Разрушающаяся трубная заанкеривающая система и способ ее применения

Иллюстрации

Показать все

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Разрушающаяся трубная заанкеривающая система содержит элемент в форме конической призмы; втулку по меньшей мере с одной первой поверхностью, радиально изменяющейся в ответ на продольное перемещение элемента в форме конической призмы относительно втулки, причем первая поверхность может взаимодействовать со стенкой конструкции; уплотнение по меньшей мере с одной второй радиально изменяющейся поверхностью и гнездо, имеющее контактную площадку, взаимодействующую с уплотнением со съемной пробкой, спускаемой на нее враспор. Элемент в форме конической призмы, втулка, уплотнение и гнездо являются разрушающимися и независимо содержат металлический композит, который включает в себя сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами и металлическую матрицу, размещенную в сотовой наноматрице. Способ изоляции конструкции содержит установку разрушающейся трубной заанкеривающей системы в конструкции, радиальное изменение втулки для взаимодействия с поверхностью конструкции и радиальное изменение уплотнения для изоляции конструкции. Технический результат заключается в повышении эффективности инструмента, содержащего разрушающуюся трубную заанкеривающую систему. 4 н. и 27 з.п. ф-лы, 25 ил.

Реферат

[1] Данная заявка испрашивает приоритет по заявке U.S. Application No. 13/466322, выложена 8 мая 2012 г., полностью включена в данном документе в виде ссылки.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[2] В подземных сооружениях, включающих в себя нефтяные и газовые скважины, скважины удаления CO2 и т.д. часто применяют внутрискважинные компоненты или инструменты, для которых функционально требуется только ограниченный срок службы, значительно меньше срока службы скважины. После выполнения компонентом или инструментом своей функции, он должен убираться или удаляться для восстановления начальных размеров пути текучей среды для эксплуатации, в том числе, добычи углеводородов, локализации или удаления CO2 и т.д. Удаление компонентов или инструментов можно выполнять фрезерованием или разбуриванием компонента или инструмента в стволе скважины, что обычно является долгой и дорогостоящей операцией. Отрасли постоянно требуются новые системы, материалы и способы удаления компонентов или инструментов из ствола скважины, исключающие такие операции фрезерования и разбуривания.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[3] В данном документе раскрыта разрушающаяся трубная заанкеривающая система, которая содержит элемент в форме конической призмы; втулку по меньшей мере с одной первой поверхностью, радиально изменяющейся в ответ на продольное перемещение элемента в форме конической призмы относительно втулки, причем, по меньшей мере одна первая поверхность может взаимодействовать со стенкой конструкции, расположенной радиально на расстоянии от нее, для поддержания положения по меньшей мере втулки относительно конструкции при взаимодействии с ней; уплотнение по меньшей мере с одной второй поверхностью, радиально изменяющейся в ответ на продольное перемещение элемента в форме конической призмы относительно уплотнения; и гнездо, функционально связанное с элементом в форме конической призмы, имеющее контактную площадку, взаимодействующую с уплотнением со съемной пробкой, спускаемой на нее враспор, причем контактная площадка продольно смещается относительно втулки в направлении вверх по потоку, который вдавливает пробку в нее враспор, при этом элемент в форме конической призмы, втулка, уплотнение и гнездо являются разрушающимися и независимо содержат металлический композит, который включает в себя сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами; и металлическую матрицу, размещенную в сотовой наноматрице.

[4] Дополнительно раскрыт способ изоляции конструкции, содержащий: установку разрушающейся трубной заанкеривающей системы в конструкции; радиальное изменение втулки для взаимодействия с поверхностью конструкции; и радиальное изменение уплотнения для изоляции конструкции.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[5] Следующие описания не следует считать ограничивающими. На прилагаемых чертежах, одинаковые элементы обозначены одинаковыми позициями.

[6] На Фиг. 1 показано сечение разрушающейся трубной заанкеривающей системы.

[7] На Фиг. 2 показано сечение разрушающегося металлического композита.

[8] На Фиг. 3 показан микрофотоснимок являющегося примером варианта осуществления разрушающегося металлического композита, раскрытого в данном документе.

[9] На Фиг. 4 показано сечение композиции, используемой для изготовления разрушающегося металлического композита Фиг. 2.

[10] На Фиг. 5A показан микрофотоснимок технически чистого металла без сотовой наноматрицы.

[11] На Фиг. 5B показан микрофотоснимок разрушающегося металлического композита с металлической матрицей и сотовой наноматрицей.

[12] На Фиг. 6 показан график зависимости убывания массы от времени для различных разрушающихся металлических композитов, которые включают в себя сотовую наноматрицу, указывающий селективно задаваемые скорости разрушения.

[13] На Фиг. 7A показан микрофотоснимок с электронного микроскопа поверхности излома прессовки, выполненной из порошка технически чистого Mg.

[14] На Фиг. 7B показан микрофотоснимок с электронного микроскопа поверхности излома, являющегося примером варианта осуществления разрушающегося металлического композита с сотовой наноматрицей, описанного в данном документе.

[15] На Фиг. 8 показан график зависимости прочности на сжатие металлического композита с сотовой наноматрицей от весового процента компонента (AI2O3) сотовой наноматрицы.

[16] На Фиг. 9A показано сечение варианта осуществления разрушающейся трубной заанкеривающей системы в стволе скважины.

[17] На Фиг. 9B показано сечение системы Фиг. 9A, установленной в рабочее положение.

[18] На Фиг. 10 показано сечение разрушающегося элемента в форме конической призмы.

[19] На Фиг. 11 показано сечение разрушающегося нижнего переводника.

[20] На Фиг. 12A, 12B и 12C соответственно показаны вид в изометрии, сечение и вид сверху разрушающейся втулки.

[21] На Фиг. 13A и 13B соответственно показаны вид в изометрии и сечение разрушающегося уплотнения.

[22] На Фиг. 14 показано сечение другого варианта осуществления разрушающейся трубной заанкеривающей системы.

[23] На Фиг. 15 показано сечение разрушающейся трубной заанкеривающей системы Фиг. 14, установленной в рабочее положение.

[24] На Фиг. 16 показано сечение другого варианта осуществления разрушающейся трубной заанкеривающей системы.

[25] На Фиг. 17 показано сечение другого варианта осуществления разрушающегося уплотнения с эластомерным опорным кольцом в разрушающейся трубной заанкеривающей системе.

[26] На Фиг. 18A и 18B соответственно показаны сечение и вид в изометрии другого варианта осуществления разрушающегося уплотнения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[27] Подробное описание вариантов осуществления устройства и способа представлены в данном документе в виде примера и без ограничений описанием и прилагаемыми фигурами.

[28] Изобретатели обнаружили, что высокопрочную, высокодуктильную и при этом полностью разрушающуюся трубную заанкеривающую систему можно выполнить из материалов, которые селективно и управляемо разрушаются, в ответ на контакт с некоторыми скважинными текучими средами или в ответ на измененные условия. Такая разрушающаяся система включает в себя компоненты, селективно корродирующие, с селективно заданной скоростью разрушения и селективно заданными свойствами материала. В дополнение, разрушающаяся система имеет компоненты с отличающейся прочностью на сжатие и растяжение, в том числе уплотнение (для образования, например, приспосабливающегося уплотнения металла к металлу), конус, деформирующуюся втулку (или трубные клинья) и нижний переводник. При использовании в данном документе "разрушающийся" относится к материалу или компоненту, который является расходуемым, корродирующим, разрушающимся, растворяющимся, теряющим прочность или иначе удаляемым. Следует понимать, что использование в данном документе термина "разрушать" в любой из его форм (например, "разрушение"), включает в себя указанное значение.

[29] Вариант осуществления разрушающейся трубной заанкеривающей системы показан на Фиг. 1. Разрушающаяся трубная заанкеривающая система 110 включает в себя уплотнение 112, элемент 114 в форме конической призмы, втулку 116 (показана в данном документе, как держатель клиньев) и нижний переводник 118. Система 110 выполнена так, что продольное перемещение элемента 114 в форме конической призмы относительно втулки 116 и относительно уплотнения 112 обуславливает радиальные изменения втулки 116 и уплотнения 112 соответственно. Хотя в данном варианте осуществления радиальные изменения направлены радиально наружу, в альтернативных вариантах осуществления радиальные изменения могут иметь другие направления, например, радиально внутрь. В дополнение, продольный размер D1 и толщину T1 участка стенки уплотнения 112 можно менять приложением к нему сжимающей силы. Уплотнение 112, элемент 114 в форме конической призмы, втулка 116 и нижний переводник 118 (т.е. компоненты системы 110) являются разрушающимися и содержат металлический композит. Металлический композит включает в себя металлическую матрицу, размещенную в сотовой наноматрице, и разрушающую добавку.

[30] В варианте осуществления разрушающая добавка размещается в металлической матрице. В другом варианте осуществления разрушающая добавка размещается снаружи металлической матрицы. В еще одном варианте осуществления разрушающая добавка размещается в металлической матрице, а также снаружи металлической матрицы. Металлический композит также включает в себя сотовую наноматрицу, которая содержит материал наноматрицы с металлическими свойствами. Разрушающая добавка может размещаться в сотовой наноматрице среди материала наноматрицы с металлическими свойствами. Являющийся примером металлический композит и способ, используемый для изготовления металлического композита, раскрыты в заявках U.S. Patent Application Serial Numbers 12/633682, 12/633688, 13/220832, 13/220822 и 13/358307, описание каждой из патентных заявок полностью включено в данном документе в виде ссылки.

[31] Металлический композит является, например, порошковой прессовкой, показанной на Фиг. 2. Металлический композит 200 включает в себя сотовую наноматрицу 216, содержащую материал 220 наноматрицы, и металлическую матрицу 214 (например, множество диспергированных частиц), содержащую материал 218 сердечника частицы, диспергированный в сотовой наноматрице 216. Материал 218 сердечника частицы содержит наноструктурированный материал. Такой металлический композит, имеющий сотовую наноматрицу с металлической матрицей, размещенной в ней, называется электролитным материалом с заданными свойствами.

[32] Как показано на Фиг. 2 и 4, металлическая матрица 214 может включать в себя любой подходящий материал 218 сердечника частицы с металлическими свойствами, который включает в себя наноструктуру, как описано в данном документе. В являющемся примером варианте осуществления металлическая матрица 214 образована из сердечников 14 частиц (Фиг. 4) и может включать в себя такие элементы, как алюминий, железо, магний, марганец, цинк или их комбинацию, как наноструктурированный материал 218 сердечника частицы. Конкретнее, в являющемся примером варианте осуществления металлическая матрица 214 и материал 218 сердечника частицы могут включают в себя различные сплавы Al или Mg в качестве наноструктурированного материала 218 сердечника частицы, включающие в себя различные дисперсионно твердеющие сплавы Al или Mg. В некоторых вариантах осуществления материал 218 сердечника частицы включает в себя магний и алюминий, где алюминий присутствует в количестве от около 1 весового процента (вес.%) до около 15 вес.%, в частности от 1 вес.% до около 10 вес.% и конкретнее от около 1 вес.% до около 5 вес.% от веса металлической матрицы, остальную часть веса составляет магний.

[33] В дополнительном варианте осуществления дисперсионно твердеющие сплавы Al или Mg являются особенно полезными, поскольку могут усиливать металлическую матрицу 214 как с помощью наноструктурирования, так и дисперсионного твердения, благодаря введению в состав переосажденных частиц, как описано в данном документе. Металлическая матрица 214 и материал 218 сердечника частицы также могут включать в себя редкоземельный элемент или комбинацию редкоземельных элементов. Примеры редкоземельных элементов включают в себя Sc, Y, La, Ce, Pr, Nd или Er. Можно использовать комбинацию, содержащую по меньшей мере один из вышеупомянутых редкоземельных элементов. Редкоземельный элемент, если имеется, может присутствовать в количестве 5 вес.% или меньше и, конкретно, около 2 вес.% или меньше от веса металлического композита.

[34] Металлическая матрица 214 и материал 218 сердечника частицы также может включать в себя наноструктурированный материал 215. В являющемся примером варианте осуществления наноструктурированный материал 215 является материалом с размером зерна (например, размер блока зерна или кристаллического блока) меньше около 200 нанометров (нм), в частности от около 10 нм до около 200 нм и конкретнее со средним размером зерна меньше около 100 нм. Наноструктура металлической матрицы 214 может включать в себя большеугловые границы 227, которые обычно используют для определения размера зерна или малоугловые границы 229, которые могут возникать, как субструктура в конкретном зерне, и которые в некоторых случаях используют для определения размера кристаллического блока или их комбинации. Понятно, что сотовая наноматрица 216 и зернистая структура (наноструктурированный материал 215, включающий в себя границы 227 и 229 блоков) металлической матрицы 214 являются отличительными признаками металлического композита 200. В частности, сотовая наноматрица 216 не является частью кристаллического или аморфного участка металлической матрицы 214.

[35] Разрушающая добавка включается в состав металлического композита 200 для управления скоростью разрушения металлического композита 200. Разрушающую добавку можно размещать в металлической матрице 214, сотовой наноматрице 216 или их комбинации. Согласно варианту осуществления разрушающая добавка включает в себя металл, жирную кислоту, керамические частицы или комбинацию, содержащую по меньшей мере одно из вышеупомянутого, причем разрушающая добавка размещается в электролитном материале с заданными свойствами для изменения скорости разрушения электролитного материала с заданными свойствами. В одном варианте осуществления разрушающая добавка размещается в сотовой наноматрице снаружи металлической матрицы. В не ограничивающем варианте осуществления разрушающая добавка увеличивает скорость разрушения металлического композита 200. В другом варианте осуществления разрушающая добавка уменьшает скорость разрушения металлического композита 200. Разрушающая добавка может являться металлом, в том числе кобальтом, медью, железом, никелем, вольфрамом, цинком или комбинацией, содержащей по меньшей мере одно из вышеупомянутого. В дополнительном варианте осуществления разрушающая добавка является жирной кислотой, например, жирной кислотой с 6-40 атомами углерода в молекуле. Примеры жирных кислот включают в себя: олеиновую кислоту, стеариновую кислоту, лауриновую кислоту, гидроксистеариновую кислоту, бегеновую кислоту, арахидоновую кислоту, линолевую кислоту, линоленовую кислоту, свободную кислоту природной смолы, пальмитиновую кислоту, монтановую кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. В еще одном варианте осуществления разрушающая добавка является керамическими частицами, например, нитрида бора, карбида вольфрама, карбида тантала, карбида титана, карбида ниобия, карбида циркония, карбида бора, карбида гафния, карбида кремния, карбида ниобия бора, нитрида алюминия, нитрида титана, нитрида циркония, нитрида тантала или комбинации, содержащей по меньшей мере одно из вышеупомянутого. В дополнение, керамическая частица может являться частицей керамических материалов, рассмотренных ниже для упрочняющего средства. Такие керамические частицы имеют размер 5 мкм или меньше, в частности 2 мкм или меньше и конкретнее 1 мкм или меньше. Разрушающая добавка может присутствовать в количестве, эффективно действующем для разрушения металлического композита 200 с требуемой скоростью разрушения, конкретно от около 0,25 вес.% до около 15 вес.%, конкретнее от около 0,25 вес.% до около 10 вес.%, еще конкретнее от около 0,25 вес.% до около 1 вес.% от веса металлического композита.

[36] В являющемся примером варианте осуществления сотовая наноматрица 216 включает в себя алюминий, кобальт, медь, железо, магний, никель, кремний, вольфрам, цинк, их оксид, их нитрид, их карбид, их интерметаллическое соединение, их металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Металлическая матрица может присутствовать в количестве от около 50 вес.% до около 95 вес.%, конкретно от около 60 вес.% до около 95 вес.% и конкретнее от около 70 вес.% до около 95 вес.% от веса уплотнения. Дополнительно, материал наноматрицы с металлическими свойствами составляет от около 10 вес.% до около 50 вес.%, конкретно от около 20 вес.% до около 50 вес.% и конкретнее от около 30 вес.% до около 50 вес.% от веса уплотнения.

[37] В другом варианте осуществления металлический композит включает в себя вторую частицу. Как показано в общем на Фиг. 2 и 4, металлический композит 200 можно формовать с использованием порошка 10 из металлических частиц с покрытием и дополнительного или второго порошка 30, т.е. оба порошка, 10 и 30, могут иметь по существу одинаковую структуру из частиц, не имея идентичных химических соединений. Использование дополнительного порошка 30 дает металлический композит 200, который также включает в себя множество диспергированных вторых частиц 234, описанных в данном документе, которые диспергированы в сотовой наноматрице 216 и также диспергированы относительно металлической матрицы 214. Таким образом, диспергированные вторые частицы 234 получаются из частиц 32 второго порошка, размещенных в порошке 10, 30. В являющемся примером варианте осуществления диспергированные вторые частицы 234 включают в себя Ni, Fe, Cu, Co, W, Al, Zn, Mn, Si, их оксид, их нитрид, их карбид, их интерметаллическое соединение, их металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.

[38] Как также показано на Фиг. 2, металлическая матрица 214 и материал 218 сердечника частицы также могут включать в себя частицу 222 добавки. Частица 222 добавки создает механизм дисперсного упрочнения металлической матрицы 214 и создает препятствие или служит для ограничения перемещения дислокаций в индивидуальных частицах металлической матрицы 214. В дополнение, частица 222 добавки может размещаться в сотовой наноматрице 216 для усиления металлического композита 200. Частица 222 добавки может иметь любой подходящий размер и в являющемся примером варианте осуществления может иметь средний размер частицы от около 10 нм до около 1 микрон и конкретно от около 50 нм до около 200 нм. Здесь, размер относится к самому большому линейному размеру частицы добавки. Частица 222 добавки может являться частицей любой подходящей формы, в том числе инородной частицей 224, частицей 226 упрочняющей фазы или частицей 228 дисперсной фазы. Инородная частица 224 может являться любой подходящий инородной частицей, включающей в себя различные твердые частицы. Инородная частица может включать в себя различные частицы из металла, углерода, оксида металла, нитрида металла, карбида металла интерметаллического соединения, металлокерамики или их комбинаций. В являющемся примером варианте осуществления твердые частицы могут включать в себя Ni, Fe, Cu, Co, W, Al, Zn, Mn, Si, их оксид, их нитрид, их карбид, их интерметаллическое соединение их металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Частицы добавки могут присутствовать в количестве от около 0,5 вес.% до около 25 вес.%, конкретно от около 0,5 вес.% до около 20 вес.% и конкретнее от около 0,5 вес.% до около 10 вес.% от веса металлического композита.

[39] В металлическом композите 200 металлическая матрица 214, диспергированная во всей сотовой наноматрице 216, может иметь равноосную структуру в по существу непрерывной сотовой наноматрице 216 или может по существу продолжаться вдоль оси так, что индивидуальные частицы металлической матрицы 214, например, сжаты у полюсов или вытянуты. В варианте, где металлическая матрица 214 имеет по существу удлиненные частицы, металлическая матрица 214 и сотовая наноматрица 216 могут являться непрерывными или прерывающимися. Размер частиц, которые составляют металлическую матрицу 214, может составлять от около 50 нм до около 800 мкм, конкретно от около 500 нм до около 600 мкм и конкретнее от около 1 мкм до около 500 мкм. Размер частиц может являться монодисперсным или полидисперсным, и распределение частиц по крупности может являться унимодальным или бимодальным. За размер здесь принимается самый большой линейный размер частицы.

[40] На Фиг. 3 показан микрофотоснимок являющегося примером варианта осуществления металлического композита. Металлический композит 300 имеет металлическую матрицу 214, которая включает в себя частицы, имеющие материал 218 сердечника частицы. В дополнение, каждая частица металлической матрицы 214 размещается в сотовой наноматрице 216. Здесь, сотовая наноматрица 216 показана, как белая сеть, которая по существу окружает частицы, образующие металлическую матрицу 214.

[41] Согласно варианту осуществления металлический композит формуется из комбинации, например, порошковых компонентов. Как показано на Фиг. 4, порошок 10 включает в себя частицы 12 порошка, которые имеют сердечник 14 частицы с материалом 18 сердечника и слой 16 покрытия с металлическими свойствами с материалом 20 покрытия. Данные компоненты порошка могут выбираться и выполняться для прессования и спекания с возможностью создания металлического композита 200, который является легким (т.е. имеющим относительно низкую плотность), высокопрочным и селективно и управляемо удаляемым, например, с помощью разрушения из ствола скважины в ответ на изменение свойства в стволе скважины, являющимся селективно и управляемо разрушающимся (например, имеющим селективно подбираемую кривую скорости разрушения) в надлежащей скважинной текучей среде, в том числе в различных скважинных текучих средах, раскрытых в данном документе.

[42] Наноструктуру можно образовать в сердечнике 14 частицы, используемом для образования металлической матрицы 214, любым подходящим способом, в том числе, создавая наведенную деформацией наноструктуру, при размоле на шаровой мельнице порошка для создания сердечников 14 частицы и в частности при размоле в замороженном состоянии (например, размол на шаровой мельнице при криогенной температуре или в криогенной текучей среде, такой как жидкий азот) порошка для создания сердечников 14 частиц, используемых для образования металлической матрицы 214. Сердечники 14 частицы могут образовываться в виде наноструктурированного материала 215 любым подходящим способом, например, обычным размолом или размолом в замороженном состоянии частиц порошка сплава материалов, описанных в данном документе. Сердечники 14 частицы могут также образовываться сплавлением при механическом воздействии порошков технически чистого металла различных компонентов сплава в требуемых количествах. Сплавление при механическом воздействии включает в себя размол на шаровой мельнице, в том числе, размол в замороженном состоянии, данных компонентов порошка для механического создания покрытия и перемешивания компонентов и образования сердечников 14 частиц. В дополнение к созданию наноструктуры, как описано выше, размол на шаровой мельнице, в том числе размол в замороженном состоянии, может способствовать упрочнению твердого раствора сердечника 14 частицы и материала 18 сердечника, что в свою очередь может способствовать упрочнению твердого раствора металлической матрицы 214 и материала 218 сердечника частицы. Упрочнение твердого раствора может являться результатом обеспечения механического перемешивания более высокой концентрации внедренных или замещающих растворенных атомов в твердом растворе, чем является возможным согласно фазовому равновесию компонентов конкретного сплава, при котором создается препятствие или которое служит ограничением перемещения дислокаций в частице, которое в свою очередь создает механизм упрочнения в сердечнике 14 частицы и металлической матрице 214. Сердечник 14 частицы может также образовываться с наноструктурой (границы блоков 227, 229) способами, включающими в себя конденсацию паров в инертном газе, химическую конденсацию из паровой фазы, импульсное электронное осаждение, плазменный синтез, кристаллизацию аморфных твердых веществ, электроосаждение и интенсивную пластическую деформацию, например. Наноструктура также может включать в себя высокую плотность дислокаций, например, плотность дислокаций между около 1017 м-2 и около 1018 м-2, которая может иметь величину больше на два-три порядка, чем у аналогичных сплавов, деформированных традиционными способами, например, холодной прокаткой.

[43] По существу непрерывная сотовая наноматрица 216 (см. Фиг. 3) и материал 220 наноматрицы образуются из слоев 16 покрытий из материала с металлическими свойствами прессованием и спеканием множества слоев 16 покрытий из материала с металлическими свойствами с множеством частиц 12 порошка, например, холодным изостатическим прессованием (CIP), горячим изостатическим прессованием (HIP) или динамической ковкой. Химический состав материала 220 наноматрицы может отличаться от состава материала 20 покрытия вследствие действия диффузии, связанной со спеканием. Металлический композит 200 также включает в себя множество частиц, которые составляют металлическую матрицу 214, которая содержит материал 218 сердечника частиц. Металлическая матрица 214 и материал 218 сердечника частиц соответствуют и образованы из множества сердечников 14 частиц и материала 18 сердечника из множества частиц 12 порошка, поскольку слои 16 покрытий из материала с металлическими свойствами спекаются вместе для образования сотовой наноматрицы 216. Химический состав материала 218 сердечника частиц может также отличаться от состава материала 18 сердечника вследствие действия диффузии, связанной со спеканием.

[44] При использовании в данном документе термин сотовая наноматрица 216 не имеет дополнительного значения основного компонента порошковой прессовки, но вместо этого относится к компоненту или компонентам, которые меньше либо по весу или по объему. Здесь имеется отличие от большинства матричных композитных материалов, где матрица содержит главный компонент по весу или объему. Использование термина «по существу непрерывная сотовая наноматрица» в общем описывает экстенсивный, регулярный, непрерывный и взаимосвязанный характер распределения материала 220 наноматрицы в металлическом композите 200. При использовании в данном документе термин "по существу непрерывный" описывает протяженность материала 220 наноматрицы по всему металлическому композиту 200, проходящего между и окружающего по существу всю металлическую матрицу 214. Термин «по существу непрерывный» используется для указания, что полная непрерывность и регулярный порядок сотовой наноматрицы 220 вокруг индивидуальных частиц металлической матрицы 214 не требуются. Например, дефекты в слое 16 покрытия сердечника 14 частицы на некоторых частицах 12 порошка могут обуславливать образование мостов сердечников 14 частиц во время спекания металлического композита 200, вызывающих локализованные неоднородности в сотовой наноматрице 216, хотя на других участках порошковой прессовки сотовая наноматрица 216 является по существу непрерывной и демонстрирует структуру, описанную в данном документе. В отличие от этого, в случае по существу удлиненных частиц металлической матрицы 214 (т.е., не равноосных форм), например, образованных экструзией, используется термин "по существу прерывающаяся", указывающий, что неполная непрерывность и разрыв (например, ломка или разделение) наноматрицы вокруг каждой частицы металлической матрицы 214, может возникать в заданном направлении экструзии. При использовании в данном документе "сотовый" используется для указания, что наноматрица образует сеть в общем повторяющихся, взаимосвязанных ячеек или сот материала 220 наноматрицы, которые заключают в себе, а также соединяют металлическую матрицу 214. При использовании в данном документе термин "наноматрица" используется для описания размера или масштаба матрицы, в частности толщины матрицы между смежными частицами металлической матрицы 214. Слои покрытия из материала с металлическими свойствами, которые спекаются вместе для образования наноматрицы, сами являются слоями покрытия наномерной толщины. Поскольку сотовая наноматрица 216 в большинстве точек иных чем пересечение более чем двух частиц металлической матрицы 214 в общем содержит встречную диффузию и связывание двух слоев покрытия 16 из смежных частиц 12 порошка, имеющих наномерную толщину, образованная сотовая наноматрица 216 также имеет наномерную толщину (например, приблизительно двойную толщину слоя покрытия, как описано в данном документе) и, следовательно, описывается, как наноматрица. Кроме того, термин металлическая матрица 214 не имеет дополнительного значения неосновного компонента металлического композита 200, но вместо этого относится к основному компоненту или компонентам, либо по весу или по объему. Использование термина «металлическая матрица» в общем указывает на прерывающееся и дискретное распределение материала 218 сердечника частицы в металлическом композите 200.

[45] Инородная частица 224 может встраиваться любым подходящим способом, в том числе, например, размолом на шаровой мельнице или размолом в замороженном состоянии твердых частиц вместе с материалом 18 сердечника частиц. Частица 226 упрочняющей фазы может включать в себя любую частицу, которая может переосаждаться в металлической матрице, 214, в том числе частицы 226 упрочняющей фазы в соответствии с фазовыми равновесиями компонентов материалов, в частности металлических сплавов, представляющих интерес и их относительными количествами (например, дисперсионно твердеющий сплав) и в том числе таких, которые могут переосаждаться вследствие неравновесных условий, которые могут возникать, когда компонент сплава, внедренный в твердый раствор сплава в количестве, превышающем его предел фазового равновесия, которое, как известно может возникать во время сплавления при механическом воздействии, нагревается достаточно для активирования механизмов диффузии, обеспечивающих переосаждение. Частицы 228 дисперсной фазы могут включать в себя наномерные частицы или кластеры элементов, получающиеся в результате изготовления сердечников 14 частиц, связанного с размолом на шаровой мельнице, в том числе компоненты средства размола (например, шаров) или текучей среды размола (например, жидкого азота) или поверхностей сердечников 14 самих частиц (например, металлических оксидов или нитридов). Частицы 228 дисперсной фазы могут включать в себя такие элементы, как Fe, Ni, Cr, Mn, N, O, C, H и т.п. Частицы 222 добавки могут располагаться в любом месте в соединении с сердечниками 14 частиц и металлической матрицей 214. В являющемся примером варианте осуществления частицы 222 добавки могут располагаться в металлической матрице 214 или на ее поверхности, как показано на Фиг. 2. В другом являющемся примером варианте осуществления множество частиц 222 добавки располагаются на поверхности металлической матрицы 214 и также могут располагаться в сотовой наноматрице 216, как показано на Фиг. 2.

[46] Аналогично, диспергированные вторые частицы 234 могут образовываться из имеющих покрытие или не имеющих покрытия частиц 32 второго порошка, например, диспергированием частиц 32 второго порошка с частицами 12 порошка. В являющемся примером варианте осуществления имеющие покрытие частицы 32 второго порошка могут иметь покрытие со слоем 36 покрытия, одинаковым со слоем 16 покрытия частиц 12 порошка, так что слои 36 покрытия также способствуют созданию наноматрицы 216. В другом являющемся примером варианте осуществления частицы второго порошка 232 могут не иметь покрытия, так что диспергированные вторые 234 частицы внедряются в наноматрицу 216. Порошок 10 и дополнительный порошок 30 могут смешиваться для образования гомогенной дисперсии диспергированных частиц 214 и диспергированных вторых частиц 234 или для образования негомогенной дисперсии данных частиц. Диспергированные вторые 234 частицы могут образовываться из любого подходящего дополнительного порошка 30, отличающегося от порошка 10, по составу сердечника 34 частицы и/или слоя 36 покрытия, и могут включать в себя любые материалы, раскрытые в данном документе, для использования в качестве второго порошка 30, отличающегося от порошка 10, выбранного для образования порошковой прессовки 200.

[47] В варианте осуществления металлический композит может включать в себя упрочняющее средство. Упрочняющее средство увеличивает прочность материала металлического композита. Являющиеся примером упрочняющие средства включают в себя керамику, полимеры, металлы, наночастицы, металлокерамику и т.п. В частности, упрочняющеее средство может являться кремнеземом, стекловолокном, углеродным волокном, углеродной сажей, углеродными нанотрубками, оксидами, карбидами, нитридами, силицидами, боридами, фосфидами, сульфидами, кобальтом, никелем, железом, вольфрамом, молибденом, танталом, титаном, хромом, ниобием, бором, цирконием, ванадием, кремнием, палладием, гафнием, алюминием, медью или комбинацией, содержащей по меньшей мере одно из вышеупомянутого. Согласно варианту осуществления керамику и металл объединяют для образования металлокерамики, например, карбида вольфрама, нитрида кобальта и т.п. Являющиеся примером упрочняющие средства в частности включают в себя оксид магния, муллит, оксид тория, оксид бериллия, окись урана, шпинели, оксид циркония, оксид висмута, оксид алюминия, оксид магния, кремнезем, титанат бария, кордиерит, нитрид бора, карбид вольфрама, карбид тантала, карбид титана, карбид ниобия, карбид циркония, карбид бора, карбид гафния, карбид кремния, карбид ниобия бора, нитрид алюминия, нитрид титана, нитрид циркония, нитрид тантала, нитрид гафния, нитрид ниобия, нитрид бора, нитрид кремния, борид титана, борид хрома, борид циркония, борид тантала, борид молибдена, борид вольфрама, сульфид церия, сульфид титана, сульфид магния, сульфид циркония или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.

[48] В одном варианте осуществления упрочняющее средство является частицей с размером около 100 микрон или меньше, конкретно от около 10 микрон или меньше и конкретнее 500 нм или меньше. В другом варианте осуществления волоконное упрочняющее средство может комбинироваться с упрочняющим средством в виде частиц. Считается, что включение в состав упрочняющего средства может увеличить прочность и трещиностойкость металлического композита. Не вдаваясь в теорию, частицы уменьшенной крупности (т.е. более мелкие) могут создавать более прочный металлический композит в сравнении с частицами увеличенной крупности. Кроме того, форма упрочняющего средства может варьироваться и включает в себя форму волокна, сферы, стержня, трубки и т.п. Упрочняющее средство может присутствовать в количестве от 0,01 весового процента (вес.%) до 20 вес.%, в частности от 0,01 вес.% до 10 вес.% и конкретнее от 0,01 вес.% до 5 вес.%.

[49] Способ приготовления компонента разрушающейся заанкеривающей системы (например, уплотнения, элемента в форме конической призмы, втулки, нижнего переводника и т.п.), содержащего металлический композит, включает в себя соединение порошка металлической матрицы, разрушающей добавки, металлического материала наноматрицы и, если необходимо, упрочняющего средства для образования композиции; прессование композиции для образования спрессованной композиции; спекание спрессованной композиции; и прессование спеченной композиции для образования компонента разрушающейся системы. Элементы композиции можно перемешивать, перемалывать, смешивать и т.п. для образования порошка 10, показанного на Фиг. 4, например. Понятно, что материал наноматрицы с металлическими свойствами является материалом покрытия, расположенным на порошке металлической матрицы, который в результате прессования и спекания, образует сотовую наноматрицу. Прессовку можно создавать прессованием (т.е. уплотнением) композиции под давлением для образования неспеченной прессовки. Неспеченную прессовку можно последовательно подвергать прессованию под давлением от около 15000 фунт/дюйм2 (103 МПа) до около 100000 фунт/дюйм2 (690 МПа), конкретно от около 20000 фунт/дюйм2 (138 МПа) до около 80000 фунт/дюйм2 (552 МПа) и конкретнее от около 30000 фунт/дюйм2 (207 МПа) до около 70000 фунт/дюйм2 (483 МПа), при температуре от около 250°C до около 600°C и конкретно от около 300°C до около 450°C для образования порошковой прессовки. Прессование для образования порошковой прессовки может включать в себя сжатие в форме. Порошковая прессовка можно дополнительно проходить станочную обработку для придания формы готового изделия порошковой прессовке. Альтернативно, порошковая прессовка может приводиться пресс