Способ осуществления множественного переключения с понижением передачи в системе двигателя (варианты)

Иллюстрации

Показать все

Предложены способы и системы для осуществления множественного переключения с понижением передачи у передачи трансмиссии посредством работы на промежуточной передаче. В ответ на массовый расход воздуха, не достигающий порогового значения для самоочистки охладителя надувочного воздуха в течение установленной продолжительности времени, передача трансмиссии может подвергаться переключению с понижением передачи с верхней передачи на промежуточную передачу, а затем на запрошенную нижнюю передачу. Переключение с понижением передачи через промежуточную передачу также может управляться на основании запроса переключения передачи и максимальных уровней массового расхода воздуха для пропусков зажигания в двигателе. Улучшаются рабочие характеристики двигателя. 3 н. и 18 з.п. ф-лы, 5 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к системам и способам осуществления множественного переключения с понижением передачи у передачи трансмиссии в системе двигателя.

УРОВЕНЬ ТЕХНИКИ

Двигатели с турбонаддувом используют охладитель наддувочного воздуха (САС) для охлаждения сжатого воздуха из турбокомпрессора до того, как он поступает в двигатель. Окружающий воздух извне транспортного средства проходит через САС, чтобы охлаждать всасываемый воздух, проходящий через внутреннюю часть САС. Конденсат может формироваться в САС, когда понижается температура окружающего воздуха, или во влажных или дождливых погодных условиях, когда всасываемый воздух охлаждается ниже температуры конденсации воды. Когда всасываемый воздух включает в себя подвергнутые рециркуляции выхлопные газы, конденсат может становиться кислотным и подвергать коррозии корпус САС. Коррозия может приводить к утечкам между зарядом воздуха, атмосферой и возможно хладагентом в случае водно-воздушных охладителей. Конденсат может накапливаться в САС, а затем, втягиваться в двигатель за раз в течение промежутков времени повышенного массового расхода воздуха, увеличивая вероятность пропусков зажигания в двигателе. Некоторые САС могут иметь режим самоочистки, который активизируется при пороговых уровнях массового расхода воздуха, который не вызывает пропуски зажигания. Однако если транспортное средство не приводится в движение, так что оно достигает этого порогового уровня, конденсат может накапливаться, и тогда, вызывать пропуски зажигания, будучи втягиваемым в двигатель слишком быстро при переключении с понижением с верхней на нижнюю передачу трансмиссии при широко открытом дросселе. Массовый расход воздуха может возрастать до более высоких уровней, увеличивая вероятность пропусков зажигания в двигателе, во время множественных переключений с понижением передачи.

Другие попытки принимать меры в ответ на пропуски зажигания двигателя, обусловленные засасыванием конденсата, включают в себя избегание накопления конденсата. Однако, авторы в материалах настоящего описания выявили потенциальные проблемы у таких способов. Более конкретно, несмотря на то, что некоторые способы могут уменьшать или замедлять формирование конденсата в САС, конденсат все же может накапливаться со временем. Если это накопление не может быть прекращено, ввод конденсата при переключении с понижением передачи, особенно при переключениях с понижением передачи, которые пропускают одну или более промежуточных передач, может увеличивать вероятность пропусков зажигания в двигателе.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В одном из примеров, проблемы, описанные выше, могут быть преодолены способом осуществления множественного переключения с понижением передачи поэтапно, регулируя увеличение массового расхода воздуха и продувку конденсата из САС. Более конкретно, передача трансмиссии может подвергаться переключению с понижением с верхней передачи на нижнюю передачу посредством кратковременной работы на промежуточной передаче перед переключением на нижнюю передачу. Таким образом, конденсат может продуваться из САС при более низком массовом расходе воздуха, на промежуточной передаче. Таким образом, при заключительном переключении с понижением на нижнюю передачу, пропуски зажигания в двигателе могут не происходить вследствие повышенного массового расхода воздуха.

В одном из аспектов предложен способ осуществления множественного переключения с понижением передачи в системе двигателя, включающий в себя этап, на котором:

в ответ на поток воздуха через охладитель наддувочного воздуха и запрос осуществить переключение с понижением передачи трансмиссии с верхней передачи на нижнюю передачу, кратковременно осуществляют работу на промежуточной передаче перед переключением на нижнюю передачу.

В одном из вариантов предложен способ, в котором поток воздуха через охладитель наддувочного воздуха является массовым расходом воздуха.

В одном из вариантов предложен способ, в котором массовый расход воздуха ниже диапазона пороговых значений в течение пороговой продолжительности времени.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором осуществляют работу на промежуточной передаче, когда запрос осуществить переключение с понижением передачи трансмиссии будет увеличивать поток воздуха выше второго порогового уровня.

В одном из вариантов предложен способ, в котором работу на промежуточной передаче дополнительно осуществляют в ответ на конденсат в охладителе наддувочного воздуха выше порогового уровня.

В одном из вариантов предложен способ, в котором промежуточную передачу удерживают в течение некоторой продолжительности времени.

В одном из вариантов предложен способ, в котором продолжительность времени является одним из установленной продолжительности времени и количества времени, чтобы уровень конденсата в охладителе наддувочного воздуха снижался ниже порогового уровня.

В одном из вариантов предложен способ, в котором пороговая продолжительность времени основана на пороговом уровне наддува, давлении в коллекторе и массовом расходе воздуха.

В одном из вариантов предложен способ, в котором диапазон пороговых значений массового расхода воздуха основан на массовом расходе воздуха, при котором охладитель наддувочного воздуха будет самоочищаться.

В одном из вариантов предложен способ, в котором второй пороговый уровень основан на массовом расходе воздуха, при котором конденсат продувается из охладителя наддувочного воздуха и вызывает пропуски зажигания в двигателе, если было достигнуто одно или более из порогового уровня наддува и порогового уровня конденсата.

В одном из вариантов предложен способ, в котором промежуточную передачу выбирают на основании одного или более из уровня конденсата в охладителе наддувочного воздуха и уровня наддува.

В одном из вариантов предложен способ, в котором запрос осуществить переключение с понижением передачи трансмиссии является запросом множественного переключения с понижением передачи.

В одном из вариантов предложен способ, в котором запрос множественного переключения с понижением передачи происходит в ответ на большое повышение положения педали, в том числе, широко открытую педаль.

В одном из аспектов предложен способ осуществления множественного переключения с понижением передачи в системе двигателя, включающий в себя этап, на котором:

в ответ на запрос множественного переключения с понижением передачи, когда массовый расход воздуха меньше, чем диапазон пороговых значений, в течение пороговой продолжительности времени, и запрос множественного переключения с понижением передачи будет увеличивать массовый расход воздуха выше второго порогового уровня, осуществляют переключение с понижением передачи трансмиссии с верхней передачи на промежуточную передачу, а затем, на запрошенную нижнюю передачу.

В одном из вариантов предложен способ, в котором промежуточную передачу удерживают в течение некоторой продолжительности времени, причем продолжительность времени увеличивается с увеличением уровня наддува и количества конденсата в охладителе наддувочного воздуха.

В одном из вариантов предложен способ, в котором пороговая продолжительность времени увеличивается с понижением порогового уровня наддува и увеличением среднего массового расхода воздуха.

В одном из вариантов предложен способ, в котором диапазон пороговых значений массового расхода воздуха основан на уровне потока воздуха, который отбирает конденсат из наддувочного воздуха и во впускной коллектор двигателя.

В одном из вариантов предложен способ, в котором второй пороговый уровень является массовым расходом воздуха, который продувает конденсат из охладителя наддувочного воздуха и вызывает пропуски зажигания двигателя, если был достигнут пороговый уровень конденсата.

В одном из вариантов предложен способ, в котором промежуточная передача расположена ближе к верхней передаче, когда уровень наддува и уровень конденсата в охладителе наддувочного воздуха высоки, и промежуточная передача расположена ближе к нижней передаче, когда уровень наддува и уровень конденсата в охладителе наддувочного воздуха низки.

В одном из аспектов предложен способ осуществления множественного переключения с понижением передачи в системе двигателя, включающий в себя этапы, на которых:

в первом состоянии, когда массовый расход воздуха меньше, чем диапазон пороговых значений в течение пороговой продолжительности времени, осуществляют переключение с верхней передачи на запрошенную нижнюю передачу посредством кратковременной работы на промежуточной передаче перед переключением на нижнюю передачу;

во втором состоянии, когда массовый расход воздуха не меньше, чем диапазон пороговых значений, в течение пороговой продолжительности времени, осуществляют переключение с верхней передачи на нижнюю передачу, когда запрошено, без осуществления работы на промежуточной передаче.

В одном из вариантов предложен способ, в котором первое состояние дополнительно включает в себя те случаи, когда переключение с верхней передачи на запрошенную нижнюю передачу будет увеличивать массовый расход воздуха выше второго

порогового уровня.

В качестве еще одного из примеров, в ответ на запрос множественного переключения с понижением передачи, передача трансмиссии может подвергаться переключению с понижением с верхней передачи на нижнюю передачу. Если запрошенное переключение с понижением передачи увеличивает массовый расход воздуха выше порогового уровня, пропуски зажигания в двигателе могут происходить, если величина наддува или количество конденсата в CAC достигли пороговых уровней. CAC может самоочищаться (продувать конденсат), когда массовый расход воздуха достигает диапазона пороговых значений. Однако если массовый расход воздуха остается ниже диапазона пороговых значений в течение пороговой продолжительности времени, конденсат может накапливаться в CAC, и может достигаться пороговый уровень наддува и/или пороговый уровень конденсата. Как только были достигнуты эти условия, пропуски зажигания могут уменьшаться посредством управления выполнением запрошенного множественного переключения с понижением передачи. Например, в ответ на запрос множественного переключения с понижением передачи, который будет увеличивать массовый расход воздуха выше порогового уровня, когда массовый расход воздуха меньше, чем диапазон пороговых значений в течение пороговой продолжительности времени, передача трансмиссии может подвергаться переключению с понижением с верхней передачи на промежуточную передачу, а затем, на запрошенную нижнюю передачу. Посредством удерживания передачи трансмиссии на промежуточной передаче в течение некоторой продолжительности времени, конденсат может выдуваться из CAC и в двигатель на более медленной скорости. Затем, при переключении на нижнюю передачу, увеличение массового расхода воздуха может не вызывать пропусков зажигания в двигателе, поскольку накопленный конденсат уже был продут из CAC. Таким образом, пропуски зажигания в двигателе могут уменьшаться при множественных переключениях с понижением передачи посредством использования промежуточной передачи для управления увеличением массового расхода воздуха и результирующей продувкой конденсата из CAC.

Следует понимать, что раскрытие изобретения, приведенное выше, представлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - схематичное изображение примерной системы двигателя, содержащей охладитель наддувочного воздуха.

Фиг. 2 показывает блок-схему последовательности операций способа, иллюстрирующую способ переключения передачи трансмиссии.

Фиг. 3 показывает блок-схему последовательности операций способа, иллюстрирующую способ осуществления множественного переключения с понижением передачи посредством кратковременной работы на промежуточной передаче.

Фиг. 4-5 показывают примерные операции переключения передачи в разных условиях движения.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к системам и способам осуществления множественного переключения с понижением передачи у передачи трансмиссии в системе двигателя, такой как система по фиг. 1. Запрос переключения передачи может формироваться в ответ на изменение положения педали. Способ переключения передачи трансмиссии в ответ на меняющиеся запросы переключения передачи представлен на фиг. 2. В ответ на запрос осуществить переключение на новую передачу, трансмиссия может переключаться с повышением на верхнюю передачу, переключаться с понижением на одну передачу или переключаться с понижением на множество передач. Множественное переключение с понижением передачи может выполняться непосредственно с верхней на нижнюю передачу или поэтапно, посредством кратковременного переключения с понижением на промежуточную передачу, на основании факторов, имеющих отношение к выпусканию конденсата в охладителе наддувочного воздуха. Контроллер может выполнять процедуру управления, такую как процедура по фиг. 3, для определения, может ли использоваться промежуточная передача, на основании условий работы двигателя, таких как уровни массового расхода воздуха. Процедура затем может включать в себя выполнение множественного переключения с понижением передачи посредством использования выбранной промежуточной передачи. Примерные операции переключения показаны на фиг. 4. Таким образом, конденсат может продуваться на более низкой скорости из CAC посредством переключения с понижением передачи сначала на промежуточную передачу, а затем, на нижнюю передачу, чтобы уменьшать пропуски зажигания в двигателе.

Фиг. 1 - схематичное изображение, показывающее примерный двигатель 10, который может быть включен в силовую установку автомобиля. Двигатель 10 показан с четырьмя цилиндрами 30. Однако другие количества цилиндров могут использоваться в соответствии с данным изобретением. Двигатель 10 может управляться по меньшей мере частично системой управления, включающей в себя контроллер 12, и входными сигналами от водителя 132 транспортного средства через устройство 130 ввода. В этом примере, устройство 130 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала PP положения педали. Каждая камера 30 сгорания (например, цилиндр) двигателя 10 может включать в себя стенки камеры сгорания с поршнем (не показан), расположенным в них. Поршни могут быть присоединены к коленчатому валу 40, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 40 может быть присоединен к по меньшей мере одному ведущему колесу транспортного средства через промежуточную систему 150 трансмиссии. Система 150 трансмиссии может включать в себя автоматическую трансмиссию с многочисленными фиксированными передачами, имеющую множество дискретных передаточных отношений, муфт, и т.д. В одном из примеров, трансмиссия может иметь только 8 дискретных передач переднего хода и 1 передачу заднего хода. Кроме того, стартерный электродвигатель может быть присоединен к коленчатому валу 40 через маховик, чтобы давать возможность операции запуска двигателя 10.

Крутящий момент на выходе двигателя может передаваться на гидротрансформатор (не показан), чтобы приводить в движение систему 150 автоматической трансмиссии. Кроме того, одна или более муфт могут взаимодействовать, в том числе, муфта 154 переднего хода, для приведения в движение автомобиля. В одном из примеров, гидротрансформатор может указываться ссылкой как компонент системы 150 трансмиссии. Кроме того, система 150 трансмиссии может включать в себя множество передаточных муфт 152, которые могут взаимодействовать по необходимости, чтобы активировать множество постоянных передаточных отношений трансмиссии. Более конкретно, посредством регулировки включения множества передаточных муфт 152, трансмиссия может переключаться между верхней передачей (то есть, передачей с более низким передаточным отношением) и нижней передачей (то есть, передачей с более высоким передаточным отношением). По существу, разность передаточных отношений вводит в действие более низкое умножение крутящего момента на трансмиссии, на верхней передаче, наряду с предоставлением возможности более высокого умножения крутящего момента на трансмиссии, на нижней передаче. Транспортное средство может обладать шестью имеющимися в распоряжении передачами, где передача трансмиссии шесть (шестая передача трансмиссии) является высшей имеющейся в распоряжении передачей, а передача трансмиссии один (первая передача трансмиссии) является низшей имеющейся в распоряжении передачей. В других вариантах осуществления, транспортное средство может иметь больше или меньше, чем шесть имеющихся в распоряжении передач.

Как конкретизировано в материалах настоящего описания, контроллер может менять передачу трансмиссии (например, переключать с повышением или переключать с понижением передачу трансмиссии), чтобы регулировать величину крутящего момента, передаваемого через трансмиссию и гидротрансформатор на колеса 156 транспортного средства (то есть, крутящий момент на выходном валу двигателя). Изменения сигнала положения педали (PP) в комбинации со скоростью транспортного средства могут указывать контроллеру, что запрошено переключение передачи трансмиссии. Например, по мере того как возрастает скорость транспортного средства, контроллер может переключать с повышением передачу трансмиссии (например, с первой передачи трансмиссии на вторую передачу трансмиссии). В одном из вариантов осуществления, контроллер может переключать с понижением передачу трансмиссии, когда положение педали увеличивается при постоянной скорости транспортного средства. При относительно постоянном открывании дросселя, в то время как возрастает скорость транспортного средства, передача трансмиссии может подвергаться переключением с повышением. Затем, по мере того, как положение педали возрастает, может запрашиваться большее требование крутящего момента, побуждая трансмиссию переключать с понижением передачу трансмиссии. Затем, по мере того как возрастает скорость транспортного средства, передача трансмиссии может вновь переключаться с повышением передачи. В качестве альтернативы, по мере того, как PP уменьшается при данной скорости транспортного средства, контроллер может переключать с понижением передачу трансмиссии (например, с третьей передачи трансмиссии на вторую или первую передачу трансмиссии). Транспортное средство может осуществлять переключение с повышением передачи или понижением передачи на одну или более передач трансмиссии. В определенных обстоятельствах, транспортное средство может выполнять множественное переключение с повышением или понижением передачи. Например, переключения с понижением, которые пропускают одну или более промежуточных передач, могут указываться ссылкой как множественные переключения с понижением передачи. В одном из примеров, транспортное средство может быть движущимся на верхней передаче, когда PP увеличивается на большую величину, такую как когда педаль полностью нажата (широко открытая педаль (WOP)). В этой ситуации, контроллер может осуществлять переключение с понижением на множество передач, чтобы повышать крутящий момент и скорость вращения двигателя. Нижние передачи, в таком случае, могут давать в результате более высокую скорость вращения двигателя (RPM) и ускорение транспортного средства. Например, контроллер может осуществлять переключение с понижением с шестой передачи трансмиссии на вторую передачу трансмиссии. Таким образом, трансмиссия может «пропускать» три передачи и осуществлять переключение с понижением на четыре передачи. Таким образом, множественные переключения с понижением передачи могут происходить в ответ на большие увеличения положения педали, такие как WOP, по сравнению с меньшими увеличениями положения педали при переключении с понижением между двумя соседними передачами (например, с 6ой на 5ую).

По мере того, как транспортное средство переключает с понижением передачу трансмиссии, и дроссель открыт, скорость вращения двигателя возрастает. Это увеличивает массовый расход воздуха (например, массовый поток воздуха или массовый расход воздуха) через двигатель. По существу, на нижних передачах, массовый расход воздуха возрастает. Контроллер может измерять массовый расход воздуха по датчику 120 массового расхода воздуха (MAF), который может почти соответствовать потоку воздуха через охладитель наддувочного воздуха. Контроллер затем может использовать эту информацию для управления другими компонентами и процессами двигателя, такими как переключение передачи. Это будет дополнительно пояснено ниже со ссылкой на охладитель наддувочного воздуха и фиг. 2-4.

Контроллер 12 показан на фиг. 1 в качестве микрокомпьютера, включающего в себя микропроцессорный блок 102, порты 104 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 106 постоянного запоминающего устройства в этом конкретном примере, оперативное запоминающее устройство 108, энергонезависимую память 110 и шину данных. Контроллер 12 может принимать различные сигналы с датчиков, присоединенных к двигателю 10, для выполнения различных функций для работы двигателя 10, в дополнение к тем сигналам, которые обсуждены ранее, в том числе, измерение вводимого массового расхода воздуха с датчика 120 MAF; температуру хладагента двигателя (ECT) с датчика 112 температуры, схематично показанного в одном месте в пределах двигателя 10; сигнал профильного считывания зажигания (PIP) с датчика 118 на эффекте Холла (или другого типа), присоединенного к коленчатому валу 40; положение дросселя (TP) с датчика положения дросселя, как обсуждено; и сигнал абсолютного давления в коллекторе, MAP, с датчика 122, как обсуждено. Сигнал скорости вращения двигателя, RPM, может формироваться контроллером 12 из сигнала PIP. Сигнал давления в коллекторе, MAP, с датчика давления в коллекторе может использоваться для выдачи указания разряжения или давления во впускном коллекторе 44. Отметим, что могут использоваться различные комбинации вышеприведенных датчиков, такие как датчик MAF без датчика MAP, или наоборот. При стехиометрической работе, датчик MAP может давать показание крутящего момента двигателя. Кроме того, этот датчик, наряду с выявленной скоростью вращения двигателя, может давать оценку заряда (включающего в себя воздух), введенного в цилиндр. В одном из примеров, датчик 118, который также используется в качестве датчика скорости вращения двигателя, может вырабатывать заданное количество равноразнесенных импульсов каждый оборот коленчатого вала 40.

Другие датчики, которые могут отправлять сигналы в контроллер 12, включают в себя датчик 124 температуры на выходе охладителя 80 наддувочного воздуха и датчик 126 давления наддува. Другие не изображенные датчики также могут присутствовать, такие как датчик для определения скорости всасываемого воздуха на входе охладителя наддувочного воздуха, и другие датчики. В некоторых примерах, постоянное запоминающее устройство 106 запоминающего носителя может быть запрограммировано машинно-читаемыми данными, представляющими команды, исполняемые микропроцессорным блоком 102 для осуществления способов, описанных ниже, а также вариантов, которые предвосхищены, но специально не перечислены. Примерные процедуры описаны в материалах настоящего описания на фиг. 4.

Камеры 30 сгорания могут принимать всасываемый воздух из впускного коллектора 44 через впускной канал 42 и могут выпускать газообразные продукты сгорания выхлопных газов через выпускной коллектор 46 в выпускной канал 48. Впускной коллектор 44 и выпускной коллектор 46 могут избирательно сообщаться с камерой 30 сгорания через соответствующие впускные клапаны и выпускные клапаны (не показаны). В некоторых вариантах осуществления, камера 30 сгорания может включать в себя два или более впускных клапанов и/или два или более выпускных клапанов.

Топливные форсунки 50 показаны присоединенными непосредственно к камере 30 сгорания для впрыска топлива непосредственно в нее пропорционально продолжительности времени импульса сигнала FPW, принятого из контроллера 12. Таким образом, топливная форсунка 50 обеспечивает то, что известно в качестве непосредственного впрыска топлива в камеру 30 сгорания; однако, следует принимать во внимание, что впрыск во впускной канал также возможен. Топливо может подаваться в топливную форсунку 50 топливной системой (не показана), включающей в себя топливный бак, топливный насос и направляющую-распределитель для топлива.

Впускной канал 42 может включать в себя дроссель 21, имеющий дроссельную заслонку 22 для регулирования потока воздуха во впускной коллектор. В этом конкретном примере, положение (TP) дроссельной заслонки 22 может меняться контроллером 12, чтобы давать возможность электронного управления дросселем (ETC). Таким образом, дроссель 21 может приводиться в действие для изменения всасываемого воздуха, подаваемого в камеру 30 сгорания, среди других цилиндров двигателя. В некоторых вариантах осуществления, дополнительные дроссели могут присутствовать во впускном канале 42, такие как дроссель выше по потоку от компрессора 60 (не показан).

Кроме того, в раскрытых вариантах осуществления, система рециркуляции выхлопных газов (EGR) может направлять требуемую порцию выхлопных газов из выпускного канала 48 во впускной канал 42 через канал 140 EGR. Количество EGR, выдаваемой во впускной канал 42, может регулироваться контроллером 12 посредством клапана 142 EGR. В некоторых условиях, система EGR может использоваться для регулирования температуры смеси воздуха и топлива в пределах камеры сгорания. Фиг. 1 показывает систему EGR высокого давления, где EGR направляется из выше по потоку от турбины турбонагнетателя в ниже по потоку от компрессора турбонагнетателя. В других вариантах осуществления, двигатель, дополнительно или в качестве альтернативы, может включать в себя систему EGR низкого давления, где EGR направляется из ниже по потоку от турбины турбонагнетателя в выше по потоку от компрессора турбонагнетателя. При работе, система EGR может вызывать формирование конденсата из сжатого воздуха, особенно когда сжатый воздух охлаждается охладителем наддувочного воздуха, как подробнее описано ниже.

Двигатель 10 дополнительно может включать в себя компрессионное устройство, такое как турбонагнетатель или нагнетатель, включающий в себя по меньшей мере компрессор 60, расположенный вдоль впускного коллектора 44. Что касается турбонагнетателя, компрессор 60 может по меньшей мере частично приводиться в действие турбиной 62, например, через вал или другое соединительное устройство. Турбина 62 может быть расположена вдоль выпускного канала 48. Различные компоновки могут быть предусмотрены для приведения в движение компрессора. Что касается нагнетателя, компрессор 60 может по меньшей мере частично приводиться в движение двигателем и/или электрической машиной и может не включать в себя турбину. Таким образом, величина сжатия, обеспечиваемого для одного или более цилиндров двигателя через турбонагнетатель или нагнетатель, может регулироваться контроллером 12.

Кроме того, выпускной канал 48 может включать в себя регулятор 26 давления наддува для отведения выхлопных газов из турбины 62. Дополнительно, впускной канал 42 может включать в себя клапан 27 рециркуляции компрессора (CRV), выполненный с возможностью отводить всасываемый воздух вокруг компрессора 60. Регулятор 26 давления наддува и/или CRV 27 может управляться контроллером 12, чтобы открываться, например, когда требуется более низкое давление наддува.

Впускной канал 42 может дополнительно включать в себя охладитель 80 наддувочного воздуха (CAC) (например, промежуточный охладитель) для понижения температуры нагнетаемых турбонагнетателем или нагнетателем всасываемых газов. В некоторых вариантах осуществления, охладитель 80 наддувочного воздуха может быть воздушно-воздушным теплообменником. В других вариантах осуществления охладитель 80 наддувочного воздуха может быть воздушно-жидкостным теплообменником. CAC 80 также может быть CAC переменного объема. Горячий наддувочный воздух (подвергнутый наддуву воздух) из компрессора 60 поступает на вход CAC 80, остывает, по мере того, как он проходит через CAC, а затем, выходит, чтобы поступать во впускной коллектор 44 двигателя. Поток окружающего воздуха извне транспортного средства может поступать в двигатель 10 через переднюю часть транспортного средства и проходить через CAC, чтобы помогать охлаждению наддувочного воздуха. Конденсат может формироваться и накапливаться в CAC, когда понижается температура окружающего воздуха, или во влажных или дождливых погодных условиях, в которых наддувочный воздух охлаждается ниже температуры конденсации воды. Когда наддувочный воздух включает в себя подвергнутые рециркуляции выхлопные газы, конденсат может становиться кислотным и подвергать коррозии корпус CAC. Коррозия может приводить к утечкам между зарядом воздуха, атмосферой и возможно хладагентом в случае водно-воздушных охладителей. Повышенный поток воздуха через CAC может продувать конденсат из CAC. Однако если слишком много конденсата вводится за раз в двигатель, он может повышать вероятность пропусков зажигания в двигателе вследствие засасывания воды.

В некоторых случаях, некоторая часть всасываемого воздуха может обходить компрессор через CRV 27. Не подвергнутый наддуву воздух (воздух, который не проходит через компрессор) может находиться ниже атмосферного давления, а потому, не конденсироваться в CAC. Давление в коллекторе может измеряться датчиком 122 и отправляться в качестве сигнала абсолютного давления в коллекторе, MAP, в контроллер. Контроллер может использовать MAP, наряду с массовым расходом воздуха, для определения количества подвергнутого наддуву воздуха (уровня наддува). Может быть пороговый уровень наддува, при котором количество подвергнутого наддува воздуха выше этого уровня может приводить к пропускам зажигания в двигателе. Более конкретно, по мере того как уровень наддува возрастает, конденсат в CAC может увеличиваться. Таким образом, пороговый уровень наддува может соответствовать количеству конденсата, который может вызывать пропуски зажигания, если выдувается в двигатель слишком быстро (пороговый уровень конденсата). Контроллер может определять время или пороговую продолжительность времени, чтобы подвергнутый наддуву воздух достигал этого уровня, на основании среднего массового расхода воздуха и MAP.

Массовый расход воздуха может возрастать или убывать в зависимости от условий работы транспортного средства. Эти условия могут включать в себя: является или нет транспортное средство буксирующим груз, и на какой передаче трансмиссии транспортное средство является работающим. Например, массовый расход воздуха может быть более высоким на второй передаче трансмиссии, чем четвертой передаче трансмиссии. Таким образом, по мере того, как передача трансмиссии понижается (при переключении с понижением передачи), массовый расход воздуха возрастает. Кроме того, массовый расход воздуха может возрастать до большего уровня при переключении с понижением на многочисленные передачи. Например, при переключении с понижением с шестой на четвертую передачу трансмиссии, массовый расход воздуха может возрастать до первого уровня. Однако, при переключении с понижением передачи с шестой на вторую передачу трансмиссии, массовый расход воздуха может возрастать до второго уровня, большего чем первый уровень.

По мере того, как массовый расход воздуха возрастает, усиливается поток воздуха через CAC. Этот поток воздуха может достигать уровня, такого что конденсат отбирается из CAC и во впускной коллектор двигателя. В зависимости от конструкции CAC, пороговый уровень или диапазон пороговых значений массового расхода воздуха может вынуждать конденсат продуваться из CAC. Этот диапазон пороговых значений или пороговый уровень может быть достаточно низким, так чтобы конденсат выдувался с достаточно низкой скоростью, не могли возникать пропуски зажигания. Таким образом, каждый CAC может иметь диапазон пороговых значений массового расхода воздуха, в котором CAC будет самоочищаться, не вызывая пропусков зажигания.

Дополнительно, может быть второй пороговый уровень массового расхода воздуха, который продувает конденсат из CAC и вызывает пропуски зажигания в двигателе, если достаточное количество конденсата накопилось в CAC (например, пороговый уровень конденсата или пороговый уровень наддува). Массовый расход воздуха может достигать этого уровня в определенных условиях работы двигателя, таких как при нажатии педали акселератора или при большом переключении с понижением передачи. Например, при множественном переключении с понижением передачи при WOP, массовый расход воздуха может возрастать выше второго порогового уровня; выдувая конденсат из CAC с повышенной скоростью и повышая вероятность пропусков зажигания в двигателе, если накопилось достаточно конденсата. По мере того, как возрастает величина (количество передач трансмиссии) переключения с понижением передачи, массовый расход воздуха и вероятность пропусков зажигания в двигателе возрастают. Разные величины переключения с понижением передачи может давать в результате массовый расход воздуха, возрастающий ниже или выше второго порогового уровня. Например, как пояснено выше, переключение с понижением с шестой на четвертую передачу трансмиссии может увеличивать массовый расход воздуха до первого уровня. Этот первый уровень может находиться ниже второго порогового уровня и не вызывать пропуски зажигания. Однако, при переключении с понижением передачи с шестой на вторую передачу трансмиссии, массовый расход воздуха может возрастать до второго уровня. Второй уровень может находиться выше второго порогового уровня и вызывать пропуски зажигания в двигателе.

В зависимости от условий работы транспортного средства и двигателя, массовый расход воздуха может достигать диапазона пороговых значений для самоочистки более или менее часто. Если пороговый уровень (или диапазон) для самоочистки CAC не достигнут в пределах пороговой продолжительности времени, d1, может достигаться пороговый уровень наддува (как описано выше). Если массовый расход воздуха затем достигает второго порогового уровня, могут происходить пропуски зажигания в двигателе. Например, если массовый расход воздуха не достиг диапазона пороговых значений в течение пороговой продолжительности времени d1, и транспортное средство осуществляет переключение с понижением с шестой передачи трансмиссии на вторую передачу трансмиссии в ответ на WOP, могут происходить пропуски зажигания в двигателе. Однако если массовый расход воздуха был выше диапазона пороговых значений в пределах пороговой продолжительности времени d1, и транспортное средство выполняет такое же переключение с понижением передачи, пропуски зажигания в двигателе могут не происходить. Таким образом, если массовый расход воздуха ниже диапазона пороговых значений в течение пороговой продолжительности времени, и массовый расход воздуха возрастает выше второго порогового уровня, могут происходить пропуски зажигания в двигателе