Экологически безопасные антипирены на основе оксиэтилированных полиэфиров метоксиметилфосфоновой кислоты
Иллюстрации
Показать всеИзобретение относится к применимым в качестве антипиренов оксиалкилированным эфирам трис-этиленгликоль-тетра-метоксиметил (I) и пентаэритрит-тетра-метоксиметил (II) фосфоновых кислот формул
Предложены новые экологически безопасные антипирены и эффективный способ их получения. Предложенный способ заключается во взаимодействии ангидрида метоксиметилфосфоновой кислоты с многоатомными спиртами (пентаэритритом или этиленгилколем) с образованием замещенных трис-этиленгликоль-тетра-метоксиметил- и пентаэритрит-тетра-метоксиметилфосфоновых кислот, которые затем подвергаются процессу оксиалкилирования с использованием окисиэтилена с образованием оксиэтилированных эфиров трис-этиленгликоль-тетра-метоксиметил- и пентаэритрит-тетра-метоксиметилфосфоновых кислот. 2 н. и 3 з.п. ф-лы, 3 пр., 2 табл.
Реферат
Изобретение относится к области органической химии, к фосфорорганическим антипиренам и способу их получения, к новым экологически безопасным антипиренам на основе оксиэтилированных полиэфиров метоксиметилфосфоновой кислоты, которые могут быть использованы в качестве эффективных огнезащитных добавок, повышающих огнестойкость полимерных материалов.
Задачей данного изобретения является разработка новых экологически безопасных антипиренов на основе сырья, выпускаемого отечественной промышленностью. Фосфорсодержащие антипирены используются для повышения термо- и огнестойкости различных полимерных материалов как поликонденсационного, так и полимеризационного типов: полиуретанов, поликарбаматов, метилакрилатов, винилхлорида, стирола.
Актуальность данного изобретения обусловлена необходимостью замены существующих сейчас антипиренов типа «Фосдиол», «Фосдиол» и «Фостетрол» (SU 166031), производство которых прекращено в связи с тем, что их основой является хлорангидрид метилфосфоновой кислоты, входящий в список - 2 «Конвенции о запрещении разработки, накопления и применения химического оружия и его уничтожении», производство которого в настоящий момент прекращено. Кроме того, эти антипирены содержали в своем составе до 4% органического хлора.
Между тем мировое сообщество уже осознало тот вред, который наносят человеку и окружающей среде галогенсодержащие материалы. Законодатели и потребители развитых стран мира направляют совместные усилия на развитие рынка продукции, свободной от галогенов. По данным маркетинговых исследований, проведенных консалтинговой компанией, объем мирового рынка антипиренов, не содержащих галогены, увеличился с 1,67 миллиарда долларов в 2005 году до 2,72 миллиарда долларов в 2010 году.
Наиболее близкими по техническому решению являются антипирены на основе смеси оксипропилированных эфиров пентаэритрита и метилфосфоновой кислоты (RU 2344140), использующиеся в качестве добавки к композиционным полимерным материалам для снижения их горючести.
Смесь оксиэфиров пентаэритрита и метилфосфоновой кислоты получают взаимодействием диметилметилфосфоната и дихлорангидрида метилфосфоновой кислоты с пентаэритритом с последующей обработкой полученной смеси оксиэфиров пентаэритрита и метилфосфоновой кислоты окисью пропилена. Проведение процесса возможно в растворителе (хлороформ) или без него.
Сырье для производства антипиренов, получаемых по этому способу, попадает под запрет согласно списку №2, п. 4. «Конвенции о запрещении разработки, накопления и применения химического оружия и его уничтожении» (далее Конвенции), из-за наличия у них связи Р - C1÷C4 алкил и не может использоваться на территории Российской Федерации и территории стран, подписавших Конвенцию. Кроме того, использование хлорангидрида метилфосфоновой кислоты приводит к выделению в процессе синтеза хлористого водорода, который приводит к коррозии применяемого технологического оборудования и, как следствие, к необходимости применять оборудование из дорогих, антикоррозионных материалов. С другой стороны, хлористый водород может оказывать пагубное воздействие на экологию окружающей среды, что в свою очередь приводит к дополнительным материальным затратам на процесс очистки отходов производства.
При создании изобретения ставились следующие задачи:
- расширение спектра добавок к полимерным материалам для снижения их горючести;
- получение антипиренов, выпускаемых на основе сырья, не нарушающего Конвенцию;
- получение экологически безопасных антипиренов, в процессе производства которых не выделяется хлористый водород;
- получение антипиренов, производимых на основе отечественного сырья.
Это достигается тем, что
- в качестве антипиренов предлагаются оксиэтилированные эфиры трис-этиленгликоль-тетра-метоксиметил (I) и пентаэритрит-тетра-метоксиметил (II) фосфоновых кислот формул
- в качестве исходного соединения используется ангидрид метоксиметилфосфоновой кислоты;
- оксиэтилирование проводят при температуре, не превышающей 40°C, и атмосферном давлении;
- в результате химического синтеза получаются трис-этиленгликоль-тетра-метоксиметил- и пентаэритрит-тетра-метоксиметилфосфоновые кислоты стехиометрического состава.
В общем случае способ получения оксиэтилированных эфиров трис-этиленгликоль-тетра-метоксиметил- и пентаэритрит-тетра-метоксиметилфосфоновых кислот заключается в получении ангидрида метоксиметилфосфоновой кислоты взаимодействием треххлористого фосфора и диметоксиметана при использовании в качестве катализатора различных кислот Льюиса, который реагирует с многоатомными спиртами, и получившиеся полупродукты подвергают процессу оксиэтилирования окисью этилена с образованием целевых трис-этиленгликоль-тетра-метоксиметил- и пентаэритрит-тетра-метоксиметилфосфоновых кислот. В качестве кислот Льюиса используют: треххлористое железо, двухлористый цинк, четыреххлористое олово, эфират треххлористого бора и т.д. В качестве многоатомных спиртов используют этиленгликоль и пентаэритрит.
Пример №1
Получение оксиэтилированной трис-этиленгликоль-тетра-метокси-метилфосфоновой кислоты.
К перемешиваемому ангидриду метоксиметилфосфоновой кислоты (322,92 г) добавляют по каплям 92,38 г сухого этиленгликоля при температуре реакционной массы 40°C. Затем нагревают реакционную массу до температуры 50°C и выдерживают в течение 2 часов. Получают 414, 22 г этиленгликоль-бис-метоксиметилфосфоновой кислоты.
К 414,22 г этиленгликоль-бис-метоксиметилфосфоновой кислоты добавляют порциями (131,34 г) окись этилена так, чтобы температура реакционной массы не превышала 40°C. Полученную реакционную массу оставляют на ночь и выдерживают в вакууме для удаления избытка окиси этилена. Получают 545,34 г оксиэтилированной этиленгликоль-бис-метоксиметилфосфоновой кислоты.
К оксиэтилированной этиленгликоль-бис-метоксиметилфосфоновой кислоте (545,34 г) при перемешивании добавляют порциями 322,92 г ангидрида метоксиметилфосфоновой кислоты, при этом температура реакционной массы не должна превышать 40°C. Затем реакционную массу выдерживают 2 часа при температуре 50°C. Получают 867,18 г трис-этиленгликоль-тетра-метоксиметилфосфоновой кислоты.
К 867,18 г трис-этиленгликоль-тетра-метоксиметилфосфоновой кислоты добавляют порциями (131,34 г) окись этилена так, чтобы температура реакционной массы не превышала 40°C. После окончания прибавления реакционную массу оставляют на ночь и выдерживают в вакууме 5-10 мм рт. ст. для удаления избытка окиси этилена. Получают 1000,00 г оксиэтилированной трис-этиленгликоль-тетра-метоксиметил-фосфоновой кислоты. ЯМР 31Р δ=+22,1 м.д
Содержание фосфора | 17,22% |
Содержание кислотных ОН-групп | 0,57% |
Содержание спиртовых ОН-групп | 4,0% |
Пример №2
Получение оксиэтилированной трис-этиленгликоль-тетра-метокси-метилфосфоновой кислоты.
К перемешиваемому ангидриду метоксиметилфосфоновой кислоты (248,40 г) добавляют по каплям 71,06 г сухого этиленгликоля при температуре реакционной массы 40°C. Затем нагревают реакционную массу до температуры 50°C и выдерживают в течение 2 часов. Получают 318,63 г этиленгликоль-бис-метоксиметилфосфоновой кислоты.
К 318,63 г этиленгликоль-бис-метоксиметилфосфоновой кислоты добавляют порциями (101,03 г) окись этилена так, чтобы температура реакционной массы не превышала 40°C. Полученную реакционную массу оставляют на ночь и выдерживают в вакууме для удаления избытка окиси этилена. Получают 419,49 г оксиэтилированной этиленгликоль-бис-метоксиметилфосфоновой кислоты.
К оксиэтилированной этиленгликоль-бис-метоксиметилфосфоновой кислоте (419,49 г) при перемешивании добавляют порциями 248,40 г ангидрида метоксиметилфосфоновой кислоты, при этом температура реакционной массы не должна превышать 40°С. Затем реакционную массу выдерживают 2 часа при температуре 50°С. Получают 667,06 г трис-этиленгликоль-тетра-метоксиметилфосфоновой кислоты.
К 667,06 г трис-этиленгликоль-тетра-метоксиметилфосфоновой кислоты добавляют порциями (131,34 г) окись этилена так, чтобы температура реакционной массы не превышала 40°С. После окончания прибавления реакционную массу оставляют на ночь и выдерживают в вакууме 5-10 мм рт. ст. для удаления избытка окиси этилена. Получают 769,23 г оксиэтилированной трис-этиленгликоль-тетра-метоксиметил-фосфоновой кислоты. ЯМР 31Р δ=+22,1 м.д
Содержание фосфора | 16,98% |
Содержание кислотных ОН-групп | 0,55% |
Содержание спиртовых ОН-групп | 4,11% |
Пример №3
Получение оксиэтилированной пентаэритрит-тетра-метоксиметил-фосфоновой кислоты.
К суспензии 8,17 г пентаэритрита в 10 мл абсолютного хлороформа при температуре 40°С и энергичном перемешивании добавляют раствор 27 г ангидрида метоксиметилфосфоновой кислоты в 10 мл абсолютного хлороформа. Реакционную массу кипятят в течение 8 часов, отфильтровывают взвесь непрореагировавшего пентаэритрита и используют полученный раствор пентаэритрит-тетра-метоксиметилфосфоновой кислоты в хлороформе на последующей стадии.
К полученному раствору пентаэритрит-тетра-метоксиметилфосфоновой кислоты в хлороформе и добавляют порциями предварительно сконденсированную окись этилена, поддерживая температуру реакционной массы 50°С. Затем реакционную массу выдерживают при комнатной температуре в течении суток и удаляют летучие примеси в вакууме 5-10 мм рт. ст. Получают 53,00 г оксиэтилированной пентаэритрит-тетра-метоксиметилфосфоновой кислоты в виде малоподвижной жидкости светло-желтого цвета. ЯМР 31Р δ=+25,3 м.д
Содержание фосфора | 14,25% |
Содержание кислотных ОН-групп | 0,39% |
Содержание спиртовых ОН-групп | 6,18% |
Пример №4
Получение ангидрида метоксиметилфосфоновой кислоты.
К суспензии 14,30 г пентаэритрита в 20 мл абсолютного хлороформа при температуре 40°С и энергичном перемешивании добавляют раствор 47,25 г ангидрида метоксиметилфосфоновой кислоты в 15 мл абсолютного хлороформа. Реакционную массу кипятят в течение 8 часов, отфильтровывают взвесь непрореагировавшего пентаэритрита и используют полученный раствор пентаэритрит-тетра-метоксиметилфосфоновой кислоты в хлороформе на последующей стадии.
К полученному раствору пентаэритрит-тетра-метоксиметилфосфоновой кислоты в хлороформе и добавляют порциями сконденсированный оксид этилена, поддерживая температуру реакционной массы 50°С. Затем реакционную массу выдерживают при комнатной температуре в течении суток и удаляют летучие примеси в вакууме 5-10 ммрт. ст. Получают 92,75 г оксиэтилированной пентаэритрит-тетра-метоксиметилфосфоновой кислоты в виде малоподвижной жидкости светло-желтого цвета. ЯМР 31Р δ=+25,3 м.д
Содержание фосфора | 14,15% |
Содержание кислотных ОН-групп | 0,41% |
Содержание спиртовых ОН-групп | 6,01% |
Полученные образцы продуктов были испытаны на базе Всероссийского научно-исследовательского института авиационных материалов (ВИАМ) на возможность использования их в качестве антипиренов при получении связующего в производстве стеклотекстолита и показали результаты, представленные в таблицах 1 и 2, свидетельствующие об их достаточной эффективности при осуществлении поставленной задачи.
На основании изложенного выше можно сделать вывод о том, что антипирены I и II с содержанием фосфора 14,25-17,25% могут быть рекомендованы в качестве антипиренов в составе связующего для производства стеклотекстолита взамен со снятых с производства антипиренов предыдущего поколения «Фосдиол-А», «Фостетрол-1» и «Фосполиол-II».
Разработанные антипирены обладают четвертым классом опасности и относятся к малоопасным веществам. Также данные антипирены не содержат в своем составе хлорорганические примеси, которые при условии использования антипиренов при высоких температурах могут приводить к образованию диоксинов. Сырье, используемое при производстве данных антипиренов, относится к третьему и четвертому классу опасности (умеренно опасные и малоопасные вещества) и не являются высокоопасными веществами, подпадающими под запрет списка 2 «Конвенции о запрещении, разработки, накопления и применения химического оружия и его уничтожении». Следовательно, можно считать разработанные антипирены экологически безопасными.
1. Антипирены на основе оксиалкилированных эфиров метоксиметилфосфоновой кислоты формул:
2. Способ получения антипиренов (I) и (II) на основе оксиэтилированных эфиров трис-этиленгликоль-тетра-метоксиметил- и пентаэритрит-тетра-метоксиметилфосфоновых кислот, отличающийся тем, что в качестве исходного соединения используют ангидрид метоксиметилфосфоновой кислоты, который взаимодействует с соответствующими многоатомными спиртами с образованием замещенных метоксиметилфосфоновых кислот, которые подвергают процессу оксиэтилирования окисью этилена с образованием оксиэтилированных эфиров трис-этиленгликоль-тетра-метоксиметил- и пентаэритрит-тетра-метоксиметилфосфоновых кислот.
3. Способ по п. 2, отличающийся тем, что ангидрид метоксиметилфосфоновой кислоты получен взаимодействием треххлористого фосфора и диметоксиметана.
4. Способ по п. 2, отличающийся тем, что процесс оксиэтилирования протекает при температуре реакционной массы, не превышающей 40°С.
5. Способ по п. 2, отличающийся тем, что в качестве многоатомных спиртов используются этиленгликоль и пентаэритрит.