Устройство для усиления акустического сигнала и соответствующие система и способ

Иллюстрации

Показать все

Изобретение относится к скважинным средствам акустической телеметрии сигналов. Техническим результатом является повышение надежности передачи акустических сигналов, за счет обеспечения увеличения амплитуды продольных колебаний в бурильной колонне. Предложено устройство для усиления акустического сигнала, содержащее акустический телеметрический передатчик, имеющий диапазон рабочих акустических коммуникационных частот, источник гидравлического импульса, имеющий основную частоту пульсации, и амортизирующий переводник. Причем источник гидравлического импульса выполнен с возможностью возбуждения вибрации в амортизирующем переводнике для увеличения осевой вибрации в бурильной колонне, механически связанной с источником гидравлического импульса и амортизирующим переводником, для уменьшения статического трения между бурильной колонной и пластом, окружающим бурильную колонну. При этом вибрации возбуждаются на основной частоте, которая выбрана за пределами диапазона рабочих акустических коммуникационных частот. 3 н. и 17 з.п. ф-лы, 7 ил.

Реферат

Уровень техники

[0001] В системах внутрискважинной акустической телеметрии сигналы, несущие информацию, передаются посредством продольных волн от компоновки низа бурильной колонны (КНБК) вдоль бурильной колонны к поверхности земли. Эти сигналы на поверхности принимаются датчиком, таким как акселерометр. Когда буровая труба входит в контакт со стенкой ствола буровой скважины на площади поверхности, превышающей расчетную площадь, энергия сигнала теряется из-за поглощения окружающей породой. Потеря может быть особенно существенной при бурении горизонтальных скважин, поскольку поверхность контакта может быть относительно велика.

Краткое описание чертежей

[0002] На фиг. 1 показана структурная схема устройства согласно различным вариантам реализации настоящего изобретения.

[0003] На фиг. 2 показаны две различные конфигурации устройства, показанного на фиг. 1, согласно различным вариантам реализации настоящего изобретения.

[0004] На фиг. 3 показана другая конфигурация устройства, показанного на фиг. 1, которая может быть использована во время горизонтальных буровых работ, согласно различным вариантам реализации настоящего изобретения.

[0005] На фиг. 4 показаны устройство и системы согласно различным вариантам реализации настоящего изобретения.

[0006] На фиг. 5 показан вариант реализации системы скважинных измерений во время бурения согласно настоящему изобретению.

[0007] На фиг. 6 показана блок-схема нескольких способов согласно различным вариантам реализации настоящего изобретения.

[0008] На фиг. 7 показана структурная схема изделия, содержащего специализированную машину согласно различным вариантам реализации настоящего изобретения.

Осуществление изобретения

[0009] Устройство, известное как активатор (например, забойный двигатель), иногда используется в горизонтальных скважинах увеличенной досягаемости для повышения эффективности буровых работ путем устранения силы трения между пластом и бурильной колонной. Однако, вибрация, созданная активатором, часто препятствует передаче гидроимпульсных телеметрических сигналов, такой как передача данных, используемая для операций скважинных измерений во время бурения (ИВБ), каротажа во время бурения (КВБ) или оценки пластов во время бурения (ОПВБ). Таким образом, другое устройство, известное как амортизирующий переводник, часто используется в бурильной колонне для ослабления гармоник частоты молотка (вибрации), заданной активатором. Таким образом, амортизирующий переводник используется для поглощения и рассеяния ударной нагрузки в плети для повышения устойчивости платформы для приема данных. Примеры включают скважинные амортизирующие переводники, имеющиеся в продаже в компании Stabil Drill, г. Лафейетт, штат Луизиана, и снижающие толчки и ударные нагрузки переводники, имеющиеся в продаже в компании Schlumberger Oilfield Services, г. Хьюстон, штат Техас.

[0010] Для устранения некоторых из этих недостатков помимо прочего изобретатели разработали механизм, который может быть использован для уменьшения статического трения путем замены части статического трения между бурильной колонной и стенкой ствола буровой скважины на динамическое трение во время буровых работ. Этот механизм, который содержит оригинальную комбинацию источника гидравлического импульса и амортизирующего переводника, ниже в настоящей заявке будет обозначено как телеметрическое усиливающее устройство (ТУУ).

[0011] Одним компонентом телеметрического усиливающего устройства является источник гидравлического импульса (ИГИ), такой как двигатель Муано или объемный насос любого другого типа, такой как винтовой насос, которым управляют или который изначально предназначен для создания вибраций вдоль прикрепленной к нему бурильной колонны с относительно низкой частотой, такой как меньше чем 100 Гц согласно некоторым вариантам реализации. Не смотря на то, что известные двигатели Муано, включая забойные двигатели, используются для питания коронки в бурильной колонне, источник гидравлического импульса в различных вариантах реализации телеметрического усиливающего устройства преобразует вращательное движение в импульсы давления путем пропускания текучей среды внутри двигателя через выходное отверстие для текучей среды. Поскольку поток текучей среды (например, текучая среда для бурения или "буровой раствор") перемещается мимо плунжера ротора, ротор перемещается вперед и назад при его вращении. Если плунжер непосредственно выровнен с отверстием, протекание текучей среды резко уменьшается. Когда плунжер перемещается в сторону, текучая среда протекает более свободно по причине малого сопротивления потоку.

[0012] Такое перемещение показано в увеличенном вырезе на фиг. 1, в котором перемещающийся вал 90 в двигателе 94 Муано действует в качестве источника гидравлического импульса. В настоящей заявке можно заметить, что при протекании текучей среды 96 через двигатель 94 и колебаниях вращающегося плунжера 90 назад и вперед, показанных на чертеже в направлении справа налево (как указано большой темной стрелкой), отверстие 98 в конце двигателя 94 будет по меньшей мере частично закрываться и вновь открываться.

[0013] Результирующие импульсы давления преобразуются в осевое перемещение бурильной колонны за счет нетрадиционного использования амортизирующего переводника, который также установлен в бурильную колонну в качестве части телеметрического усиливающего устройства (ТУУ). Согласно различным вариантам реализации амортизирующий переводник возбуждается импульсами давления от источника гидравлического импульса (ИГИ) на основной частоте, которая служит для увеличения амплитуды продольных колебаний в бурильной колонне вместо их уменьшения. Для улучшения работы основная частота может быть выбрана с возможностью возбуждения одного или большего количества резонансных режимов внутри амортизирующего переводника для индуцирования еще более увеличенных вибраций в бурильной колонне.

[0014] Результирующий эффект этой нетрадиционной комбинации источника гидравлического импульса (ИГИ) и амортизирующего переводника, действующего в качестве телеметрического усиливающего устройства (ТУУ), состоит в отклонении бурильной колонны от стенок ствола буровой скважины с основной частотой работы телеметрического усиливающего устройства (ТУУ), выбранной за пределами диапазона рабочих коммуникационных частот соответствующей акустической телеметрической системы связи. Поскольку частота работы телеметрического усиливающего устройства (ТУУ) может быть выбрана значительно ниже частот, используемых в акустической телеметрии, вибрации, индуцированные в бурильной колонне, не должны препятствовать работе акустической телеметрической системы.

[0015] Описанный в настоящей заявке механизм может быть вполне подходящим для использования при выполнении различных буровых операций, включая операции бурения без вращения и горизонтального бурения. Ниже описаны некоторые возможные конфигураций бурильной колонны, которые могут быть частично использованы для таких операций, каждая из которых содержит одно или большее количество телеметрических усиливающих устройств (ТУУ).

[0016] На фиг. 1 показана структурная схема устройства 100 согласно различным вариантам реализации настоящего изобретения. В настоящей заявке буровая установка 102 может быть расположена над бурильной колонной 108 с коронкой 126, которая используется для бурения пласта 114 для проходки ствола скважины 112.

[0017] В этой конфигурации 110 бурильной колонны 108 источник 126 гидравлического импульса и амортизирующий переводник 128 объединены для формирования телеметрического усиливающего устройства 132. Связанная с ними система телеметрической связи содержит акустический телеметрический передатчик 122 и акустический телеметрический приемник 136. Один или большее количество акустических телеметрических ретрансляторов 134 также могут являться частью акустической телеметрической системы.

[0018] Согласно некоторым вариантам реализации работа системы телеметрической связи может быть улучшена за счет размещения телеметрического усиливающего устройства 132 как можно ближе к акустическому телеметрическому передатчику 122. Таким образом, согласно некоторым вариантам реализации может быть подходящей сборка бурильной колонны 108 таким образом, чтобы акустический телеметрический передатчик 122, наиболее близкий к коронке 126, был размещен непосредственно под телеметрическим усиливающим устройством 132, когда колонна 108 расположена вертикально в буровой скважине 112. В других компоновках, таких как в случае установки телеметрического усиливающего устройства 132 между передатчиком 122 и переводником 118 ИВБ/КВБ/ОПВБ (например, в конфигурации 220, показанной на фиг. 2), передача данных и команд к переводнику 118 ИВБ/КВБ/ОПВБ может быть осуществлена с использованием короткого участка связи с использованием электромагнитной телеметрии, акустической телеметрии на малые расстояния, или посредством проводной связи между передатчиком 122 и переводником 118 ИВБ/КВБ/ОПВБ.

[0019] Контроллер 142 и датчики 116 может содержать часть устройства 100. Таким образом, согласно некоторым вариантам реализации работой телеметрического усиливающего устройства 132 управляет контроллер 142, который может быть связан непосредственно с телеметрическим усиливающим устройством 132 коммуникационными линиями 144 или посредством акустической телеметрической системы, содержащей передатчик 122 и приемник 136. Контроллер 142 может быть размещен внутри телеметрического усиливающего устройства 132, или он может быть размещен в переводнике 118 ИВБ/КВБ/ОПВБ для связи с телеметрическим усиливающим устройством 132 посредством телеметрии на малые расстояния.

[0020] Один или большее количество датчиков 116, таких как датчики вращения, ускорения, ориентации, напряжения/деформации, гироскопический датчик, датчик усилия на коронку, угла коронки, крутящего момента и другие датчики могут быть использованы для передачи контроллеру 142 сигналов, свидетельствующих о заклинивании бурильной колонны 108. При приеме таких сигналов контроллер 142 может передать источнику 126 гидравлического импульса сигналы, принуждающие источник 126 гидравлического импульса увеличить вибрацию бурильной колонны 108. Подобным образом, если сигналы заклинивания отсутствуют, контроллер 142 может послать источнику 126 гидравлического импульса команду уменьшить вибрацию бурильной колонны 108.

[0021] На фиг. 2 показаны две дополнительные конфигурации 220, 230 устройства 100, показанного на фиг. 1, согласно различным вариантам реализации настоящего изобретения. В первой конфигурации 220 различные телеметрические усиливающие устройства 132 прикреплены к бурильной колонне 108 и являются ее частью. В данном случае контроллер 142 размещен на поверхности 166 вместе с телеметрическими усиливающими устройствами 132, развернутыми выше и ниже акустического телеметрического передатчика 122.

[0022] Во второй конфигурации 230 опять используется множество телеметрических усиливающих устройств 132. Однако, в данном случае телеметрические усиливающие устройства 132 развернуты выше и ниже по меньшей мере одного ретранслятора 134.

[0023] Кроме того, контроллер 142 в конфигурации 230 прикреплен к колонне 108 и в данном случае является частью переводника 118 ИВБ/КВБ/ОПВБ. Таким образом, конфигурация 230 является примером автономной конфигурации, т.е., сигналы 250 трения F заклинивания между колонной 108 и пластом 114, непосредственно сгенерированные датчиками 116, передаются в контроллер 142, являющийся частью колонны 108, и одно или большее количество телеметрических усиливающих устройств 132 могут быть выборочно использованы для устранения зажатия путем увеличения вибрации в колонне 108 в конкретных местоположениях. Сигналы 250 заклинивания также могут быть получены контроллером 142 из сигналов, переданных датчиками 116, что хорошо известно специалистам.

[0024] Датчик 116, прикрепленный к переводнику 118 ИВБ/КВБ/ОПВБ в конфигурации 220, может содержать акустический датчик. Этот датчик может быть установлен в положении, показанном на чертеже, или в любом другом месте между переводником 118 ИВБ/КВБ/ОПВБ и нижним телеметрическим устройством 132 (т.е., телеметрическим устройством 132, которое является ближайшим к переводнику 118 ИВБ/КВБ/ОПВБ) и использован для отслеживания пропускаемости канала связи. Характеристики пропускаемости канала связи между нижним телеметрическим устройством 132 и датчиком 116 сами по себе не являются особенно важными, но могут быть использованы в качестве сигнала пропускаемости коротких каналов связи до нижнего телеметрического усиливающего устройства 132, включая область над нижним телеметрическим устройством 132.

[0025] Могут быть использованы различные другие конфигурации, включая комбинации конфигураций 220, 230. Ниже описана конфигурация, которая может быть использована как в вертикальном, так и в горизонтальном бурении.

[0026] Таким образом, на фиг. 3 показана другая конфигурация 340 устройства 100, показанного на фиг. 1, которая может быть использована во время горизонтального бурения, согласно различным вариантам реализации настоящего изобретения. В данном случае множество телеметрических устройста 132 развернуты попарно для окружения множества ретрансляторов 134. По меньшей мере одно из телеметрических устройств 132 прикреплено к бурильной колонне 108 с возможностью размещения в точке, в которой, как ожидается, может произойти заклинивание в пласте 114. Таким образом, если сигналы 250 заклинивания переданы датчиками 116 на входные контакты 344 контроллера 142, контроллер 142 может сформировать на своих выходных контактах 342 сигналы, которые могут быть переданы по коммуникационным линиям 144 одному или большему количеству телеметрических устройств 132 для увеличения вибрации. Передача сигналов по коммуникационным линиям 144 к контроллеру 142 и от него может быть осуществлена прямо или косвенно, как описано выше. Таким образом, могут быть осуществлены различные варианты реализации.

[0027] Например, на фиг. 4 показано устройство 100 и системы 464 согласно различным вариантам реализации настоящего изобретения. В настоящей заявке система 464 может содержать одно или большее количество устройств 100, используемых в одной или большем количестве конфигураций или в одной или большем количестве комбинаций конфигураций, как описано выше. Согласно различным вариантам реализации различные части устройства 100 могут быть распределены в различных местоположениях в системе 464.

[0028] Например, устройство 100, которое работает в соединении с системой 464, может содержать части скважинного инструмента 124 (например, инструментов ИВБ, КВБ или ОПВБ), который содержит одно или большее количество телеметрических устройств 132 и акустических телеметрических передатчиков 122 и/или ретрансляторов 134.

[0029] Система 464 может содержать логическое устройство 442, которое может содержать систему управления телеметрическим усиливающим устройством. Логическое устройство 442 может быть использовано для приема сигналов от датчика и других данных 470 и передачи данных/команд к телеметрическим устройствам 132. Логическое устройство 442, в качестве части системы 438 для сбора данных и управления также может служить для приема информации о свойствах пласта.

[0030] Система 438 для сбора данных и управления может быть связана с инструментом 124 для приема сигналов и данных 470, генерируемых датчиками 116. Система 438 для сбора данных и управления и/или любой из ее компонентов могут быть размещены в скважине, возможно, в кожухе инструмента или в корпусе инструмента, или на поверхности 166, возможно, в качестве части компьютерного автоматизированного рабочего места 456 на поверхности в регистрирующей станции 492.

[0031] Согласно некоторым вариантам реализации настоящего изобретения устройство 100 может выполнять функции автоматизированного рабочего места 456, и результаты его работы могут быть переданы на поверхность 166 и/или использованы для непосредственного управления телеметрическими устройствами 132 внутри устройства 100, возможно, с использованием прямого проводного соединения и/или посредством телеметрического трансивера (приемо-передатчика) 424. Процессоры 430 могут обрабатывать сигналы и данные 470, полученные от скважинных датчиков 116 и сохраненные в запоминающем устройстве 450, возможно, в форме базы 434 данных. Работа процессоров 430 может включать управление функциями телеметрических устройств 132, а также определение различных свойств пласта, окружающего колонну 108. Таким образом, как показано на фиг. 1-4, могут быть осуществлены различные варианты реализации.

[0032] Например, в своей наиболее основной форме устройство 100 может содержать источник 126 гидравлического импульса и амортизирующий переводник 128, который может действовать в качестве телеметрического усиливающего устройства 132. Согласно некоторым вариантам реализации устройство 100 содержит акустический телеметрический передатчик 122, источник 126 гидравлического импульса, имеющий основную частоту пульсаций (которая может быть выбрана согласно некоторым вариантам реализации), и амортизирующий переводник 128.

[0033] Источник 126 гидравлического импульса может быть выполнен с возможностью возбуждения вибрации в амортизирующем переводнике 128 для увеличения осевой вибрации в бурильной колонне 108, механически связанной с источником 126 гидравлического импульса и амортизирующим переводником 128. Возбуждение вибраций в амортизирующем переводнике 128 служит для уменьшения статического трения F между бурильной колонной 108 и пластом 114, окружающим бурильную колонну 108. В большей части вариантов реализации вибрации возбуждаются на основной частоте, которая находится за пределами диапазона рабочих акустических коммуникационных частот телеметрического передатчика 122.

[0034] Согласно некоторым вариантам реализации основная частота работы телеметрического усиливающего устройства 132 является фиксированной. Согласно некоторым вариантам реализации устройство 100 содержит контроллер 142 для регулирования основной частоты работы телеметрического усиливающего устройства 132. Сигналы заклинивания, переданные контроллеру 142, могут быть использованы для увеличения или уменьшения вибраций, генерируемых телеметрическим устройством 132. Основой для этих сигналов может служить ряд измеренных физических явлений, связанных с буровыми работами, таких как повышение крутящего момента с течением времени или помимо прочего количество случаев повышения крутящего момента с течением времени. Таким образом, контроллером 142 можно управлять для регулирования основной частоты работы телеметрического усиливающего устройства 132 в ответ на сигналы заклинивания бурильной колонны 108.

[0035] Контроллером 142 также можно управлять для смягчения работы источника 126 гидравлического импульса и акустического телеметрического передатчика 122 в отношении операций включения-выключения и/или частоты работы. Например, согласно некоторым вариантам реализации контроллером 142 можно управлять для выключения и включения одного или большего количества телеметрических устройств 132. Контроллером 142 также можно управлять для независимого выключения или включения телеметрического передатчика 122 и/или одного или большего количества ретрансляторов 124 или телеметрических приемников 136. Согласно некоторым вариантам реализации контроллером 142 можно управлять для регулирования основной частоты работы источника 126 гидравлического импульса, возможно, путем управления клапанами, внутренними или наружными относительно источника 126 гидравлического импульса для перемещения, регулирования объема или расхода текучей среды, протекающей через источник 126 гидравлического импульса.

[0036] Согласно некоторым вариантам реализации источник 126 гидравлического импульса может содержать забойный двигатель, такой как двигатель Муано или турбина. Согласно некоторым вариантам реализации источник 126 гидравлического импульса может содержать ревун.

[0037] Согласно некоторым вариантам реализации один или большее количество акустических телеметрических передатчиков 122 могут быть размещены между парой телеметрических устройств 132. Подобным образом один или большее количество акустических телеметрических ретрансляторов 134 могут быть размещены между парой телеметрических усиливающих устройств 132 или между акустическим телеметрическим приемником 136 и телеметрическим усиливающим устройством 132. Также могут быть использованы различные другие конфигурации.

[0038] Согласно различным вариантам реализации массив возможных конфигураций должен обеспечить возможность повышения надежности (или поддерживания надежности с увеличенной скоростью передачи данных) скважинных акустических линий связи. Это преимущество, в свою очередь, позволяет снизить расходы, связанные с бурением, поскольку разнесение между акустическими телеметрическими передатчиками и ретрансляторами может быть увеличено. Также может быть увеличено разнесение между самими ретрансляторами. Могут быть реализованы и достигнуты другие варианты реализации и преимущества.

[0039] Например, на фиг. 5 показана система скважинных измерений во время бурения 564 (ИВБ) согласно одному варианту реализации настоящего изобретения. Система 564 может содержать части скважинного инструмента 124 в качестве части скважинных буровых операций.

[0040] В данном случае можно заметить, что система 564 может формировать часть буровой установки 102, размещенной на поверхности 504 скважины 506. Буровая установка 102 может поддерживать бурильную колонну 108. Бурильная колонна 108 может действовать с проникновением через роторный стол 510 для бурения скважины 112 через подповерхностные формации 114. Бурильная колонна 108 может содержать рабочую штангу 516, буровую трубу 518 и забойное оборудование 520, которое может быть размещено в нижней части буровой трубы 518.

[0041] Забойное оборудование 520 может содержать утяжеленные бурильные трубы 522, скважинный инструмент 124 и буровую коронку 126. Буровая коронка 126 может работать для создания буровой скважины 112 путем проникновения через поверхность 504 и подповерхностные формации 114. Скважинный инструмент 124 может содержать любой из инструментов различных типов, включая инструменты ИВБ, инструменты КВБ, инструменты ОПВБ и другие.

[0042] Во время буровых работ бурильная колонна 108 (которая может содержать рабочую штангу 516, буровую трубу 518 и забойное оборудование 520) может вращаться роторным столом 510. В дополнение к настоящему или согласно другому варианту реализации забойное оборудование 520 также может вращаться двигателем (например, забойным двигателем), который размещен в скважине. Утяжеленные бурильные трубы 522 могут быть использованы для добавления веса к буровой коронке 126. Утяжеленные бурильные трубы 522 также могут быть использованы для усиления забойного оборудования 520 для обеспечения возможности передачи забойным оборудованием 520 дополнительного веса буровой коронке 126 и, в свою очередь, облегчения проникновения буровой коронки 126 через поверхность 504 и подповерхностные формации 114.

[0043] Во время буровых работ буровой насос 532 может закачивать текучую среду для бурения (иногда известную специалистам как "буровой раствор") из резервуара 534 для бурового раствора посредством рукава 536 в буровую трубу 518 вниз к буровой коронке 126. Буровой раствор может вытекать из буровой коронки 126 и возвращаться к поверхности 504 через кольцевую область 540 между буровой трубой 518 и стенками буровой скважины 112. Затем буровой раствор может быть возвращен в резервуар 534 для бурового раствора, в котором его фильтруют.

Согласно некоторым вариантам реализации буровой раствор может быть использован для охлаждения буровой коронки 126, а также для обеспечения смазки для буровой коронки 126 во время буровых работ. Кроме того, буровой раствор может быть использован для удаления отходов бурения подповерхностной формации, созданных действием буровой коронки 126, а также для управления одним или большим количеством телеметрических усиливающих устройств, являющихся частью устройства 100.

[0044] Таким образом, на фиг.1-5 можно видеть, что согласно некоторым вариантам реализации система 564 может содержать скважинный инструмент 124 для размещения одного или большего количества устройств 100 и/или систем 464, подобных или идентичных устройству 100 и системам 464, описанным выше и показанным на фиг. 1-4. Таким образом, в целях ясности настоящего документа, термин "кожух" может обозначать скважинный инструмент 124 любого типа (имеющий наружную стенку, которая может быть использована для закрывания или крепления контрольно-измерительной аппаратуры, датчиков, пробоотборных устройств для текучей среды, устройств для измерения давления, процессоров, телеметрических усиливающих устройств и систем для сбора данных). Таким образом, могут быть осуществлены различные варианты реализации.

[0045] Например, согласно некоторым вариантам реализации система 464, 564 может содержать акустический телеметрический передатчик 122, связанный с бурильной колонной 108, причем передатчик 122 работает в диапазоне акустических коммуникационных частот. Система 464, 564 дополнительно может содержать акустический телеметрический приемник 136, связанный с бурильной колонной 108, для приема акустической телеметрической информации, переданной передатчиком 122.

[0046] Система 464, 564 дополнительно может содержать источник 126 гидравлического импульса, имеющий выбираемую основной частоту пульсации, и амортизирующий переводник 128, причем источником гидравлического импульса управляют для возбуждения вибраций в амортизирующем переводнике 128 для увеличения осевой вибрации в бурильной колонне 108 (механически связанной с источником 126 гидравлического импульса и амортизирующим переводником 128) для уменьшения статического трения F между бурильной колонной 108 и окружающей породой 114. Как и прежде, вибрации, возбужденные источником 126 гидравлического импульса, должны действовать на основной частоте, выбранной за пределами диапазона рабочих акустических коммуникационных частот, используемых акустическим телеметрическим передатчиком 122 и акустическим телеметрическим приемником 136.

[0047] Могут быть осуществлены различные варианты реализации. Например, согласно некоторым вариантам реализации акустический телеметрический передатчик 122 размещен ближе к коронке 126 (прикрепленной к бурильной колонне 108), чем источник 126 гидравлического импульса и амортизирующий переводник 128. Согласно некоторым вариантам реализации акустический телеметрический ретранслятор 134 размещен между акустическим телеметрическим приемником 136 и комбинацией источника 126 гидравлического импульса и амортизирующего переводника 128, который выполнен с возможностью действовать в качестве телеметрического усиливающего устройства 132.

[0048] В других примерах согласно различным вариантам реализации источник 126 гидравлического импульса и амортизирующий переводник 128 выполнены с возможностью действовать в качестве индивидуальных, выборочно действующих телеметрических устройств 132. Согласно некоторым вариантам реализации различные акустические телеметрические ретрансляторы 134 расположены между индивидуальными выборочно действующими телеметрическими устройствами 132. Согласно некоторым вариантам реализации акустический телеметрический передатчик 122 расположен между источником 126 гидравлического импульса и амортизирующим переводником 128, выполненным с возможностью действовать в качестве первого телеметрического усиливающего устройства 132, и второе телеметрическое усиливающее устройство 132 содержит другой источник 126 гидравлического импульса и амортизирующий переводник 128.

[0049] Согласно некоторым вариантам реализации контроллер 142 может являться частью системы 464, 564. Контроллер 142 может быть выполнен с возможностью смягчения работы источника гидравлического импульса и акустического телеметрического передатчика в отношении операции включения-выключения и/или частоты работы.

[0050] Все устройства и окружающие факторы, такие как: устройство 100, буровая установка 102, бурильная колонна 108, конфигурации 110, 220, 230, 340, буровая скважина 112, пласты 114, датчики 116, источник 126 гидравлического импульса, амортизирующий переводник 128, телеметрические усиливающие устройства 132, передатчик 122, приемник 136, контроллер 142, коммуникационные линии 144, поверхность 166, сигналы 250, выходные контакты 342, входные контакты 344, процессоры 430, база 434 данных, система 438 для сбора данных и управления, логическое устройство 442, запоминающее устройство 450, автоматизированное рабочее место 456, каротажная регистрирующая станция 492, отображающее устройство 496, поверхность 504, скважина 506, роторный стол 510, рабочая штанга 516, буровая труба 518, забойное оборудование 520, утяжеленные бурильные трубы 522, буровой насос 532, резервуар 534 для бурового раствора, рукав 536 и трение F, в данном случае могут быть охарактеризованы как "блоки" в настоящей заявке.

[0051] Такие блоки могут содержать аппаратные цепи, процессор, схемы запоминающих устройств, программные модули и объекты, программируемое оборудование и/или комбинации вышеперечисленного, по желанию разработчика устройства 100 и систем 464, 564 и в соответствии с конкретными осуществлениями различных вариантов реализации. Например, согласно некоторым вариантам реализации такие блоки могут быть включены в устройство и/или пакет программ для моделирования работы системы, такой как пакет программ для моделирования электрических сигналов, пакет программ для моделирования использования и распределения питания, пакет программ для моделирования рассеяния энергии/тепла и/или комбинация программного обеспечения и аппаратных средств, используемых для моделирования работы различных потенциальных вариантов реализации.

[0052] Также следует понимать, что устройство и системы согласно различным вариантам реализации могут быть использованы в случаях применения не только для каротажных операций, и, таким образом, различные варианты реализации не должны быть ограничены только теми, что описаны выше. Иллюстрации устройства 100 и систем 464, 564 предназначены для общего понимания конструкции различных вариантов реализации и не предназначены служить в качестве законченного описания всех элементов и признаков устройства и систем, в которых могут быть использованы конструкции, описанные в настоящей заявке.

[0053] Случаи применения, которые могут включать новые устройство и системы согласно различным вариантам реализации, могут содержать электронные схемы, в которых используются высокоскоростные компьютеры, схемы для коммуникационной и сигнальной обработки, модемы, процессорные блоки, встроенные процессоры, переключатели данных, специализированные прикладные блоки или комбинации вышеперечисленного. Такое устройство и системы дополнительно могут включать в качестве субкомпонентов различные электронные системы, такие как телевизионные системы, мобильную телефонию, персональные компьютеры, автоматизированные рабочие места, радио- и видеоплейеры, транспортные средства, средства для обработки сигналов в геотермальных инструментах и помимо прочего телеметрические системы с интерфейсными узлами для интеллектуальных преобразователей. Некоторые варианты реализации включают различные способы.

[0054] Например, на фиг. 6 показана блок-схема нескольких способов 611 работы телеметрических усиливающих устройств с использованием выбираемой основной частоты вибрации. Например, способ 611 может включать управление источником гидравлического импульса (таким как ревун, генератор импульсов в буровом растворе или двигатель с приводом от бурового раствора, включая двигатель Муано или турбину, или любое другое устройство, которое генерирует импульсы давления текучей среды с выбранной частотой под действием текучей среды, протекающей в устройство или через устройство) для индуцирования вибраций в амортизирующем переводнике для увеличения осевой вибрации бурильной колонны, улучшения акустической телеметрической связи путем снижения количества случаев заклинивания бурильной колонны. В большей части вариантов реализации источник гидравлического импульса и амортизирующий переводник могут быть выполнены с возможностью взаимодействия в качестве телеметрического усиливающего устройства с конфигурированным размещением на участке бурильной колонны, в котором, как ожидается произойдет заклинивание из-за провисания буровой трубы.

[0055] Специалисты после прочтения настоящего документа и ознакомления с сопроводительными чертежами заметят, что компоненты, формирующие бурильную колонну, обычно занимают фиксированное положение вдоль колонны после спуска в скважину. Таким образом, конфигурацию бурильной колонны для различных вариантов реализации обычно выбирают перед спуском в скважину таким образом, что части бурильной колонны, которые являются наиболее подверженными заклиниванию, содержат телеметрические усиливающие устройства, размещенные соответствующим образом. В некоторых случаях, если первая секция бурильной колонны проявляет тенденцию к заклиниванию в пласте в большей степени, чем вторая секция бурильной колонны, при их спуске в буровую скважину, указанные две секции будут сохранять эту тенденцию вдоль всей длины по буровой скважины.

[0056] Например, может быть рассмотрен случай двух интервалов на одиночной бурильной колонне: первого интервала АВ и второго интервала CD. При спуске в буровую скважину в том же самом топологическом отношении друг к другу интервалы АВ и CD проходят различные части пласта. Таким образом, если интервал АВ расположен ниже на бурильной колонне (например, расположен ближе к коронке), чем интервал CD, то интервал АВ пройдет через данную область пласта раньше, чем пройдет интервал CD. Оказывается, если интервал АВ с большей вероятностью чем интервал CD застревает в одной области при прохождении указанных двух интервалов через эту область (даже при том, что каждый интервал достигает заклинивающей области в разное время), интервал АВ чаще и с большей вероятностью чем интервал CD проявляет тенденцию к заклиниванию также и в другой области пласта. Причина этого состоит в том, что различие в склонности к заклиниванию часто вызвано различием в размещении различных элементов держателя коронки, таких как стабилизаторы, толстостенная буровая труба, утяжеленные бурильные трубы, отклоняющие переводники и т.п., причем размещение этих элементов обычно не изменяется после спуска бурильной колонны в скважину.

[0057] Таким образом, реализованный с использованием процессора способ 611, предназначенный для исполнения на одном или большем количестве процессоров, которые осуществляют этот способ, может начаться на этапе 615 с определения приблизительного местоположения заклинивания бурильной колонны, такого как местоположение в горизонтальной секции бурильной колонны. "Горизонтальная секция" бурильной колонны означает часть бурильной колонны, которая в случае ее использования в буровых работах, как ожидается, перемещается в направлении, близком к параллельному поверхности земли, а не перпендикулярно этой поверхности.

[0058] Определение одного или большего количества потенциальных мест заклинивания может быть выполнено автоматизированным способом с использованием программы для автоматизированного проектирования или, например, программы для моделирования. После выполнения определения управление способом 611 может быть передано этапу 617 для включения узла источника гидравлического импульса и амортизирующего переводника, которые должны работать в качестве телеметрического усиливающего устройства, приблизительно расположенного в местоположении или местоположениях вдоль бурильной колонны, в которых ожидается заклинивание.

[0059] Затем управление способом 611 переходит на этап 621, на котором работает акустическая телеметрическая коммуникационная система. Работа этой системы может включать запуск одной или большего количества частей системы, таких как передатчики, приемники и/или ретрансляторы.

[0060] В большей части вариантов реализации способ 611 переходит на этап 625,