Новые замещенные хинолиновые соединения как ингибиторы s-нитрозоглутатион-редуктазы

Иллюстрации

Показать все

Изобретение относится к области органической химии, а именно к новым производным хинолина общей формулы I или к их фармацевтически приемлемым солям, стереоизомерам или N-оксидам, где m = 0 и 1; R1 независимо выбран из группы, состоящей из хлора, фтора и брома; R2b и R2c независимо выбраны из группы, состоящей из водорода, галогена, C1-C3 алкила, фторированного C13алкила, циано и N(CH3)2; X выбран из группы, состоящей из n выбран из группы, состоящей из 0 и 1; R3 независимо выбран из группы, состоящей из галогена, C13 алкила, фторированного C13 алкила, циано, C13алкокси и NR4R4′, где R4 и R4′ независимо выбраны из группы, состоящей из C13 алкила; и А выбран из группы, состоящей из . Также изобретение относится к применению соединения формулы I, фармацевтической композиции на основе соединения формулы I, способу лечения легочных расстройств и воспалительных заболеваний, основанному на использовании соединения формулы I, и способу получения фармацевтической композиции на основе соединения формулы I. Технический результат: получены новые производные хинолина, полезные в качестве ингибитора S-нитрозоглутатион-редуктазы (GSNOR). 6 н. и 11 з.п. ф-лы, 64 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к новым хинолиновым соединениям, фармацевтическим композициям, содержащим такие соединения, а также к способам их получения и применения. Эти соединения являются полезными в качестве ингибиторов S-нитрозоглутатион-редуктазы (GSNOR).

УРОВЕНЬ ТЕХНИКИ

[0002] Химическое соединение оксид азота является газом с химической формулой NO. NO является одной из немногих газообразных сигнальных молекул, известных в биологических системах, и он играет важную роль в контролировании различных биологических событий. Например, в эндотелии NO используется для сигнализации окружающих гладких мышц в стенках артериол о расслаблении, что приводит к вазодилатации и увеличенному кровотоку к гипоксическим тканям. NO также участвует в регуляции пролиферации гладких мышц, функции тромбоцитов и нейротрансмиссии, и играет роль в защитных силах организма. Хотя NO является высоко активным и имеет продолжительность существования в несколько секунд, он может легко диффундировать через мембраны и связываться со многими молекулярными мишенями. Это способствует тому, что NO является идеальной сигнальной молекулой, способной контролировать биологические события между соседними клетками и внутри клеток.

[0003] NO является свободнорадикальным газом, что делает его химически активным и неустойчивым, поэтому NO имеет короткую продолжительность существования in vivo, имея период полураспада 3-5 секунд в физиологических условиях. В присутствии кислорода, NO может объединяться с тиолами с образованием биологически важного класса устойчивых NO аддуктов, называемых S-нитрозотиолами (SNO). Постулировано, что эта устойчивая группа NO действует как источник биоактивного NO и, следовательно, является жизненно важной в здоровом и болезненном состоянии, учитывая центральную роль NO в клеточном гомеостазе (Stamler et al., Proc. Natl. Acad. Sci. USA, 89: 7674-7677 (1992)). Белковые SNO играют разнообразные роли в функционировании сердечнососудистой, дыхательной, метаболической, желудочно-кишечной, иммунной и центральной нервной системы (Foster et al., Trends in Molecular Medicine, 9(4): 160-168, (2003)). Одним из наиболее изученных SNO в биологических системах является S-нитрозоглутатион (GSNO) (Gaston et al., Proc. Natl. Acad. Sci. USA 90: 10957-10961 (1993)), выясняющийся ключевой регулятор NO передачи сигналов, поскольку он является эффективным транс-нитрозирующим агентом и поддерживает равновесие с другими S-нитрозированными белками (Liu et al., Nature, 410: 490-494 (2001)) в клетках. Учитывая это центральное положение в среде NO-SNO, GSNO представляет собой терапевтически перспективную мишень, которую следует рассматривать, когда фармацевтически оправдано модулирование NO.

[0004] В свете этого понимания GSNO как ключевого регулятора гомеостаза NO и клеточных уровней SNO, исследования были направлены на изучения эндогенной выработки белков GSNO и SNO, что происходит после выработки NO радикала ферментами синтетазы оксида азота (NOS). В последнее время было достигнуто углубленное понимание ферментативного катаболизма GSNO, который играет важную роль в управлении доступными концентрациями GSNO и, следовательно, доступными NO и SNO.

[0005] Центральным в этом понимании катаболизма GSNO является то, что исследователи недавно идентифицировали высококонсервативную S-нитрозоглутатион-редуктазу (GSNOR) (Jensen et al., Biochem J., 331: 659-668 (1998); Liu et al., (2001)). GSNOR известна также как глутатион-зависимая формальдегид-дегидрогеназа (GSH-FDH), алкоголь-дегидрогеназа 3 (ADH-3) (Uotila and Koivusalo, Coenzymes and Cofactors., D. Dolphin, ed. p.517-551 (New York, John Wiley & Sons, (1989)) и алкоголь-дегидрогеназа 5 (ADH-5). Важно, что GSNOR обладает более высокой активностью в отношении GSNO, чем другие субстраты (Jensen et al., (1998); Liu et al., (2001)) и опосредует важную денитрозирующую активность белков и пептидов у бактерий, растений и животных. GSNOR является основным GSNO-метаболизирующим ферментом у эукариотов (Liu et al., (2001)). Следовательно, GSNO может накапливаться в биологических отделах, где активность GSNOR является низкой или отсутствует (например, жидкость дыхательных путей) (Gaston et al., (1993)).

[0006] Недостаток дрожжей в GSNOR накапливает S-нитрозилированные белки, которые не являются субстратами этого фермента, что является мощным толчком к мысли, что GSNO существует в равновесии с SNO-белками (Liu et al., (2001)). Точный ферментативный контроль окружающих уровней GSNO и, следовательно, SNO-белков увеличивает вероятность того, что GSNO/GSNOR могут играть роли в физиологических и патологических функциях организма, включая защиту от нитрозативного стресса, где NO вырабатывается в избытке от физиологических потребностей. Действительно, конкретно GSNO участвует в физиологических процессах, варьирующихся от движения до дыхания (Lipton et al., Nature, 413: 171-174 (2001)), для регуляции трансмембранного регулятора фиброзно-кистозной дегенерации (Zaman et al., Biochem Biophys Res Commun, 284: 65-70 (2001)), для регуляции сосудистого тонуса, тромбоза и функции тромбоцитов (de Beider et al., Cardiovasc Res.; 28(5): 691-4 (1994)), Z. Kaposzta, et al., Circulation;, 106(24): 3057-3062, (2002)), а также в защитных силах организма (de Jesus-Berrios et al., Curr. Biol., 13: 1963-1968 (2003)). В других исследованиях было найдено, что GSNOR защищает дрожжевые клетки от нитрозативного стресса, как in vitro (Liu et al., (2001)), так и in vivo (de Jesus-Berries et al., (2003)).

[0007] Все вместе, эти данные позволяют предположить, что GSNO является первичным физиологическим лигандом для фермента S-нитрозоглутатион-редуктазы (GSNOR), который катаболизирует GSNO и, следовательно, снижает доступные SNO и NO в биологических системах (Liu et al., (2001)), (Liu et al., Cell, 116(4), 617-628 (2004)) и (Que et al., Science, 308, (5728): 1618-1621 (2005)). Поэтому этот фермент играет центральную роль в регуляции локального и системного биоактивного NO. Поскольку нарушения биодоступности NO связаны с патогенезом многих болезненных состояний, включая гипертонию, атеросклероз, тромбоз, астму, желудочно-кишечные расстройства, воспаление и рак, то средства, которые регулируют активность GSNOR, являются потенциальными терапевтическими средствами для лечения заболеваний, связанных с дисбалансом NO.

[0008] Оксид азота (NO), S-нитрозоглутатион (GSNO) и S-нитрозоглутатион-редуктаза (GSNOR) регулируют нормальную физиологию легких и участвуют в патофизиологии легких. При нормальных условиях, NO и GSNO поддерживают нормальную физиологию легких и действуют за счет своих противовоспалительных и бронхорасширяющих функций. Пониженные уровни этих медиаторов при легочных заболеваниях, таких как астма, хроническая обструктивная болезнь легких (ХОБЛ), могут возникать за счет повышенной регуляции активности фермента GSNOR. Эти пониженные уровни NO и GSNO, и, следовательно, пониженные противовоспалительные возможности, являются ключевыми событиями, которые способствуют легочным заболеваниям и которые могут быть потенциально реверсированы ингибированием GSNOR.

[0009] Было показано, что S-нитрозоглутатион (GSNO) промотирует восстановление и/или регенерацию органов млекопитающих, таких как сердце (Lima et al., 2010), кровеносные сосуды (Lima et al., 2010), кожа (Georgii et al., 2010), глаза или глазные структуры (Haq et al., 2007) и печень (Prince et al., 2010). S-нитрозоглутатион-редуктаза (GSNOR) является основным катаболическим ферментом GSNO. Предполагается, что ингибирование GSNOR увеличивает эндогенный GSNO.

[0010] Воспалительные заболевания кишечника (IBD), включая болезнь Крона и язвенный колит, являются хроническими воспалительными расстройствами желудочно-кишечного (ЖК) тракта, на которые могут оказывать влияние NO, GSNO и GSNOR. При нормальных условиях, NO и GSNO действуют для поддержания нормальной кишечной физиологии за счет противовоспалительного действия и сохранения кишечного эпителиального клеточного барьера. При IBD, пониженные уровни GSNO и NO очевидно и вероятно возникают за счет повышенной регуляции активности GSNOR. Пониженные уровни этих медиаторов способствуют патофизиологии IBD за счет разрушения эпителиального барьера путем дисрегуляции белков, участвующих в поддержании прочных эпителиальных связей. Эта дисфункция эпителиального барьера, с результирующим проникновением микроорганизмов из полости, а также общие пониженные противовоспалительные возможности в присутствии пониженных NO и GSNO, являются ключевыми событиями прогрессировании IBD, на которые можно потенциально влиять, нацеливаясь на GSNOR.

[0011] Гибель клеток является решающим событием, приводящим к клиническому проявлению гепатотоксичности лекарств, вирусов и спирта. Глутатион (GSH) является наиболее распространенной редокс-молекулой в клетках и, следовательно, наиболее важным определителем клеточного редокс-статуса. Тиолы в белках подвергаются широкому ряду обратимых редокс-модификаций при воздействии частиц активного кислорода и активных азотных частиц, что может ухудшить активность белка. Поддержание GSH печени является динамическим процессом, который достигается балансом между скоростями синтеза GSH, оттоком GSH и GSSG, реакциями GSH с активными частицами кислорода и активными азотными частицами, а также использованием GSH-пероксидазой. GSNO и GSNOR играют роли в регуляции белкового редокс-статуса за счет GSH.

[0012] Передозировки ацетаминофена являются основной причиной острой печеночной недостаточности (ALF) в Соединенных штатах, Великобритании и большинстве стран Европы. Ежегодно в этой стране с ацетаминофеном связано более 100000 звонков в токсикологический центр США, 56000 случаев экстренной медицинской помощи, 2600 госпитализаций, около 500 смертей. Около 60% выздоравливают без необходимости в трансплантации печени, 9% переносят пересадку печени, и 30% пациентов погибают из-за болезни. Уровень смертности, связанной с ацетаминофеном, превышает, по меньшей мере, в три раза количество всех остальных смертей из-за других идиосинкратических реакций на лекарства (Lee, Hepatol Res 2008; 38 (Suppl.1): S3-S8).

[0013] Пересадка печени стала основным лечением пациентов со скоротечной печеночной недостаточностью и конечной стадией хронической болезни печени, а также некоторых метаболических заболеваний печени. Поэтому потребность в трансплантации в настоящее время сильно превышает наличие донорских органов. По оценкам, в настоящее время в Службе обеспечения донорскими органами (UNOS) зарегистрировано более 18000 пациентов, и еще 9000 пациентов каждый год добавляются в список ожидания донорской печени, но для трансплантации доступно лишь менее 5000 трупных доноров.

[0014] В настоящее время в данной области существует огромная потребность в диагностировании, профилактике, улучшении и лечении медицинских состояний, связанных с увеличенным синтезом NO и/или увеличенной биоактивностью NO. Кроме того, существует значительная потребность в новых соединениях, композициях и способах предупреждения, улучшения или реверсирования других NO-связанных расстройств. В настоящем изобретении удовлетворяются эти потребности.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0015] В настоящем изобретении представлены новые хинолиновые соединения. Эти соединения являются полезными в качестве ингибиторов S-нитрозоглутатион-редуктазы («GSNOR»). Настоящее изобретение охватывает фармацевтически приемлемые соли, стереоизомеры, пролекарства, метаболиты и N-оксиды описанных соединений. Настоящим изобретением охватываются также фармацевтические композиции, включающие, по меньшей мере, одно соединение настоящего изобретения и, по меньшей мере, один фармацевтически приемлемый носитель.

[0016] Композиции настоящего изобретения могут быть получены в любой фармацевтически приемлемой лекарственной форме.

[0017] В настоящем изобретении представлен способ ингибирования GSNOR у пациента, нуждающегося в этом. Такой способ включает введение терапевтически эффективного количества фармацевтической композиции, включающей, по меньшей мере, один ингибитор GSNOR или его фармацевтически приемлемую соль, стереоизомер, пролекарство, метаболит или N-оксид, в комбинации, по меньшей мере, с одним фармацевтически приемлемым носителем. Ингибитор GSNOR может быть новым соединением в соответствии с настоящим изобретением, или он может быть известным соединением, которое ранее не было известно как ингибитор GSNOR.

[0018] В настоящем изобретении представлен также способ лечения расстройства, которое улучшается NO-донорной терапией у пациента, нуждающегося в этом. Такой способ включает введение терапевтически эффективного количества фармацевтической композиции, включающей, по меньшей мере, один ингибитор GSNOR или его фармацевтически приемлемую соль, стереоизомер, пролекарство, метаболит или N-оксид, в комбинации, по меньшей мере, с одним фармацевтически приемлемым носителем. Ингибитор GSNOR может быть новым соединением в соответствии с настоящим изобретением, или он может быть известным соединением, которое ранее не было известно как ингибитор GSNOR.

[0019] В настоящем изобретении представлен также способ лечения клеточного пролиферативного расстройства у пациента, нуждающегося в этом. Такой способ включает введение терапевтически эффективного количества фармацевтической композиции, включающей, по меньшей мере, один ингибитор GSNOR или его фармацевтически приемлемую соль, стереоизомер, пролекарство, метаболит или N-оксид, в комбинации, по меньшей мере, с одним фармацевтически приемлемым носителем. Ингибитор GSNOR может быть новым соединением в соответствии с настоящим изобретением, или он может быть известным соединением, которое ранее не было известно как ингибитор GSNOR.

[0020] Способы настоящего изобретения охватывают введение с одним или несколькими вторичными активными средствами. Такое введение может быть последовательным или к комплексной композиции.

[0021] Хотя в практическом осуществлении или испытании настоящего изобретения могут использоваться такие же или эквивалентные способы и материалы, как описано в настоящем документе, ниже описаны пригодные способы и материалы. Все открыто доступные публикации, патентные заявки, патенты и другие ссылки, упомянутые в настоящем документе, включены в настоящий документ путем ссылки в полном объеме. В случае противоречий, следует руководствоваться настоящим описанием, включая определения.

[0022] Как вышеизложенная сущность изобретения, так и последующее подробное описание являются иллюстративными и пояснительными, и они предназначены для предоставления дополнительных подробностей заявленных композиций и способов. Другие объекты, преимущества и новые характеристики являются легко понятными специалистам в данной области из следующего подробного описания.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0023] A. Обзор изобретения

[0024] До недавнего времени было известно, что S-нитрозоглутатион-редуктаза (GSNOR) окисляет формальдегид-глутатионовый аддукт, S-гидроксиметилглутатион. С тех пор GSNOR была идентифицирована в различных бактериях, дрожжах, растениях и животных, и она является очень консервативной. Белки из Е. coli, S. cerevisiae и мышиных макрофагов имеют свыше 60% идентичности аминокислотной последовательности. Активность GSNOR (то есть разложение GSNO в присутствии НАДФ в качестве необходимого кофактора) была обнаружена в Е. coli, в макрофагах мышей, в эндотелиальных клетках мышей, в клетках гладких мышц мышей, в дрожжах и в клетках HeLa, эпителия и моноцитарных клетках человека. Информация о нуклеотидной и аминокислотной последовательности GSNOR человека может быть получена из баз данных Национального центра биотехнологической информации (NCBI) под номерами доступа M29872, NM_000671. Информация о нуклеотидной и аминокислотной последовательности GSNOR мышей может быть получена из баз данных NCBI под номерами доступа NM_007410. В нуклеотидной последовательности подчеркнут сайт инициации и терминирующей сайт.CDS обозначает кодирующую последовательность. SNP обозначает однонуклеотидный полиморфизм. Другие родственные нуклеотидные и аминокислотные последовательности GSNOR, включая нуклеотидные и аминокислотные последовательности других видов, можно найти в заявке на патент США 2005/0014697.

[0025] В соответствии с настоящим изобретением показано, что GSNOR действует in vivo и in vitro для метаболизирования S-нитрозоглутатиона (GSNO) и белковых S-нитрозотиолов (SNO) для модулирования биоактивности NO за счет контролирования внутриклеточных уровней низкомолекулярных соединений-доноров NO и предотвращения достижения токсичных уровней нитрозилирования белка.

[0026] На основании этого следует, что ингибирование этого фермента усиливает биоактивность при заболеваниях, при которых показана NO-донорная терапия, ингибирует пролиферацию патологически разрастающихся клеток и увеличивает биоактивность NO при заболеваниях, где это является благотворным.

[0027] В настоящем изобретении представлены фармацевтические средства, которые являются потенциальными ингибиторами GSNOR. В частности, представлены замещенные хинолиновые аналоги, имеющие структуры, изображенные ниже (Формула I) или их фармацевтически приемлемые соли, стереоизомеры, пролекарства, метаболиты или N-оксиды.

где

m выбран из группы, состоящей из 0, 1, 2, или 3;

R1 независимо выбран из группы, состоящей из хлора, фтора, брома, циано и метокси;

R2b и R2c независимо выбраны из группы, состоящей из водорода, галогена, C1-C3 алкила, фторированного C1-C3 алкила, циано, C1-C3 алкокси и N(CH3)2;

X выбран из группы, состоящей из

и

n выбран из группы, состоящей из 0, 1 и 2;

R3 независимо выбран из группы, состоящей из галогена, C1-C3 алкила, фторированного C1-C3 алкила, циано, гидрокси, C1-C3 алкокси и NR4R4′, где R4 и R4′ независимо выбраны из группы, состоящей из C1-C3 алкила, или R4, взятый вместе с R4', образует кольцо из 3-6 членов; и

A выбран из группы, состоящей из

и

[0028] При использовании в настоящем контексте, термин «аналог» относится к соединению, имеющему аналогичную химическую структуру и функцию, что и соединения Формулы I, которое сохраняет хинолиновое кольцо.

[0029] Некоторые хинолиновые аналоги настоящего изобретения могут также существовать в различных изомерных формах, включая конфигурационные, геометрические и конформационные изомеры, а также существование в различных таутомерных формах, в частности, в тех, которые отличаются точкой присоединения атома водорода. При использовании в настоящем документе, термин «изомер» предназначен для охвата всех изомерных форм соединения, включая таутомерные формы этого соединения.

[0030] Иллюстративные соединения, имеющие асимметричные центры, могут существовать в различных энантиомерных и диастереомерных формах. Соединение может существовать в форме оптического изомера или диастереомера. Соответственно, настоящее изобретение охватывает соединения в формах их оптических изомеров, диастереомеров и их смесей, включая рацемические смеси.

[0031] Следует отметить, что если есть расхождение между изображенной структурой и названием, данным этой структуре, то следует руководствоваться изображенной структурой. Кроме того, если стереохимия структуры или части структуры не указана, например, жирными, клинообразными или пунктирными линиями, то эту структуру или часть структуры следует интерпретировать как охватывающую все стереоизомеры описанного соединения.

[0032] В. Ингибиторы S-нитрозоглутатион-редуктазы

[0033] 1. Соединения по изобретению

[0034] В одном из аспектов настоящего изобретения представлены соединения, имеющие структуру, показанную в Формуле I, или их фармацевтически приемлемые соли, стереоизомеры, пролекарства, метаболиты или N-оксиды:

где

m выбран из группы, состоящей из 0, 1, 2, или 3;

R1 независимо выбран из группы, состоящей из хлора, фтора, брома, циано и метокси;

R2b и R2c независимо выбраны из группы, состоящей из водорода, галогена, C1-C3 алкила, фторированного C1-C3 алкила, циано, C1-C3 алкокси и N(CH3)2;

X выбран из группы, состоящей из

и

n выбран из группы, состоящей из 0, 1 и 2;

R3 независимо выбран из группы, состоящей из галогена, C1-C3 алкила, фторированного C1-C3 алкила, циано, гидрокси, C1-C3 алкокси и NR4R4′, где R4 и R4′ независимо выбраны из группы, состоящей из C1-C3 алкила, или R4, взятый вместе с R4′, образует кольцо из 3-6 членов; и

A выбран из группы, состоящей из

и

[0035] В следующем аспекте настоящего изобретения R1 независимо выбран из группы, состоящей из хлора, фтора и брома; R3 независимо выбран из группы, состоящей из галогена, C1-C3 алкила, фторированного C1-C3 алкила, циано, C1-C3 алкокси и NR4R4′, где R4 и R4′ независимо выбраны из группы, состоящей из C1-C3 алкила, или R4, взятый вместе с R4′, образует кольцо из 3-6 членов; и

X выбран из группы, состоящей из

и .

[0036] В следующем аспекте настоящего изобретения R3 независимо выбран из группы, состоящей из галогена, C1-C3 алкила, фторированного C1-C3 алкила, циано, C1-C3 алкокси и NR4R4′, где R4 и R4′ являются метилом, или, альтернативно, вместе с указанным N образуют кольцо азиридин-1-ил или морфолино.

[0037] В следующем аспекте настоящего изобретения m выбран из группы, состоящей из 0 и 1; R2b и R2c независимо выбраны из группы, состоящей из водорода, хлора, фтора, метила, трифторметила, циано, метокси и N(CH3)2; n выбран из группы, состоящей из 0 и 1; и R3 независимо выбран из группы, состоящей из фтора, хлора, брома, метила, трифторметила, циано, гидрокси, метокси и N(CH3)2.

[0038] В следующем аспекте настоящего изобретения X является .

[0039] В следующем аспекте настоящего изобретения A является COOH.

[0040] В следующем аспекте настоящего изобретения применимые соединения Формулы I включают, но не ограничиваясь этим, следующие:

4-(6-гидрокси-3-метилхинолин-2-ил)бензойную кислоту;

2-(4-(1H-тетразол-5-ил)фенил)-3-метилхинолин-6-ол;

4-(6-гидроксихинолин-2-ил)бензойную кислоту;

2-(4-(1H-тетразол-5-ил)фенил)хинолин-6-ол;

1-(6-гидроксихинолин-2-ил)пиперидин-4-карбоновую кислоту;

(1r,4r)-4-(6-гидроксихинолин-2-ил)циклогексанкарбоновую кислоту;

(1s,4s)-4-(6-гидроксихинолин-2-ил)циклогексанкарбоновую кислоту;

3-хлор-4-(6-гидроксихинолин-2-ил)бензойную кислоту;

2-хлор-4-(6-гидроксихинолин-2-ил)бензойную кислоту;

2-фтор-4-(6-гидроксихинолин-2-ил)бензойную кислоту;

2-(4-(2H-тетразол-5-ил)фенил)-4-хлорхинолин-6-ол;

3-(4-(6-гидроксихинолин-2-ил)фенил)-1,2,4-оксадиазол-5-(2H)-он;

3-фтор-4-(6-гидроксихинолин-2-ил)бензойную кислоту;

4-(6-гидроксихинолин-2-ил)-3-метоксибензойную кислоту;

5-(6-гидроксихинолин-2-ил)тиофен-2-карбоновую кислоту;

4-(6-гидроксихинолин-2-ил)циклогекс-3-енкарбоновую кислоту;

4-(3-фтор-6-гидроксихинолин-2-ил)бензойную кислоту;

4-(4-хлор-3-фтор-6-гидроксихинолин-2-ил)бензойную кислоту;

4-(3-хлор-6-гидроксихинолин-2-ил)бензойную кислоту;

3-(2-фтор-4-(6-гидроксихинолин-2-ил)фенил)-1,2,4-оксадиазол-5(4H)-он;

3-(3-фтор-4-(6-гидроксихинолин-2-ил)фенил)-1,2,4-оксадиазол-5(4H)-он;

4-(4-хлор-6-гидроксихинолин-2-ил)бензойную кислоту;

2-(2-хлор-4-(2H-тетразол-5-ил)фенил)хинолин-6-ол;

5-(4-(6-гидроксихинолин-2-ил)фенил)-1,3,4-оксадиазол-2(3H)-он;

3-(диметиламино)-4-(6-гидроксихинолин-2-ил)бензойную кислоту;

4-(4-фтор-6-гидроксихинолин-2-ил)бензойную кислоту;

4-(6-гидроксихинолин-2-ил)-3-метилбензойную кислоту;

4-(3-хлор-6-гидроксихинолин-2-ил)-3-фторбензойную кислоту;

3-(4-(6-гидроксихинолин-2-ил)фенил)-1,2,4-тиадиазол-5(2H)-он;

4-(6-гидроксихинолин-2-ил)-3-(трифторметил)бензойную кислоту;

4-(6-гидрокси-3-(трифторметил)хинолин-2-ил)бензойную кислоту;

2-(4-карбоксифенил)-6-гидроксихинолин 1-оксид;

5-(4-(6-гидроксихинолин-2-ил)фенил)-1,3,4-тиадиазол-2(3H)-он;

5-(4-(6-гидроксихинолин-2-ил)фенил)-1,2,4-оксадиазол-3(2H)-он;

(1r,4r)-4-(3-хлор-6-гидроксихинолин-2-ил)циклогексанкарбоновую кислоту;

(1s,4s)-4-(3-хлор-6-гидроксихинолин-2-ил)циклогексанкарбоновую кислоту;

3-хлор-4-(4-фтор-6-гидроксихинолин-2-ил)бензойную кислоту;

2-(5-(2H-тетразол-5-ил)тиофен-2-ил)хинолин-6-ол;

5-(4-(6-гидроксихинолин-2-ил)фенил)-1,2,4-тиадиазол-3(2H)-он;

3-фтор-4-(4-фтор-6-гидроксихинолин-2-ил)бензойную кислоту;

1-(6-гидрокси-3-(трифторметил)хинолин-2-ил)пиперидин-4-карбоновую кислоту;

4-(5-хлор-6-гидроксихинолин-2-ил)бензойную кислоту;

(1r,4r)-4-(6-гидрокси-3-(трифторметил)хинолин-2-ил)циклогексанкарбоновую кислоту;

(1s,4s)-4-(6-гидрокси-3-(трифторметил)хинолин-2-ил)циклогексанкарбоновую кислоту;

4-(5-бром-6-гидроксихинолин-2-ил)бензойную кислоту;

3-бром-4-(6-гидроксихинолин-2-ил)бензойную кислоту;

4-(4-(диметиламино)-6-гидроксихинолин-2-ил)бензойную кислоту;

4-(4-фтор-6-гидроксихинолин-2-ил)-3-метоксибензойную кислоту;

3-циано-4-(6-гидроксихинолин-2-ил)бензойную кислоту;

2-(4-карбокси-2-хлорфенил)-6-гидроксихинолин 1-оксид;

4-(4-амино-6-гидроксихинолин-2-ил)бензойную кислоту;

4-(3-циано-6-гидроксихинолин-2-ил)бензойную кислоту;

4-(5-фтор-6-гидроксихинолин-2-ил)бензойную кислоту;

4-(8-фтор-6-гидроксихинолин-2-ил)бензойную кислоту;

3-гидрокси-4-(6-гидроксихинолин-2-ил)бензойную кислоту; и

3-фтор-4-(5-фтор-6-гидроксихинолин-2-ил)бензойную кислоту.

[0041] Если показано, что связь с заместителем пересекает связь, связывающую два атома в кольце, то такой заместитель может быть связан с любым атомом в этом кольце. Если заместитель перечислен без указания атома, через который такой заместитель связан с остальной частью соединения данной формулы, то такой заместитель может быть связан через любой атом в таком заместителе. Допустимы комбинации заместителей и/или переменных, но только если такие комбинации приводят к устойчивым соединениям.

[0042] Соединения, описанные в настоящем документе, могут иметь асимметричные центры. Соединения настоящего изобретения, содержащие асимметрично замещенный атом, могут быть выделены в оптически активных или рацемических формах. В данной области хорошо известно, как получить оптически активные формы, как, например, разделением рацемических форм или синтезом из оптически активных исходных материалов. Многие геометрические изомеры олефинов, двойных связей C=N и тому подобные также могут присутствовать в соединениях, описанных в настоящем документе, и все устойчивые изомеры таких соединений входят в настоящее изобретение. Описаны цис- и транс-геометрические изомеры соединений настоящего изобретения, и они могут быть выделены в виде смеси изомеров или как отдельные изомерные формы. Подразумеваются все хиральные, диастереомерные, рацемические и геометрические изомерные формы структур, если специально не указана определенная стереохимия или изомерная форма. Все таутомеры изображенных или описанных соединений также считаются частью настоящего изобретения.

[0043] Следует понимать, что изомеры, возникающие из такой асимметрии (например, все энантиомеры и диастереомеры) включены в рамки настоящего изобретения, если не указано иное. Такие изомеры могут быть получены, в основном, в чистой форме классическими способами разделения и путем стереохимически контролируемого синтеза. Более того, структуры и другие соединения и фрагменты, описанные в настоящей заявке, также включают все их таутомеры. Алкены могут включать как E-, так и Z-геометрию, где это уместно.

[0044] 2. Иллюстративные соединения

[0045] В Примерах 1-56 перечислены иллюстративные новые хинолиновые аналоги Формулы I. Синтетические способы, которые могут использоваться для получения каждого соединения, детализированы в Примерах 1-56, со ссылкой на схемы синтеза, изображенные перед этим в Примере 1, и со ссылкой на промежуточные соединения, описанные в Примере 57. Подтверждающие данные масс-спектрометрии и/или данные протонного ЯМР для каждого соединения также включены в Примеры 1-56. Активность ингибитора GSNOR была определена анализом, описанным в Примере 58, и были получены значения IC50. Соединения-ингибиторы GSNOR в Примерах 1-56 имеют IC50 около <10 мкМ. Соединения-ингибиторы GSNOR в Примерах 1-4, 6, 8, 10-14, 16-35, 37-43, 45-50 и 52-56 имеют IC50 около <0,5 мкМ. Соединения-ингибиторы GSNOR в Примерах 1-4, 8, 10-14, 17-28, 30, 31, 37, 40-41, 43, 46, 48-49 и 52-56 имеют IC50 около <0,1 мкМ.

[0046] C. Определения

[0047] При использовании в настоящем документе, термин «около» является понятным для специалистов в данной области и варьируется до некоторого предела в зависимости от контекста, в котором он используется. Если применение этого термина не понятно для специалиста в данной области в контексте, в котором он используется, то термин «около» обозначает среднее значение плюс или минус 10% от конкретного значения.

[0048] Термин «ацил» включает соединения и фрагменты, которые содержат ацетиловый радикал (CH3CO-) или карбонильную группу, к которой присоединен низший алкиловый остаток прямого или разветвленного строения.

[0049] Термин «алкил», используемый в настоящем документе, относится к насыщенному углеводороду прямого или разветвленного строения, имеющему указанное количество углеродных атомов. Например, (C1-C6) алкил включает, но не ограничиваясь этим, метил, этил, пропил, изопропил, бутил, втор-бутил, трет-бутил, пентил, изопентил, неопентил, гексил, изогексил и неогексил. Алкиловая группа может быть незамещенной или необязательно замещенной одним или несколькими заместителями, как описано в настоящем документе.

[0050] Термин «алкенил», используемый в настоящем документе, относится к ненасыщенному углеводороду прямого или разветвленного строения, имеющему указанное количество углеродных атомов и, по меньшей мере, одну двойную связь. Примеры (C2-C8) алкениловой группы включают, но не ограничиваясь этим, этилен, пропилен, 1-бутилен, 2-бутилен, изобутилен, втор-бутилен, 1-пентен, 2-пентен, изопентен, 1-гексен, 2-гексен, 3-гексен, изогексен, 1-гептен, 2-гептен, 3-гептен, изогептен, 1-октен, 2-октен, 3-октен, 4-октен и изооктен. Алкениловая группа может быть незамещенной или необязательно замещенной одним или несколькими заместителями, как описано в настоящем документе.

[0051] Термин «алкинил», используемый в настоящем документе, относится к ненасыщенному углеводороду прямого или разветвленного строения, имеющему указанное количество углеродных атомов и, по меньшей мере, одну тройную связь. Примеры (C2-C8) алкиниловой группы включают, но не ограничиваясь этим, ацетилен, пропин, 1-бутан, 2-бутин, 1-пентин, 2-пентин, 1-гексин, 2-гексин, 3-гексин, 1-гептан, 2-гептин, 3-гептан, 1-октан, 2-октин, 3-октан и 4-октин. Алкиниловая группа может быть незамещенной или необязательно замещенной одним или несколькими заместителями, как описано в настоящем документе.

[0052] Термин «алкокси», используемый в настоящем документе, относится к -O-алкиловой группе, имеющей указанное количество углеродных атомов. Например, (C1-C6) алкокси-группа включает -O-метил, -O-этил, -O-пропил, -O-изопропил, -O-бутил, -O-втор-бутил, -O-трет-бутил, -O-пентил, -O-изопентил, -O-неопентил, -O-гексил, -O-изогексил и -O-неогексил.

[0053] Термин «аминоалкил», используемый в настоящем документе, относится к алкиловой группе (обычно из одного-шести углеродных атомов), где один или несколько водородных атомов C1-C6 алкиловой группы замещены амином формулы -N(Rc)2, где Rc в каждом случае независимо является -H или (C1-C6)алкилом. Примеры аминоалкиловых групп включают, но не оганичиваясь этим, -CH2NH2, -CH2CH2NH2, -CH2CH2CH2NH2, -CH2CH2CH2CH2NH2, -CH2CH2CH2CH2CH2NH2, -CH2CH2CH2CH2CH2CH2NH2, -CH2CH2CH2N(CH3)2, трет-бутиламинометил, изопропиламинометил и тому подобные.

[0054] Термин «арил», используемый в настоящем документе, относится к 5-14-членной моноциклической, бициклической или трициклической ароматической кольцевой системе. Примеры ариловой группы включают фенил и нафтил. Ариловая группа может быть незамещенной или необязательно замещенной одним или несколькими заместителями, как описано ниже в настоящем документе. Примеры ариловых групп включают фенил или ариловые гетероциклы, такие как пиррол, фуран, тиофен, тиазол, изотиазол, имидазол, триазол, тетразол, пиразол, оксазол, изоксазол, пиридин, пиразин, пиридазин и пиримидин, и тому подобные.

[0055] При использовании в настоящем документе, термин «биоактивность» обозначает действие на один или несколько клеточных или внеклеточных процессов (например, за счет связывания, передачи сигнала и так далее), которое может влиять на физиологические или патофизиологические процессы.

[0056] Термин «карбонил» включает соединения и фрагменты, которые содержат углерод, связанный двойной связью с атомом кислорода. Примеры фрагментов, содержащих карбонил, включают, но не ограничиваясь этим, альдегиды, кетоны, карбоновые кислоты, амиды, сложные эфиры, ангидриды и так далее.

[0057] Термин «карбокси» или «карбоксил» означает группу -COOH или карбоновую кислоту.

[0058] «Кислотный фрагмент», используемый в настоящем документе, обозначает карбоновую кислоту или биоизостер карбоновой кислоты. Биоизостеры являются заместителями или группами с аналогичными физическими или химическими свойствами, которые обеспечивают, в основном, аналогичные биологические свойства химического соединения. Обзор биоизостеров представлен в публикации J. Med. Chem, 2011, 54, 2529-2591. Примеры «кислотного фрагмента» включают, но не ограничиваясь этим,

и

[0059] «Фармакофор» определяется как «набор структурных особенностей молекулы, который распознается на рецепторном сайте и отвечает за биологическую активность этой молекулы» (Gund, Prog. Mol. Subcell. Biol., 5: pp 117-143 (1977)).

[0060] Термин «Cm-Cn» означает количество от «m» углеродных атомов до «n» углеродных атомов. Например, термин «C1-C6» означает от одного до шести углеродных атомов (C1, C2, C3, C4, C5 или C6). Термин «C2-C6» включает от двух до шести углеродных атомов (C2, C3, C4, C5 или C6) Термин «C3-C6» включает от трех до шести углеродных атомов (C3, C4, C5 или C6)

[0061] Термин «циклоалкил», используемый в настоящем документе, относится к 3-14-членной насыщенной или ненасыщенной неароматической моноциклической, бициклической или трициклической углеводородной кольцевой системе. В этот класс включены циклоалкиловые группы, которые являются конденсированными с бензольным кольцом. Иллюстративные циклоалкиловые группы включают, но не ограничиваясь этим, циклопропил, циклобутил, циклобутенил, циклопентил, циклопентенил, циклопентадиенил, циклогексил, циклогексенил, 1,3-циклогексадиенил, циклогептил, циклогептенил, 1,3-циклогептадиенил, 1,4-циклогептадиенил, 1,3,5-циклогептатриенил, циклооктил, циклооктенил, 1,3-циклооктадиенил, 1,4-циклооктадиенил, 1,3,5-циклооктатриенил, декагидронафталин, октагидронафталин, гексагидронафталин, октагидроинден, гексагидроинден, тетрагидроинден, декагидробензоциклогептен, октагидробензоциклогептен, гексагидробензоциклогептен, тетрагидробензоциклогептен, додекагидрогептален, декагидрогептален, октагидрогептален, гексагидрогептален, тетрагидрогептален, (1s,3s)-бицикло[1.1.0]бутан, бицикло[1.1.1]пентан, бицикло[2.1.1]гексан, бицикло[2.2.1]гептан, бицикло[2.2.2]октан, бицикло[3.1.1]гептан, бицикло[3.2.1]октан, бицикло[3.3.1]нонан, бицикло[3.3.2]декан, бицикло[3.3.]ундекан, бицикло[4.2.2]декан и бицикло[4.3.1]декан. Циклоалкиловая группа может быть незамещенной или необязательно замещенно