Каталитическая конверсия молочной кислоты в акриловую кислоту

Иллюстрации

Показать все

В данной заявке описана каталитическая дегидратация молочной кислоты в акриловую кислоту, отличающаяся высокой конверсией молочной кислоты, высокой селективностью получения акриловой кислоты, высоким выходом акриловой кислоты и соответственно низкой селективностью получения и мольными выходами нежелательных побочных продуктов. Смешанный фосфатный катализатор для конверсии молочной кислоты в акриловую кислоту содержит, по меньшей мере, две различные фосфатные соли, выбранные из группы, состоящей из формул (I), (II), (III) и (IV):

где Z представляет собой металл I группы, и где в каждой из формул (II)-(IV) каждый X независимо представляет собой металл I группы или II группы, при следующих условиях:

в формуле (II), если X представляет собой металл I группы, то а означает 0, и если X представляет собой металл II группы, то а означает 1;

в формуле (III), если X представляет собой металл I группы, то b означает 1, и если X представляет собой металл II группы, то b означает 0; и,

в формуле (IV), если X представляет собой металл I группы, то с означает 2, и если X представляет собой металл II группы, то с означает 0,

и причем дополнительно указанные, по меньшей мере, две различные фосфатные соли содержат два металла, присутствующие в мольном соотношении относительно друг друга от 1:9 до 9:1. Также раскрыт смешанный фосфатный катализатор, содержащий, по меньшей мере, две различные фосфатные соли, при этом одна фосфатная соль представляет собой продукт осаждения фосфорной кислоты (Н3РО4) и нитратной соли формулы (V):

и причем другая фосфатная соль выбрана из фосфатной соли формулы (II):

где в каждой из формул (II) и (V) X независимо представляет собой металл I группы или II группы при определенных условиях. Раскрыт способ получения акриловой кислоты путем газофазной каталитической дегидратации молочной кислоты, при этом способ включает стадию, на которой вводят в контакт газообразную смесь, содержащую молочную кислоту и воду, со смешанным фосфатным катализатором. 4 н. и 13 з.п. ф-лы, 1 ил., 4 табл., 8 пр.

Реферат

Уровень техники

Данная заявка, в целом, относится к конверсии молочной кислоты в акриловую кислоту и катализаторам, полезным для этого. Более конкретно, данная заявка относится к каталитической дегидратации молочной кислоты в акриловую кислоту и катализаторам, способным достигнуть этого без существенного конверсии молочной кислоты в нежелательные побочные продукты, такие как, например, пропановая и уксусная кислоты.

Акриловая кислота имеет множество промышленных применений, как правило, потребляемых в виде полимера. В свою очередь, эти полимеры широко используются в производстве, среди прочего, адгезивов, связующих веществ, покрытий, красок, полиролей и суперабсорбирующих полимеров, которые используются в одноразовых абсорбирующих изделиях, в том числе подгузниках и гигиенических продуктах, например. Акриловую кислоту обычно получают из источников нефти. Например, акриловую кислоту уже давно получают путем каталитического окисления пропилена. Эти и другие способы получения акриловой кислоты из источников нефти, описаны в Kirk-Othmer Encyclopedia of Chemical Technology, Vol.1, pgs. 342-69 (5th Ed., John Wiley & Sons, Inc., 2004).

Все больше и больше, однако, проявляется интерес к получению акриловой кислоты из источников, отличных от нефти, таких как молочная кислота. В патентах США №№4,729,978 и 4,786,756, в общем, описана конверсия молочной кислоты в акриловую кислоту. Эти патенты учат, что конверсия может быть достигнута путем контактирования молочной кислоты и воды с носителем из оксида металла, пропитанного фосфатной солью, например, одноосновной или двухосновной солями фосфата калия или КН2РО4 или К2НРО4, соответственно, или фосфатом алюминия. Эти пропитанные носители представляют собой кислотные катализаторы, и, по меньшей мере, '978 патент подчеркивает, что количество и прочность кислотных сайтов на поверхности носителя, по-видимому, влияет на селективность получения и конверсию в акриловую кислоту.

Последнее исследование еще больше сосредоточено на модификациях кислотных катализаторов, используемых для конверсии молочной кислоты в акриловую кислоту. Это исследование включает исследования по кислотным катализаторам (сульфатам кальция и двухвалентной меди), модифицированным солями фосфата калия, и того, что температура реакции и выбор системы подачи газа-носителя влияют на конверсию и селективность получения акриловой кислоты. См. Lin et al. (2008) Can. J. Chem. Eng. 86:1047-53. Исследование показывает, однако, что наибольший мольный выход акриловой кислоты, который ее исследователи смогли получить, составлял 63,7%, и только с помощью диоксида углерода в качестве газа-носителя и времени контакта (88 секунд) слишком высокого для любого практического производственно-коммерческого процесса. Более позднее исследование показало, что фосфатные и нитратные соли могут предпочтительно изменить поверхностную кислотность кислотных катализаторов для ингибирования декарбонилирования/декарбоксилирования молочной кислоты в ацетальдегид, часто нежелательный побочный продукт конверсии. См. Huang et al. (2010) Ind. Eng. Chem. Res. 49:9082; see also, Weiji et al. (2011) ACS Catal. 1:32-41.

Несмотря на эти учения, однако, данные всех этих исследований еще показывают большие количества нежелательных побочных продуктов, таких как ацетальдегид и пропановая кислота. Близость альфа-гидроксильных групп по отношению к карбоксилатной группе молочной кислоты, как полагают, ответственна за эти побочные продукты, которые также могут включать монооксид углерода, диоксид углерода, 2,3-пентандион и олигомеры молочной кислоты. Побочные продукты могут осаждаться на катализаторе, в результате чего происходит засорение и преждевременная и быстрая дезактивация катализатора, как указано в публикации Lin et al., например. Кроме того, при осаждении эти побочные продукты могут катализировать другие нежелательные реакции процесса, такие как реакции полимеризации.

Кроме осаждения на катализаторах, эти побочные продукты, даже если присутствуют только в небольших количествах, накладывают дополнительные затраты на обработку акриловой кислоты (если они присутствуют в выходящем потоке продукта реакции) в производстве суперабсорбирующих полимеров, например. И литература о производстве этих полимеров изобилует потенциальными решениями, дорогими, поскольку они могут быть, для удаления примесей (например, уксусной кислоты и пропановой кислоты), если присутствуют в произведенной акриловой кислоте в небольших количествах. Например, в патенте США №6,541,665 В1 описана очистка акриловой кислоты, содержащей пропановую кислоту, фураны, воду, уксусную кислоту и альдегиды, путем кристаллизации, перегонки и рециркуляции. '665 патент сообщает, что 5-стадийная кристаллизация (две стадии очистки и три стадии отгонки) была эффективной, чтобы получить 99,94% акриловой кислоты из 99,48% смеси акриловой кислоты, содержащей 2600 массовых долей (массовая основа) (м.д.) уксусной кислоты и 358 м.д. пропановой кислоты, среди других. Кроме того, в патентной заявке США, публикация №2011/0257355 описан способ удаления пропановой кислоты путем одной кристаллизации из сырой реакционной смеси (содержащей акриловую кислоту), полученной дегидратацией/окислением глицерина для получения 99% акриловой кислоты. Эти способы очистки необходимы, чтобы получить акриловую кислоту высокой чистоты, необходимую для использований вниз по потоку в, например, в производстве суперабсорбирующих полимеров. Таким образом, существует определенная ценность в устранении примесей, если это вообще возможно, если только существует возможность использовать эти способы очистки.

Но, до сих пор, производство акриловой кислоты из молочной кислоты с помощью способов, таких как те, которые описаны в современной литературе, как отмечалось выше, приводит к значительным количествам нежелательных побочных продуктов, хотя количества побочных продуктов слишком высокие, чтобы даже использовать способы очистки, которые определены в предыдущем параграфе. Конечно, низкая селективность получения акриловой кислоты в этих способах также приводит к потере сырья, и в конечном счете приводит к увеличению затрат на производство. Таким образом, ни один из этих способов для конверсии молочной кислоты в акриловую кислоту, скорее всего, коммерчески не жизнеспособен.

Сущность изобретения

Было обнаружено, что акриловая кислота может быть получена с высоким мольным выходом из молочной кислоты без недостатков, отмеченных выше. Это получение акриловой кислоты сопровождается высокой конверсией молочной кислоты, высокой селективностью получения акриловой кислоты и высоким выходом акриловой кислоты и, соответственно, низкими селективностью получения и мольными выходами нежелательных побочных продуктов. Это получение достигается с конкретным классом катализаторов и используется при определенных условиях обработки. Результатом этого процесса, однако, является продукт акриловой кислоты, достаточный для обычных промышленных целей и тот, который может не требовать сложной очистки, требуемой в данной области.

Различные осуществления приемлемых катализаторов описаны в данной заявке. Одно осуществление представляет собой смешанный фосфатный катализатор, содержащий, по меньшей мере, две различные фосфатные соли, выбранные из группы, состоящей из формул (I), (II), (III) и (IV):

.

В данном осуществлении, Z представляет собой металл I группы. Дополнительно, в каждой из формул (II)-(IV), каждый X независимо представляет собой металл I группы или II группы. Ряд условий дополнительно определяет смешанный фосфатный катализатор. В частности, в формуле (II), если X представляет собой металл I группы, а означает 0, и если X представляет собой металл II группы, а означает 1. Дополнительно, в формуле (III), если X представляет собой металл I группы, b означает 1, и если X представляет собой металл II группы, b означает 0. Еще дополнительно, в формуле (IV), если X представляет собой металл I группы, с означает 2, и если X представляет собой металл II группы, с означает 0.

Другое осуществление смешанного фосфатного катализатора также включает, по меньшей мере, две различные фосфатные соли. В данном случае, однако, одна фосфатная соль является продуктом осаждения фосфорной кислоты (Н3РО4) и нитратной соли формулы (V):

.

Другую из фосфатных солей выбирают из группы, состоящей из формул (I), (II), (III) и (IV), указанных выше. Переменные X и b в формуле (V) являются такими, как определено выше в отношении формулы (III). Более конкретно, в каждой из формул (III) и (V), если X представляет собой металл I группы, b означает 1, и если X представляет собой металл II группы, b означает 0.

В еще одном осуществлении, смешанный фосфатный катализатор снова содержит, по меньшей мере, две различные фосфатные соли. В данной заявке, однако, по меньшей мере, две различные фосфатные соли представляют собой продукты совместного осаждения фосфорной кислоты (Н3РО4) и двух различных нитратных солей формулы (V), как определено выше.

Эти катализаторы могут быть использованы в различных осуществлениях конверсии молочной кислоты в акриловую кислоту. В соответствии с одним осуществлением, способ получения акриловой кислоты включает контактирование смешанного фосфатного катализатора с газообразной смесью, которая содержит воду и молочную кислоту в условиях, достаточных для получения акриловой кислоты с мольным выходом, по меньшей мере, 50% от молочной кислоты. Смешанный фосфатный катализатор содержит смесь, по меньшей мере, двух различных фосфатных солей, и смешанный фосфатный катализатор имеет поверхностную концентрацию кислотных центров приблизительно 0,35 ммоль/м2 или менее, и поверхностную концентрацию основных центров, по меньшей мере, приблизительно 2 ммоль/м2.

Альтернативные осуществления получения акриловой кислоты включают газофазную каталитическую дегидратацию молочной кислоты путем контактирования газообразной смеси, содержащей молочную кислоту и воду, со смешанным фосфатным катализатором, содержащим, по меньшей мере, две различные фосфатные соли, выбранные из группы, состоящей из формул (I), (II), (III) и (IV), как определено выше. Другое осуществление получения акриловой кислоты включает газофазную каталитическую дегидратацию молочной кислоты путем контактирования газообразной смеси, содержащей молочную кислоту и воду, со смешанным фосфатным катализатором, также содержащим, по меньшей мере, две различные фосфатные соли. Но в данном случае, по меньшей мере, одна фосфатная соль является продуктом осаждения фосфорной кислоты (Н3РО4) и нитратной соли формулы (V), определенной выше, а другую фосфатную соль выбирают из группы, состоящей из формул (I), (II), (III) и (IV), как определено выше. В еще одном осуществлении получения акриловой кислоты, способ включает газофазную каталитическую дегидратацию молочной кислоты путем контактирования газообразной смеси, содержащей молочную кислоту и воду, со смешанным фосфатным катализатором, который снова содержит, по меньшей мере, две различные фосфатные соли. В данном случае, смешанный фосфатный катализатор содержит, по меньшей мере, две различные фосфатные соли, которые являются продуктами совместного осаждения фосфорной кислоты (Н3РО4) и двух различных нитратных солей формулы (V), как определено выше.

Дополнительные признаки настоящего изобретения могут стать очевидными для специалистов в данной области техники из рассмотрения следующего подробного описания, взятого в сочетании с примерами, чертежами и прилагаемой формулой изобретения.

Краткое описание чертежей

Для более полного понимания сущности изобретения, должна быть сделана ссылка на следующее ниже подробное описание и чертеж единственной Фигуры, которая графически иллюстрирует композицию побочных продуктов и количества каждого присутствующего в конверсии молочной кислоты в акриловую кислоту в соответствии с примерами, приведенными ниже.

Хотя описанные катализаторы и способы восприимчивы к осуществлениям в различных формах, на фигурах показаны (и в дальнейшем будут описаны) конкретные осуществления настоящего изобретения, с пониманием того, что описание предназначено, чтобы быть иллюстративным, и не предназначено для того, чтобы ограничить настоящее изобретение конкретными осуществлениями, описанными и проиллюстрированными в данной заявке.

Подробное описание изобретения

Акриловая кислота может быть получена с высоким мольным выходом из молочной кислоты без недостатков, распространенных в данной области техники. Это получение сопровождается высокой конверсией молочной кислоты, высокой селективностью получения акриловой кислоты, высоким выходом акриловой кислоты, и, соответственно, низкой селективностью и мольными выходами нежелательных побочных продуктов. Это получение достигается с конкретным классом катализаторов и используется при определенных условиях обработки. Результатом этого процесса, однако, является продукт акриловой кислоты, достаточный для обычных промышленных целей и тот, который может не требовать сложной очистки, требуемой в данной области техники.

Катализатор

Функциональные возможности катализатора в контексте получения акриловой кислоты из молочной кислоты, обсуждаются ниже. Катализатор, как правило, представляет собой смешанный фосфатный катализатор, обладающий определенными физическими характеристиками и определенный конкретным классом химических веществ.

Одно осуществление смешанного фосфатного катализатора включает, по меньшей мере, две различные фосфатные соли, выбранные из группы, состоящей из формул (I), (II), (III) и (IV):

.

В данном осуществлении, Z представляет собой металл I группы. Кроме того, в каждой из формул (II)-(IV), каждый X независимо представляет собой металл I группы или II группы. Ряд условий дополнительно определяет смешанный фосфатный катализатор. В частности, в формуле (II), если X представляет собой металл I группы, а означает 0, и если X представляет собой металл II группы, а означает 1. Дополнительно, в формуле (III), если X представляет собой металл I группы, b означает 1, и если X представляет собой металл II группы, b означает 0. Дополнительно, в формуле (IV), если X представляет собой металл I группы, с означает 2, и если X представляет собой металл II группы, с означает 0.

Определенные осуществления данного катализатора включают фосфатную соль формулы (II), где X представляет собой калий (К), фосфатную соль формулы (III), где X представляет собой барий (Ва), и/или фосфатную соль формулы (IV), где X представляет собой кальций (Са). Соответственно, катализатор может содержать K2НРО4 и Ва3(PO4)2. Альтернативно, катализатор может содержать K2НРО4, и Са2Р2О7.

Как правило, данный смешанный фосфатный катализатор получают просто путем физического смешивания, по меньшей мере, двух фосфатных солей вместе и затем прокаливания смеси, и необязательного просеивания, с образованием катализатора, приемлемого для использования в конверсии молочной кислоты в акриловую кислоту, как описано более подробно ниже.

Другое осуществление смешанного фосфатного катализатора также включает, по меньшей мере, две различные фосфатные соли. При этом, однако, одна фосфатная соль представляет собой продукт осаждения фосфорной кислоты (Н3РО4) и нитратной соли формулы (V):

.

Другую из фосфатных солей выбирают из группы, состоящей из формул (I), (II), (III) и (IV), указанных выше. Переменные X и b в формуле (V) являются такими, как определено выше в отношении формулы (III). Более конкретно, в каждой из формул (III) и (V), если X представляет собой металл I группы, b означает 1, и если X представляет собой металл II группы, b означает 0.

Определенные осуществления этого катализатора включают не только продукт осаждения, как было отмечено выше, но также фосфатную соль формулы (II), где X представляет собой калий, и/или фосфатную соль формулы (III), где X представляет собой барий. Соответственно, катализатор может содержать K2НРО4 и продукт осаждения фосфорной кислоты и Ва(NO3)2.

Как правило, данный смешанный фосфатный катализатор получают путем смешивания водного раствора нитратной соли с одной или более фосфатными солями и с последующим добавлением фосфорной кислоты и сушкой комбинации материалов для отгонки азотной кислоты с получением смеси продукта катализатора, содержащей, по меньшей мере, две фосфатные соли. После прокаливания и необязательного просеивания, смешанная фосфатная соль приемлема для использования в конверсии молочной кислоты в акриловую кислоту, как описано более подробно ниже.

В еще одном осуществлении, смешанный фосфатный катализатор снова содержит, по меньшей мере, две различные фосфатные соли. В данном случае, однако, по меньшей мере, две различные фосфатные соли представляют собой продукты совместного осаждения фосфорной кислоты (Н3РО4) и двух различных нитратных солей формулы (V), как определено выше.

Как правило, данный смешанный фосфатный катализатор получают путем смешивания двух нитратных солей с водой с образованием их водного раствора и с последующим добавлением фосфорной кислоты и сушкой комбинации материалов для отгонки азотной кислоты с получением смеси продукта катализатора, содержащей, по меньшей мере, две фосфатные соли. После прокаливания и необязательного просеивания, смешанная фосфатная соль приемлема для использования в конверсии молочной кислоты в акриловую кислоту, как описано более подробно ниже.

В различных осуществлениях смешанного фосфатного катализатора, как описано выше, металлы различных фосфатных солей могут быть одинаковыми. Альтернативно, металлы могут также отличаться друг от друга, но если это так, то эти металлы предпочтительно имеют атомные радиусы, которые отличаются на 30 пикометров (пм) или менее. Например, если металлы различны, то они предпочтительно выбраны из группы, состоящей из (а) калия и кальция, (b) лития (Li) и магния (Mg), (с) кальция и бария, (d) натрия (Na) и кальция, и (е) калия и стронция (Sr).

Если смешанный фосфатный катализатор содержит две различные фосфатные соли, предпочтительно два металла присутствуют в соотношении (мольном) относительно друг друга от приблизительно 1:9 до приблизительно 9:1. Например, если смешанный фосфатный катализатор содержит двухосновный фосфат калия (K2НРО4) и фосфатную соль, которая представляет собой продукт осаждения фосфорной кислоты (Н3РО4) и нитрата бария (Ва(NO3)2), калий и барий предпочтительно присутствуют в мольном отношении K:Ва приблизительно 2:3.

Смешанный фосфатный катализатор может также содержать носитель, на котором находятся различные фосфатные соли. Предпочтительно носитель выбирают из группы, состоящей из кремнезема высокой и низкой площади поверхности, золя кремнезема, силикагеля, окиси алюминия, алюмосиликата, карбида кремния, диатомовой земли, диоксида титана, кварца, алмазов, углерода, оксида циркония, оксида магния, оксида церия, оксида ниобия и их смесей. Более предпочтительно, носитель является инертным по отношению к реакционной смеси, чтобы, как ожидается, контактировать с катализатором. В контексте реакций, явно описанных в данной заявке, следовательно, носитель предпочтительно является кремнеземом низкой площади поверхности, или оксидом циркония (например, zirblast). Если он есть, носитель присутствует в количестве от приблизительно 5 мас. % до приблизительно 90 мас.%, исходя из общей массы катализатора.

Катализатор предпочтительно прокаливают при температуре от приблизительно 250°C до приблизительно 450°C в течение от приблизительно одного часа до приблизительно четырех часов. Более предпочтительно, катализатор прокаливают при 450°C в течение четырех часов (линейное возрастание 2°C в минуту). Катализатор может быть регенерирован, в случае необходимости, в аналогичных условиях. После прокаливания катализатор предпочтительно просеивают, чтобы обеспечить более однородный продукт. Предпочтительно катализатор просеивают до медианного размера частиц от приблизительно 100 микрометров (мкм) до приблизительно 200 мкм. Кроме того, предпочтительно, распределение частиц катализатора по размерам включает разброс значений диаметра частиц менее, чем приблизительно 3, более предпочтительно, менее, чем приблизительно 2, и наиболее предпочтительно, менее, чем приблизительно 1,5. Как используется в данной заявке, термин «медианный размер частиц» относится к диаметру частицы, менее или более которого находятся 50% общего объема частиц. Этот медианный размер частиц обозначен как Dν,0,50. В то время как многие способы и устройства известны специалистам в данной области техники для фракционирования частиц на дискретные размеры, просеивание является одним из самых простых, наименее дорогих и распространенных способов измерения размеров частиц и распределения частиц по размерам. Альтернативный способ для определения распределения частиц по размерам представляет собой рассеяние света. Как используется в данной заявке, термин «разброс значений диаметра частиц» относится к статистическому представлению данной пробы частиц и может быть вычислен следующим образом. Во-первых, медианный размер частицы, Dν,0,50, вычисляется, как описано выше. Затем аналогичным способом, определяют размер частицы, отделяющий пробу частицы при 10% по объемной фракции, Dν,0,10, а затем определяют размер частицы, отделяющий пробу частицы при 90% по объемной фракции, Dν,0,90. Разброс значений диаметра частиц при этом равен (Dν,0,90-Dν,0,10)/Dν,0,50.

Важно отметить, что было установлено, что смешанные фосфатные катализаторы, описанные в данной заявке, являются функционально намного превосходящими все остальные в данной области техники в контексте получения акриловой кислоты ввиду определенных физических характеристик. В частности, смешанные фосфатные катализаторы предпочтительно имеют поверхностную концентрацию кислотных центров приблизительно 0,35 миллимоль на квадратный метр (ммоль/м2) или менее, более предпочтительно от приблизительно 0,001 ммоль/м2 до приблизительно 0,35 ммоль/м2. Поверхностную концентрацию кислотных центров предпочтительно измеряют с помощью термопрограммированной десорбции аммиака (ТПД аммиака) до 400°C в ммоль/г, и преобразуют в ммоль/м2 с использованием площади поверхности катализатора, измеренной с помощью BET (в м2/г). Кроме того, смешанные фосфатные катализаторы предпочтительно имеют поверхностную концентрацию основных центров, по меньшей мере, приблизительно 2 ммоль/м2, более предпочтительно от приблизительно 20 ммоль/м2 до приблизительно 100 ммоль/м2, и еще более предпочтительно от приблизительно 30 ммоль/м2 до приблизительно 80 ммоль/м2. Поверхностную концентрацию основных центров, предпочтительно измеряют с помощью термопрограммированной десорбции диоксида углерода (СО2 ТПД) до 400°C в ммоль/г, и преобразуют в ммоль/м2 с использованием площади поверхности катализатора, измеренной с помощью BET (в м2/г).

Способы получения акриловой кислоты

Осуществления катализатора, описанные выше, могут быть использованы для получения акриловой кислоты из реакционной смеси, содержащей молочную кислоту и воду. Одно конкретное осуществление такого способа включает контактирование смешанного фосфатного катализатор с газообразной смесью, которая содержит воду и молочную кислоту, в условиях, достаточных для получения акриловой кислоты с мольным выходом, по меньшей мере, 50% от молочной кислоты. Смешанный фосфатный катализатор содержит смесь, по меньшей мере, двух различных фосфатных солей и смешанный фосфатный катализатор имеет поверхностную концентрацию кислотных центров приблизительно 0,35 ммоль/м2 или менее, и поверхностную концентрацию основных центров, по меньшей мере, приблизительно 2 ммоль/м2. В предпочтительных осуществлениях, смешанный фосфатный катализатор имеет поверхностную концентрацию основных центров от приблизительно 20 ммоль/м2 до приблизительно 100 ммоль/м2, и еще более предпочтительно от приблизительно 30 ммоль/м2 до приблизительно 80 ммоль/м2. В предпочтительных осуществлениях, условия являются достаточными для получения акриловой кислоты с мольным выходом, по меньшей мере, 50% от молочной кислоты, более предпочтительно, по меньшей мере, приблизительно 70%, и еще более предпочтительно, по меньшей мере, приблизительно 80%. В других предпочтительных осуществлениях, условия являются достаточными для обеспечения селективности получения акриловой кислоты, по меньшей мере, приблизительно 65%, более предпочтительно, по меньшей мере, приблизительно 75%, и еще более предпочтительно, по меньшей мере, приблизительно 90%.

Не желая быть связанными какой-либо теорией, полагают, что смешанные фосфатные соединения приводят к очень высокой поверхностной основности (т.е. высокоосновному катализатору) по сравнению с тем, что обычно смеси могут быть предсказаны на основе значений поверхностной концентрации основных центров чистых фосфатных солей, а также высокоосновной катализатор отвечает за высокий выход акриловой кислоты, высокая конверсия молочной кислоты, высокую селективность получения акриловой кислоты и низкую селективность получения побочных продуктов конверсии в данной области техники. Это происходит, потому что реакционно-способных промежуточных продуктов, связанных с кислотно-промотированным процессом, избегают или сводят к минимуму.

Газообразная смесь, контактирующая с катализатором, предпочтительно также содержит инертный газ, например, газ в других случаях инертный к реакционной смеси и катализатору в условиях способа. Инертный газ предпочтительно выбирают из группы, состоящей из азота, гелия, неона, аргона и их смесей. Более предпочтительно, инертный газ выбирают из группы, состоящей из азота, гелия и их смесей.

Соответственно, газообразная смесь, контактирующая с катализатором, может содержать, вверх по потоку катализатора отдельные системы подачи газа-носителя и жидкости, которая состоит из водного раствора молочной кислоты, и в определенных осуществлениях производных молочной кислоты, и одного или более из лактида, димера молочной кислоты, солей молочной кислоты и алкиллактатов. Производные молочной кислоты включают один или более олигомеров молочной кислоты и продуктов полимеризации молочной кислоты. Предпочтительно, однако, жидкость содержит молочную кислоту, исходя из общей массы жидкости, от приблизительно 5 мас. % до приблизительно 95 мас. %, более предпочтительно от приблизительно 10 мас. % до приблизительно 50 мас. %, и еще более предпочтительно от приблизительно 17 мас. % до приблизительно 25 мас. %. Кроме того, предпочтительно, жидкая смесь содержит менее чем приблизительно 30 мас. % производных молочной кислоты, более предпочтительно менее чем приблизительно 10 мас. %, и еще более предпочтительно менее, чем приблизительно 5 мас. % производных молочной кислоты, исходя из общей массы жидкости.

Жидкость объединяют с газом-носителем при температуре, достаточной для образования газообразной смеси, которая контактирует с катализатором. Условия, при которых газообразная смесь контактирует с катализатором, предпочтительно включают температуру от приблизительно 250°C до приблизительно 450°C, более предпочтительно от приблизительно 300°C до приблизительно 375°C, и еще более предпочтительно от приблизительно 325°C до приблизительно 350°C. Газообразная смесь предпочтительно содержит молочную кислоту в количестве приблизительно 5 мол. % или менее, более предпочтительно от приблизительно 2,3 мол. % до приблизительно 3,5 мол. %, исходя из общего количества молей газообразной смеси. Количество молочной кислоты можно регулировать количеством используемого газа-носителя. В частности, путем регулирования часовой объемной скорости газа (GHSV), можно регулировать количество молочной кислоты в газообразной смеси, контактирующей с катализатором. Таким образом, условия предпочтительно включают GHSV от приблизительно 2200 в час (ч-1) до приблизительно 7900 ч-1, более предпочтительно приблизительно 3500 ч-1.

Предпочтительно способ выполняют в реакторе, который содержит внутреннюю поверхность, покрытую кварцем. Альтернативно, способ может быть выполнен в реакторе из нержавеющей стали (SS) или реакторе, выполненном из сплава Hastelloy, инконеля, боросиликата или искусственного сапфира. Предпочтительно реактор имеет аспектное соотношение (длина/диаметр) от приблизительно 50 до приблизительно 100, предпочтительно приблизительно 75.

Среди преимуществ, достижимых с помощью вышеописанных осуществлений, находится низкий мольный выход побочных продуктов. Например, условия являются достаточными для получения пропановой кислоты с мольным выходом менее чем приблизительно 6%, более предпочтительно менее чем приблизительно 1%, от молочной кислоты, присутствующей в газообразной смеси. Аналогично, условия являются достаточными для получения каждого из уксусной кислоты, пирувата, 1,2-пропандиола и 2,3-пентандиона с мольным выходом менее чем приблизительно 2%, более предпочтительно менее чем приблизительно 0,5%, от молочной кислоты, присутствующей в газообразной смеси. Аналогично, условия являются достаточными для получения ацетальдегида с мольным выходом менее чем приблизительно 8%, более предпочтительно менее чем приблизительно 4% и еще более предпочтительно менее чем приблизительно 3%, от молочной кислоты, присутствующей в газообразной смеси. Эти выходы, как полагают, до сих пор были недостижимо низкими. Тем не менее эти преимущества действительно достижимы, как дальше свидетельствуют Примеры, которые изложены ниже.

Альтернативные осуществления получения акриловой кислоты включают газофазную каталитическую дегидратацию молочной кислоты путем контактирования газообразной смеси, которая содержит молочную кислоту и воду, со смешанным фосфатным катализатором, который содержит, по меньшей мере, две различные фосфатные соли, выбранные из группы, состоящей из формул (I), (II), (III) и (IV), как определено выше. Другое осуществление получения акриловой кислоты включает газофазную каталитическую дегидратацию молочной кислоты путем контактирования газообразной смеси, которая содержит молочную кислоту и воду, со смешанным фосфатным катализатором, который также содержит, по меньшей мере, две различные фосфатные соли. Но в данном случае, по меньшей мере, одна фосфатная соль представляет собой продукт осаждения фосфорной кислоты (Н3РО4) и нитратной соли формулы (V), определенной выше, а другую фосфатную соль выбирают из группы, состоящей из формул (I), (II), (III) и (IV), как определено выше. В еще одном осуществлении получения акриловой кислоты, способ включает газофазную каталитическую дегидратацию молочной кислоты путем контактирования газообразной смеси, которая содержит молочную кислоту и воду, со смешанным фосфатным катализатором, который снова содержит, по меньшей мере, две различные фосфатные соли. В данном случае, смешанный фосфатный катализатор содержит, по меньшей мере, две различные фосфатные соли, которые являются продуктами совместного осаждения фосфорной кислоты (Н3РО4) и двух различных нитратных солей формулы (V), как определено выше.

Примеры

Следующие Примеры приведены для иллюстрации настоящего изобретения, но не предназначены для ограничения объема настоящего изобретения. Примеры 1-4 описывают получение пяти различных смешанных фосфатных катализаторов в соответствии с различными осуществлениями описанными выше. Пример 5 описывает получение катализаторов не в соответствии с настоящим изобретением. Пример 6 описывает лабораторный эксперимент конверсии молочной кислоты в акриловую кислоту с использованием катализаторов, описанных в Примерах 1-5, и его результаты. Пример 7 описывает эксперимент определения активности катализатора в соответствии с настоящим изобретением и сообщает данные, полученные в эксперименте. Пример 8 описывает лабораторный эксперимент конверсии молочной кислоты в акриловую кислоту с использованием катализаторов, описанных в Примере 1, при этом отличается материал реактора. Пример 9 описывает эксперимент, выполненный без катализатора, присутствующий для демонстрации стабилизации подачи в кварцевый реактор (относительно реактора из нержавеющей стали).

Пример 1

Водный раствор нитрата бария, Ва(NO3)2 (85,36 миллилитров (мл) 0,08 грамм на миллилитр (г/мл) маточного раствора, 0,026 моль, 99,999%, от Aldrich №202754), добавляли в двухосновной фосфат калия K2НРО4 (1,517 грамм (г), 0,0087 моль, ≥98%, от Aldrich №Р3786), при комнатной температуре с получением белой суспензии, содержащей металлы калий (K, M1) и барий (Ва, М2) в М1:М2 мольном соотношении 40:60. Фосфорную кислоту, Н3РО4 (2,45 мл 85 мас. %, d=1,684 г/мл, 0,036 моль, от Acros №295700010), добавляли по каплям в суспензию. Содержащую кислоту суспензию затем медленно высушивали при 50°C в течение 10 часов, затем при 80°C в течение 10 часов (0,5°C/мин линейное возрастание) в печи с вентиляцией потоком воздуха до полного осаждения катализатора. Нагревание продолжали при 120°C в течение 2 часов (0,5°C/мин линейное возрастание) с последующим прокаливанием при 450°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания катализатор просеивали до от приблизительно 100 мкм до приблизительно 200 мкм. Две партии данного катализатора получали в соответствии с приведенной процедурой. Две партии катализаторов называют в данной заявке «катализатор 'А' и катализатор 'В'».

Пример 2

Фосфат натрия, Na3PO4 (85,68 г, 0,522 моль, 96% от Aldrich, №342483), растворяли в 580 мл деионизированной воды и pH доводили до 7 концентрированным гидроксидом аммония (общий источник) согласно измерениям измерителем pH. Ba(NO3)2 (121,07 г, 0,463 моль, 99,999% от Aldrich №202754) растворяли в 1220 мл деионизированной воды с образованием раствора нитрата бария. Нагревание при 35°C способствовало растворению. Раствор нитрата бария добавляли по каплям в раствор Na3PO4 при перемешивании и нагревании до 60°C, с образованием белой суспензии во время добавления. pH непрерывно контролировали и добавляли по каплям концентрированный гидроксид аммония для поддержания pH 7. Нагревание и перемешивание при 60°C продолжали в течение 60 минут, при этом твердое вещество фильтровали и тщательно промывали деионизированной водой. Твердое вещество суспендировали в 2 л деионизированной воды и снова фильтровали и тщательно промывали деионизированной водой. В печи с вентиляцией, осадок на фильтре высушивали при 120°C в течение 5 часов (1°C/мин линейное возрастание), с последующим прокаливанием при 350°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания фосфат бария просеивали от приблизительно 100 мкм до приблизительно 200 мкм. Мелкие частицы прессовали и повторно просеивали по мере необходимости.

Полученный фосфат бария, Ва3(PO4)2 (13,104 г, 0,0218 моль), смешивали с двухосновным фосфатом калия, K2НРО4 (1,896 г, 0,0109 моль, от Fisher № Р5240/53), который предварительно просеивали до от приблизительно 100 мкм до приблизительно 200 мкм, с получением смеси, содержащей металлы калий (M1) и барий (М2) в М1:М2 мольном соотношении 25:75. Твердые вещества смешивали вручную и встряхивали в закрытом сосуде, с последующим нагреванием в печи с вентиляцией при 50°C в течение 2 часов, при 80°C (0,5°C/мин линейное возрастание) в течение 2 часов, затем при 120°C в течение 2 часов (0,5°C/мин линейное возрастание). Затем катализатор прокаливали при 450°C в течение 4 часов (0,2°C/мин линейное возрастание). После прокаливания катализатор повторно просеивали до от приблизительно 100 м