стеклования, модуля упругости, разрывной деформации, что является следствием измененной структуры полимерной матрицы в окрестности функцианализованных УНТ. Наличие локализованных областей с более высокой концентрацией отвердителя в окрестности УНТ приводит к нарушению стехиометрии и образованию линейных полимерных цепочек. По сравнению с трехмерно-сшитой структурой полимерной матрицы такие области обладают большей склонностью к протеканию релаксационных процессов. Таким образом, увеличение деформации связано с уменьшением частоты сетки химических сшивок. Падение величины модуля упругости, которое связано с этим уменьшением, компенсируется его увеличением в результате роста связи поверхности функцианализованных УНТ с полимерной матрицей за счет образования ковалентных связей между функциональной группой и эпоксидным циклом.
Применение вышеуказанных компонентов для эпоксидного клеевого связующего приводит к формированию клеевого соединения со стабильно высоким уровнем прочностных характеристик (прочность при сдвиге и при равномерном отрыве обшивки от сотового заполнителя) в температурном диапазоне от -60 до 180°С.
Примеры осуществления.
Пример 1.
Приготовление эпоксидной клеевой композиции.
Для получения эпоксидной клеевой композиции в чистый и сухой смеситель с термостатируемой рубашкой и сливным штуцером, снабженный мешалкой серповидного типа, для смешивания исходных веществ загружают предварительно разогретые до температуры 50-70°С 27,5 масс. % смолы ЭД-20, 21,0 масс. % смолы ЭХД и 21,0 масс. % смолы ЭАФ. Включают мешалку и, перемешивая со скоростью (40±10) об/мин, нагревают до температуры (160±5)°С. В течение не менее 20 мин перемешивают при указанной температуре со скоростью (30±10) об/мин. Затем в смесь постепенно вводят 10,5 масс. % полиэфирсульфона марки ПСК-1 и 10,5 масс. % полиарилсульфона марки ПСФФ-40, при перемешивании выдерживают в течение 2 ч. Понижают температуру смеси до (100±10)°С и загружают небольшими порциями 9,5 масс. % отвердителя дициандиамида с введенными в него функцианализованными углеродными нанотрубками типа «Таунит-М» в количестве 0,5 масс. %. В течение не менее 20 мин перемешивают при указанной температуре со скоростью (25±5) об/мин. Затем расплав сливают через сливной штуцер и охлаждают до комнатной температуры.
Технология приготовления эпоксидных клеевых композиций по примерам 2-5 аналогична примеру 1. Составы композиций по изобретению и прототипа даны в таблице 1, свойства клеевых соединений - в таблице 2.
Сравнительные данные из табл. 2 показывают, что предлагаемый высокопрочный пленочный клей обеспечивает высокие прочностные характеристики отвержденного клеевого шва: прочность при сдвиге при 20°C составляет 28-32 МПа, при одновременном сохранении высокого уровня прочности при сдвиге 24-28 Мпа (при 180°C), прочность при равномерном отрыве обшивки от сотового заполнителя 5,6-6,0 МПа. Достигнутые показатели при температуре 180°C превышают прототип в 2,0-2,5 раза.
Таким образом, благодаря предлагаемой эпоксидной клеевой композиции, достигается возможность создания клеевых соединений и изделий из ПКМ со стабильно высоким уровнем прочностных (прочность при сдвиге и при равномерном отрыве обшивки от сотового заполнителя) характеристик, как при комнатной, так и при температуре 180°C.
1. Эпоксидная клеевая композиция для металлов и полимерных композиционных материалов, включающая эпоксидную основу и отвердитель, отличающаяся тем, что в качестве эпоксидной основы содержит смесь эпоксидной диановой смолы с одной или несколькими эпоксидными смолами, выбранными из группы N,N-тетраглицидиловое производное 3,3′-дихлор-4,4′-диаминодифенилметана, триглицидилпроизводное парааминофенола, в качестве отвердителя - дициандиамид, содержащий углеродные нанотрубки, причем композиция дополнительно содержит модификатор - полиэфирсульфон или его смесь с одним из полиарилсульфонов с концевыми гидроксильными группами, с температурой стеклования 210-230°С, при следующем соотношении компонентов, мас.%:
смесь эпоксидной диановой смолы с одной или несколькими эпоксидными смолами, выбранными из группы N,N-тетраглицидиловое производное 3,3′-дихлор-4,4′-диаминодифенилметана, триглицидилпроизводное парааминофенола | 63-70 |
дициандиамид с углеродными нанотрубками | 8-10 |
полисульфон или его смесь с одним из полиарилсульфонов | 20-29 |
2. Эпоксидная клеевая композиция по п. 1, отличающаяся тем, что отвердитель содержит углеродные нанотрубки в количестве 0,25-0,5 мас.%.
3. Эпоксидная клеевая композиция по п. 1, отличающаяся тем, что отвердитель содержит углеродные нанотрубки с наружным диаметром 8-15 нм, с внутренним диаметром 4-8 нм и длиной не более 2 мкм.
4. Эпоксидная клеевая композиция по п. 1, отличающаяся тем, что молекулярная масса модификатора полиэфирсульфона или его смеси с одним из полиарилсульфонов с концевыми гидроксильными группами составляет 25000-70000.