Сборный узел для гравийной набивки методом от носка к пятке и обратной циркуляции избыточной суспензии по методу джона п.броуссарда и кристофера а.холла

Иллюстрации

Показать все

Группа изобретений относится к созданию гравийных фильтров нефтегазодобывающих скважин. Устройство включает корпус, расположенный в скважине и образующий сквозной канал, одну или более секций, расположенных на корпусе. Каждая секция содержит элемент изоляции, расположенный на корпусе и изолирующий кольцевое пространство вокруг секции от других секций, окно на корпусе, обеспечивающее сообщение текучей среды между сквозным каналом и кольцевым пространством, фильтр, расположенный на корпусе и сообщающийся с кольцевым пространством, затвор, расположенный на корпусе, препятствующий сообщению жидкости из сквозного канала к фильтру, рабочую колонну, образующую выход и управляемую в корпусе по отношению к каждой секции. Рабочая колонна в первом режиме работы доставляет состав для обработки призабойной зоны от выхода к секции кольцевого пространства через окно. Рабочая колонна во втором режиме работы принимает обратную циркуляцию из сквозного канала к выходу. Упрощается процесс гравийной набивки. 2 н. и 31 з.п. ф-лы, 24 ил.

Реферат

[0001] Данная заявка является частичным продолжением заявки США 12/913981, поданной 28 октября 2010 года под названием «Сборный узел гравийной набивки для набивки методом снизу-вверх/носок-к-пятке» Рональда ван Петегема и Джона П. Броуссарда и заявки США 13/670125, поданной 06 ноября 2012 года под названием «Многопластовая ГРП система с фильтром» Джона П. Броуссарда, Рональда ван Петегема и Кристофера А. Холла, которые включены в этот документ посредством ссылки на них.

УРОВЕНЬ ТЕХНИКИ

[0002] Некоторые нефтяные и газовые скважины завершаются в рыхлых пластах, которые содержат свободные тонкозернистые частицы и песок. Когда текучие среды добываются из этих скважин, свободные тонкозернистые частицы и песок могут переноситься с добываемыми текучими средами и могут привести к повреждению оборудования, такого как электрические погружные насосы (ESP) и другие системы. По этой причине, могут потребоваться доработки фильтров для борьбы с песком.

[0003] Горизонтальные скважины, которые требуют борьбы с песком, это, как правило, заканчивания скважины с открытым забоем. В этих горизонтальных необсаженных скважинах используются, преимущественно, известные автономные песчаные фильтры. Вместе с тем, операторы также используют гравийную набивку в этих горизонтальных необсаженных скважинах, чтобы решить вопрос борьбы с песком. Гравий является особым материалом из калиброванной частицы, такой как подобранный по фракциям песок или проппант, который пакуется вокруг песчаного фильтра в кольцевом пространстве скважины. Гравий действует как фильтр, чтобы удерживать какие-либо тонкозернистые частицы и песок из пласта от переноса с добываемой текучей средой.

[0004] В соответствии с известным уровнем техники система гравийной набивки 20, показанная на фиг. 1A, простирается от пакера 14 со стороны забоя от обсадной трубы 12 в скважине 10, которая представляет собой горизонтальную необсаженную скважину. Для борьбы с песком, операторы пытаются заполнить кольцевое пространство между сборным узлом 20 и скважиной 10 гравием (материалом из частиц) путем закачки суспензии, состоящей из текучей среды и гравия в скважину 10 для набивки кольцевого пространства. Для горизонтальной открытой скважины 10, операторы могут использовать метод альфа-бета волны (или водную набивку), чтобы набить кольцевое пространство. Этот метод использует текучую среду с низкой вязкостью, такую как жидкость для закачивания скважин, чтобы перенести гравий. Система 20 на фиг. 1A представляет собой такой альфа-бета тип.

[0005] Сначала операторы устанавливают промывочную трубу 40 в фильтр 25 и закачивают суспензию, состоящую из текучей среды и гравия вниз рабочей колонны 45. Суспензия проходит через окно 32 в переводной муфте 30 в кольцевое пространство между фильтром 25 и скважиной 10. Как показано, переводная муфта 30 располагается непосредственно со стороны забоя от пакера 14 гравийной набивки и со стороны устья фильтра 25. Окно переводной муфты 32 отклоняет поток суспензии из внутренней рабочей колонны 45 в кольцевое пространство со стороны забоя от пакера 14. В то же время, другое окно переводной муфты 34 отводит поток бурового раствора из промывочной трубы 40 к устью кольцевого пространства обсадной трубы от пакера 14.

[0006] Как только начинается работа, суспензия выходит из окна 32 переводной муфты в кольцевое пространство. Переносящая текучая среда в суспензии просачивается затем через пласт и/или через фильтр 25. Вместе с тем, фильтр 25 препятствует гравию, находящемуся в суспензии протекать в фильтр 25. Текучие среды, проходящие в одиночку через фильтр 25, могут возвращаться затем через окно переводной муфты 34 в кольцевое пространство выше пакера 14.

[0007] Как только текучая среда вытекает, гравий выпадает из суспензии и сначала пакуется вдоль низкой стороны кольцевого пространства скважины. Гравий собирается поэтапно 16а, 16b и т.д., который продвигается от пятки к носку в том, что называется альфа волной. Поскольку скважина 10 является горизонтальной, гравитационные силы преобладают в образовании альфа волны и гравий оседает вдоль нижней стороны на высоте равновесия вдоль фильтра 25.

[0008] Когда процесс гравийной набивки в альфа волне выполнен, гравий начинает собираться в этапах (не показаны) бета волны. Это формируется вдоль верхней части фильтра 25, начиная от носка, и продвигается к пятке фильтра 25. Опять же, текучая среда переносящая гравий, может пройти через фильтр 25 вверх промывочной трубы 40. Для завершения процесса гравийной набивки в бета волне, необходимо иметь достаточную скорость текучей среды, чтобы поддерживать турбулентный поток и перемещать гравий вдоль верхней стороны кольцевого пространства. Чтобы рециркулировать после этого момента, операторы должны механически перенастроить переводную муфту 30, чтобы иметь возможность промыть трубу 40.

[0009] Несмотря на то, альфа-бета метод может быть экономичным благодаря низкой вязкости текучей среды - носителя и благодаря обычным типам фильтров, которые могут быть использованы, некоторые ситуации могут потребовать метод набивки с вязкой текучей средой, который использует альтернативный путь. В этом методе, шунты, расположенные на фильтре отклоняют закачанную суспензию набивки вдоль внешней поверхности фильтра. Фиг. 1B показывает пример системы 20, имеющей шунты 50 и 52 (только два из которых показаны). Как правило, шунты 50/52 для транспортировки и набивки прикрепляются эксцентрично к фильтру 25. Транспортные шунты 50 передают суспензию набивочным шунтам 52 и суспензия выходит из форсунок 54, расположенных на набивочных шунтах 52. Используя шунты 50/52 для транспортировки и набивки суспензии, процесс гравийной набивки может избежать областей высокой утечки в скважине 10, которая могла бы вызвать образование пробок и ухудшила бы гравийную набивку.

[0010] Согласно предшествующему уровню техники сборные узлы гравийной набивки 20 для обоих методов фиг. 1A-1B имеют ряд проблем и трудностей. Во время процесса гравийной набивки в горизонтальной скважине, например, окна переводной муфты 32/34, возможно, придется перенастроить несколько раз. Во время процесса ГРП с установкой гравийного фильтра суспензия, закачанная под высоким давлением и скоростью потока, может иногда обезвоживаться внутри инструмента переводной муфты 30 системы и связанной с ней скользящей муфтой (не показана). Строго говоря, осевший песок или обезвоженная суспензия могут прилипнуть к сервисным инструментам и могут даже засорить скважину. Кроме того, переводная муфта 30 подвергается эрозии во время ГРП и процессов гравийной набивки, и переводная муфта 30 может прилипнуть в пакере 14, которая может создать чрезвычайно сложные ловильные работы.

[0011] Чтобы справиться с гравийной набивкой, в некоторых необсаженных скважинах была разработана система гравийной набивки необсаженной скважины с окном заднего хода в восходящем стволе, как описано в SPE 122765, под названием «Первая в мире гравийная набивка необсаженной скважины с окном обратного хода в восходящем стволе и с набухающими пакерами» (Дженсен и др. 2009 г.). Эта система позволяет сделать гравийную набивку восходящего ствола необсаженной скважины, используя окно, расположенное в направлении носка скважины.

[0012] В процессах обсаженных скважин, очень распространено монтировать несколько установок гравийной набивки в процессе, именуемом как «сложенные набивки». Каждая зона адресована в отдельный процесс для ее перфорирования, установки оборудования гравийной набивки, закачивания гравия, а затем процесс повторяется. Были разработаны другие многопластовые системы гравийной набивки, которые обычно называют однорейсовыми, многопластовыми системами. Эти системы представляют собой обычную конструкцию, в которой они вводят суспензию в кольцевое пространство снаружи фильтра с верхней стороны фильтра и закачивают текучую среду в направлении нижней части зоны. Кроме того, эти системы были специально использованы для применений обсаженных скважин и только недавно были адаптированы для применения в необсаженных скважинах.

[0013] Предмет настоящего раскрытия сущности изобретения направлен на преодоление или, по меньшей мере, уменьшение влияний, одной или нескольких проблем, описанных выше.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0014] Многопластовое устройство и способ используются для обработки пласта. Устройство может быть использовано для обработок пласта, таких как процессы ГРП, процесс ГРП с установкой гравийного фильтра, процессы гравийной набивки или других процессов. Устройство включает в себя корпус (например, трубчатую конструкцию, хвостовик, эксплуатационную колонну и т.п.) и рабочую колонну. Корпус сборного узла расположен в скважине и образует сквозной канал. Одна или несколько секций, расположены на корпусе, и каждая одна или несколько секций содержит изолирующий элемент, окно, фильтр, и затвор.

[0015] Элемент изоляции, расположенный на корпусе изолирует кольцевое пространство скважины вокруг секции от других секций. Окно, расположенное на корпусе позволяет текучей среде сообщаться между сквозным каналом и кольцевым пространством скважины, а фильтр, расположенный на корпусе сообщается с кольцевым пространством скважины. Затвор, расположенный на корпусе, по меньшей мере, препятствует сообщению текучей среды из сквозного канала к фильтру.

[0016] Рабочая колонна образует выход и манипулируется в корпусе относительно каждой секции. Рабочая колонна в первом режиме работы доставляет состав для обработки приствольной зоны с выхода к секции кольцевого пространства скважины через окно. Рабочая колонна во втором режиме работы принимает обратную циркуляцию из сквозного канала на выход.

[0017] В одном варианте осуществления, окно для данной одной из одной или нескольких секций расположено по направлению к носку, а фильтр для данной секции расположен по направлению к пятке. Во время обработки, окно доставляет суспензию, в качестве состава для обработки приствольной зоны и гравийной набивки кольцевого пространства данной секции от носка к пятке. Фильтр процеживает буровой раствор из суспензии в сквозной канал корпуса.

[0018] В другом варианте осуществления, окно для данной из одной или нескольких секций расположено по направлению к пятке, а фильтр для данной секции расположен по направлению к носку. Во время обработки, окно доставляет суспензию в качестве состава для обработки приствольной зоны и гравийной набивки кольцевого пространства данной секции от пятки к носку. Фильтр процеживает буровой раствор из суспензии, а секция имеет байпас, доставляющий буровой раствор в сквозной канал через окно корпуса со стороны устья.

[0019] В одном варианте осуществления, окно содержит проточный клапан, выполненный с возможностью избирательно работать между открытыми и закрытыми положениями, позволяющими и препятствующими сообщению текучей среды между сквозным каналом и кольцевым пространством скважины. Проточный клапан может включать в себя муфту, выполненную с возможностью перемещения в сквозном канале между: (а) закрытым положением, препятствующим сообщению текучей среды через окно и, (б) открытым положением, позволяющим сообщение текучей среды через окно. Рабочая колонна может быть изготовлена так чтобы, по меньшей мере, открыть проточные клапаны одной или нескольких секций. Например, рабочая колонна может иметь приводной инструмент, выполненный с возможностью открывать и закрывать проточные клапаны одной или нескольких секций в сквозном канале в том же рейсе.

[0020] В одном варианте осуществления затвор выполнен с возможностью избирательно действовать между: (а) закрытым положением, препятствующим сообщению текучей среды между сквозным каналом и фильтром и, (б) открытым положением, позволяющим сообщение текучей среды между сквозным каналом и фильтром. Например, затвор может включать в себя муфту, выполненную с возможностью перемещения в сквозном канале между: (а) закрытым положением, препятствующим сообщению текучей среды через, по меньшей мере, одно проточное окно в корпусе, по меньшей мере, одно проточное окно в сообщении с фильтром и, (б) открытым положением, позволяющим сообщение текучей среды через, по меньшей мере, одно проточное окно.

[0021] В другом примере, затвор может включать в себя односторонний клапан, расположенный в сообщении текучей среды между фильтром и сквозным каналом, причем односторонний клапан в открытом положении позволяет сообщение жидкости от фильтра в сквозной канал, и в закрытом положении, препятствует сообщению текучей среды из сквозного канала к фильтру.

[0022] Вышеприведенная сущность изобретения не предназначена, для подведения итога каждого возможного варианта осуществления или каждого аспекта настоящего раскрытия сущности изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0023] Фиг. 1A-1B иллюстрируют сборный узел гравийной набивки в соответствии с предшествующим уровнем техники.

[0024] Фиг. 2A-2B показывают многопластовую систему с фильтром в соответствии с настоящим раскрытием сущности изобретения во время спуска в скважину для процесса промывки.

[0025] Фиг. 3А-3В показывают систему во время установки и тестирования пакера.

[0026] Фиг. 4A-4B показывают систему во время процессов гравийной набивки.

[0027] Фиг. 5A-5B показывают систему во время заполнения кольцевого пространства вокруг башмачной зоны для сливания избыточной суспензии.

[0028] Фиг. 6A-6B показывают еще одну многопластовую систему с фильтром в соответствии с настоящим раскрытием сущности изобретения, имеющую альтернативные параллельные соединения для процессов гравийной набивки.

[0029] Фиг. 7 показывает многопластовую систему с фильтром, имеющую секции фильтров, разделенные пакерами.

[0030] Фиг. 8 иллюстрирует многопластовую систему с фильтром в соответствии с настоящим раскрытием сущности изобретения, расположенную в необсаженной скважине и использующую рабочую колонну в сочетании с клапанами и проточными устройствами.

[0031] Фиг. 9 иллюстрирует многопластовую систему с фильтром фиг. 8, имеющую перепускные трубы.

[0032] Фиг. 10A иллюстрирует частичный вид в поперечном разрезе проточного устройства для раскрытых многопластовых сборных узлов с фильтром.

[0033] Фиг. 10B иллюстрирует подробный вид устройства невозвратного клапана для проточного устройства фиг. 10A.

[0034] Фиг. 10C иллюстрирует выделенный, частичный вид в поперечном сечении проточного устройства фиг. 10A.

[0035] Фиг. 11A-11В иллюстрируют другую многопластовую систему с фильтром в соответствии с настоящим раскрытием сущности изобретения, расположенную в необсаженной скважине и использующую рабочую колонну в сочетании с клапанами и проточными устройствами.

[0036] Фиг. 12A-12D иллюстрирует еще одну многопластовую систему с фильтром в соответствии с настоящим раскрытием сущности изобретения, имеющую конфигурацию носок к пятке.

ПОДРОБНОЕ ОПИСАНИЕ

[0037] Фиг. 2A-2B показывают многопластовую систему 200 с фильтром в соответствии с настоящим раскрытием сущности изобретения, спущенную в скважину. Система 200 может быть использована для обработок пласта, таких как процессы ГРП, процесс ГРП с установкой гравийного фильтра, процессы гравийной набивки или других процессов. Система 200 включает в себя эксплуатационную колонну или хвостовик 225 (например, трубчатая структура или корпус), которая простирается в скважину 10 от пакера хвостовика 14, поддерживаемого в обсадной трубе 12. Эта скважина 10 может быть горизонтальной или отклоненной необсаженной скважиной. Система 200 также имеет гидравлический сервисный инструмент 202, добавленный к пакеру 14, и имеет внутреннюю рабочую колонну 210, прикрепленную к сервисному инструменту 202.

[0038] Как показано на фиг. 12В, хвостовик 225 может иметь колонный башмак 220 на его конце. Между тем, по всей его длине, хвостовик 225 может иметь одну или несколько секций фильтров 240A-B (фиг. 2В) и один или несколько перфорированных кожухов 230A-B. Как правило, перфорированные кожухи 230A-B могут быть расположены рядом или объединены в одну или несколько секций фильтров 240A-B. Как обсуждается ниже, используются одна или несколько секций фильтров 240A-B и перфорированные кожухи 230А-В, чтобы доставить суспензию в одну или несколько точек набивки для процесса гравийной набивки.

[0039] Каждый из перфорированных кожухов 230А-B имеет корпус или проточные окна 232A-B для отклонения потока. Внутри каждый из перфорированных кожухов 230A-B имеет гнезда 234 образованные выше и ниже выпускных окон 232A-B для герметизации с удаленным концом внутренней рабочей колонны 210, как описано ниже. Чтобы предотвратить эрозию проточные окна 232А-В на перфорированных кожухах 230A-B могут иметь юбку, такую как юбка 236 для проточных окон 232А на перфорированных кожухах 230A.

[0040] Проточные окна 232B наверху одного из перфорированных кожухов 230B сообщаются с устройствами альтернативного пути 250, расположенными вдоль длины нижней секции фильтра 240A. Эти устройства альтернативного пути 250 могут быть шунтами, трубами, концентрично установленными трубами или другими устройствами, известными в данной области, для обеспечения альтернативной траектории суспензии. Вместе с тем, в целях настоящего раскрытия сущности изобретения, устройства альтернативного пути 250, в данном документе, для простоты названы шунтами. Как правило, шунты 250 сообщаются от проточных окон 232В до боковых окон 222 в направлении удаленного конца системы 200 или других направлениях для использования во время этапов процесса.

[0041] Как показано на фиг. 2B, внутренняя рабочая колонна 210, простирающаяся от сервисного инструмента 202 (фиг. 2А) располагается через секции фильтров 240A-B системы 200. (Внутренняя рабочая колонна 210 может, по желанию, иметь обратный конус, чтобы уменьшить давление циркуляции). На конце секций фильтров 240A-B, система 200 имеет башмачную зону 220 с колонным башмаком 226 и гнездом 224. Колонный башмак имеет невозвратный клапан 226, муфту и т.п. (не показаны), которые позволяют промывающей или циркулирующей текучей среде течь вокруг внешней стороны секций фильтров 240A-B при опускании в скважину и перед тем как пакер 14 установлен.

[0042] На своем удаленном конце, внутренняя рабочая колонна 210 имеет выпускные окна 212, изолированные с помощью прокладок 214. При опускании одна из прокладок 214 может герметизировать конец внутренней рабочей колонны 210 внутри башмачной зоны 220, как показано на фиг. 2B. Таким образом, текучая среда, закачанная в забой скважины по внутренней рабочей колонне 210, может выйти из невозвратного клапана (не показан) в колонном башмаке 226 в конце башмачной зоны 220, чтобы промыть скважину 10.

[0043] Во время процесса гравийной набивки, однако, выпускные окна 212 могут располагаться и герметизироваться прокладками 214 в перфорированных кожухах 230А-B, расположенных между каждой из секций фильтров 240A-B. В частности, прокладки 214, расположенные по обе стороны от выпускных окон 212 колонны, герметизируют внутренние гнезда 234 на перфорированных корпусах 230А-В. Прокладки 214 могут использовать эластомерные или другие типы уплотнений, расположенные на внутренней рабочей колонне 210, и гнезда 234 могут быть отполированными гнездами или поверхностями внутри кожухов 230A-B для зацепления прокладок 214. Хотя, показанное с этой конфигурацией, может быть использовано обратное расположение: прокладки - на внутренней стороне кожухов 230A-B и гнезда - на внутренней рабочей колонне 210.

[0044] Когда текучая среда закачивается через внутреннюю рабочую колонну 210, закачиваемая текучая среда выходит из колонны 210 и через проточные окна 232A-B на перфорированных кожухах 230А-В зависимости от расположения колонны 210 по отношению к проточным окнам 232A-B. В этом расположении, проточные окна 232A в нижнем перфорированном кожухе 230A направляют суспензию непосредственно в кольцевое пространство, тогда как проточные окна 232B в верхнем перфорированном кожухе 230B направляют суспензию в шунты 250, как описано ниже. Могут быть использованы другие подобные конструкции. В любом случае, это избирательное расположение и уплотнение между колонной 210 и кожухами 230А-В, которое изменяет траектории текучей среды для доставки суспензии в кольцевое пространство, вокруг секций фильтров 240A-B во время процесса гравийной набивки, обсуждается более подробно ниже.

[0045] Как показано на фиг. 2A-2B, система 200 спускается в скважину для промывки. Сервисный инструмент 202 сидит на не установленном пакере 14 в обсадной трубе 12 и прокладки 204 на сервисном инструменте 202 не герметизируются в пакере 14 для того, чтобы обеспечить передачу гидростатического давления. Удаленный конец внутренней рабочей колонны 210 подходит через секции фильтров 240A-B, и одна из прокладок колонны 214 герметизируется в упор к гнезду 224 возле колонного башмака 226. Операторы закачивают текучую среду по замкнутой системе вниз по внутренней рабочей колонне 210, и циркулирующая текучая среда вытекает из невозвратного клапана в колонном башмаке 226, вверх по кольцевому пространству и вокруг не установленного пакера 14.

[0046] Как показано на фиг. 3A-3B, операторы затем устанавливают и тестируют пакер 14. Чтобы установить пакер 14, операторы закачивают текучую среду в скважину для гидравлической или гидростатической установки пакера 14 с помощью процессов, хорошо известных в данной области, хотя могут быть использованы другие методы установки пакера. Чтобы проверить пакер 14, прокладки 204 на сервисном устройстве 202 поднимаются в отверстие пакера после освобождения от пакера 14. Операторы затем проверяют пакер 14, оказывая давление на обсадную трубу 12. Текучая среда, проходящая через любую утечку под давлением на пакере 14, будет переходить в пласт вокруг секций фильтров 240A-B. Кроме того, любая утекающая текучая среда пройдет в выпускные отверстия внутренней рабочей колонны 212 и вверх к поверхности через внутреннюю рабочую колонну 210. Независимо от этого, система 200 позволяет операторам поддерживать гидростатическое давление на пласт в течение этих различных этапов работы.

[0047] После того как пакер 14 установлен и протестирован операторы начинают процесс гравийной набивки. Как показано на фиг. 4A-4B, операторы поднимают внутреннюю рабочую колонну 210, чтобы установиться в первое положение гравийной набивки. Как показано на фиг. 4В, прокладки колонны 214 зацепляются в гнездах 234 вокруг нижних окон 232A ниже нижней секции фильтра 240A. Когда это сделано, окна инструмента 212 сообщаются с окнами кожуха 232А.

[0048] При манипулировании внутренней рабочей колонной 210, операторы предпочтительно дают сигнал на поверхность о том, что выпускные окна 212 расположены в заданном положении, будь то пустая позиция, позиция циркуляции суспензии или позиция откачивания. Один из способов для достижения этой цели является измерение растяжения или сжатия на поверхности, чтобы определить положение внутренней рабочей колонны 210 относительно перфорированных кожухов 230A-B и гнезд 234. Могут быть использованы этот и другие процессы, известные в данной области.

[0049] С окнами 212/232A, изолированными зацепленными прокладками 214 и гнездами 234, операторы закачивают суспензию, состоящую из переносящей текучей среды и гравия вниз внутренней рабочей колонны 210 в первом направлении к окнам колонны 212. Суспензия выходит из окон трубы 212 и через окна кожуха 232A в кольцевое пространство необсаженной скважины. Переносящая текучая среда в суспензии протекает затем через пласт и/или через секции фильтров 240A-B вдоль длины системы 200. Вместе с тем, секции фильтров 240A-B препятствуют гравию, находящемуся в суспензии, протекать в систему 200. Таким образом, текучая среда проходит в одиночку через секции фильтров 240A-B и возвращается через кольцевое пространство обсадной трубы над пакером 14.

[0050] Как описано в этом документе, гравий можно набивать в кольцевом пространстве в альфа-бета волне, хотя могут быть использованы другие варианты. Когда текучая среда вытекает, например, гравий выпадает из суспензии и сначала набивается вдоль нижней стороны кольцевого пространства в скважине 10. Гравий собирается на этапах, при которых продвигается от носка (около кожуха 230A) к пятке в альфа волне. Гравитационные силы преобладают в образовании альфа волны, и гравий оседает вдоль нижней стороны на высоте равновесия вдоль секций фильтров 240A-B.

[0051] После альфа волны, скважина 10 заполняется в бета волне вдоль системы 200. Гравий начинает собираться в бета волне вдоль верхней стороны секций фильтров 240A-B, начиная с пятки (около пакера 14) и продвигается к носовой части сборного узла 200. Опять же, текучая среда, переносящая гравий может протекать через секции фильтров 240A-B и вверх по кольцевому пространству между внутренней рабочей колонной 210 и хвостовиком 225.

[0052] В итоге, операторы достигают желаемого состояния во время закачивания суспензии в окна 232A в этом перфорированном кожухе 230A. Это желаемое состояние может быть определено конкретным повышением уровней давления и может быть названо как «выпадение песка» в некоторых контекстах. На данном этапе, операторы поднимают внутреннюю рабочую колонну 210 снова, как показано на фиг. 5A-5B. Прокладки 214 сейчас сидят в гнездах 234 вокруг окон 232В на следующем перфорированном кожухе 230В между секциями фильтров 240A-B. Операторы закачивают суспензию вниз внутренней рабочей колонны 210 снова в первом направлении к выходному окну 212, и суспензия вытекает из окон трубы 212 и через окна кожуха 232B.

[0053] Как правило, суспензия может при желании вытекать из окон 232B в окружающее кольцевое пространство. Это возможно, если одно или несколько окон 232B сообщаются непосредственно с кольцевым пространством и не сообщаются с одним из устройств альтернативного пути или шунтом 250. Все же, суспензия может вытекать из окон 232B в устройства альтернативного пути или шунты 250 для размещения где-либо в окружающем кольцевом пространстве. Хотя шунты 250 изображены определенным способом, можно использовать любое желательное расположение и число транспортных и пакующих устройств, для альтернативного пути, чтобы подать и доставить суспензию.

[0054] В зависимости от реализации, этот второй этап закачивания суспензии может быть использован для дальнейшей гравийной набивки скважины. Тем не менее, как показано в текущей реализации, закачивание суспензии через шунты 250 позволяет операторам откачивать избыточную суспензию из внутренней рабочей колонны 210 в скважину без реверсирования потока в колонне 210 от направления первого потока (то есть, в направлении окон колонны 212). В этом есть отличие от обратного направления текущей жидкости вниз кольцевого пространства между колонной 210 и кожухами 230А-В/фильтрами 240A-B для откачивания избыточной суспензии из колонны 210.

[0055] Как показано на фиг. 5В, суспензия проходит из окна 212, через проточные окна 232B и через шунты 250. Из шунтов 250, суспензия затем выходит из боковых окон или форсунок 254 в шунтах 250 и заполняет кольцевое пространство вокруг башмачной зоны 220. Это обеспечивает процесс гравийной набивки с альтернативным путем, отличным от основного пути системы от носка к пятке. Таким образом, шунты 250, прикрепленные к перфорированному кожуху 230B выше нижней секции фильтра 240A могут быть использованы, чтобы расположить избыточный гравий из рабочей колонны 210 вокруг башмачной зоны 220. Шунты 250 переносят суспензию вниз нижней секции фильтра 240A так, что промывочная труба не требуется на конце секции 240A. Однако байпас 258 определенный в расположении забоя системы 200 (или где-либо еще) допускает возвращения текучей среды в ходе этого процесса. Этот байпас 258 может быть невозвратным клапаном, частью фильтра, втулкой, или другим подходящим устройством, которое позволяет потоку буровой жидкости, а не гравию из скважины войти в систему 200. В самом деле, байпас 258 в качестве части фильтра может иметь любую желаемую длину вдоль башмачной зоны 220 в зависимости от реализации.

[0056] В какой-то момент, процесс может достичь состояния «выпадения песка» или повышения давления во время закачивания суспензии в окна 232B. В этот момент, клапан, разрывной диск или другое устройство затвора 256 в шунтах 250 может открыться так, чтобы гравий в суспензии мог заполнить затем внутреннюю часть башмачной зоны 220 после откачивания избытка вокруг башмачной зоны 220. Таким образом, операторы могут откачать избыточный гравий изнутри башмачной зоны 220. Как только это происходит, буровой раствор может выйти из нижней секции фильтра 240A, через набитый гравий в кольцевом пространстве, и обратно через верхнюю секцию фильтра 240B для перемещения к устью. В других конструкциях, нижний перфорированный кожух 230А может иметь байпас, другой шунт, или тому подобное (не показано), которые могут быть использованы для доставки бурого раствора мимо прокладок 214, гнезд 234 и устья.

[0057] Предыдущая система 200 заполняла кольцевое пространство необсаженной скважины с альфа-бета волнами, а затем заполняла кольцевое пространство вокруг носка по альтернативной траектории. Как показано на фиг. 6A-6B, система 200 может использовать дополнительное устройство альтернативного пути или шунт 260, чтобы заполнить кольцевое пространство необсаженной скважины во время циркуляции в процессе гравийной набивки. В этой конструкции работа системы 200 аналогична рассмотренной выше. Опять же, система 200 имеет один или несколько перфорированных кожухов 230А-B для выхода суспензии и имеет один или несколько секций фильтров 240A-B.

[0058] Когда операторы поднимают внутреннюю рабочую колонну 210, чтобы расположить ее для процесса гравийной набивки, показанной на фиг. 6B, операторы закачивают, по меньшей мере, некоторое количество суспензии в кольцевое пространство необсаженной скважины с помощью дополнительных шунтов 260 в альтернативном пути гравийной набивки. Шунты 260 могут быть использованы в виде исключения. Альтернативно, суспензию можно закачивать через одно или несколько окон кожуха 232А одновременно. С помощью конструкции шунтов 250/260 и открытых проточных окон 232, система 200 может набивать гравий зонами от носка к пятке, от пятки к носку и в их комбинации.

[0059] Как можно видеть на фиг. 2A-6В, раскрытая система 200 может быть использована в ряде универсальных способов гравийной набивки кольцевого пространства скважины. Например, выпускные окна колонны 212 могут быть расположены в одном или нескольких различных перфорированных кожухах 230A-B для гравийной набивки вокруг секций фильтров 240A-B в альфа-бета волне или альтернативным путем. Кроме того, внутренняя рабочая колонна 210 может быть перемещена в несколько кожухов 230А-В для набивки единственной зоны из нескольких точек или гравийной набивки той же зоны с первого направления, а затем с другого направления (например, первая снизу вверх, а затем сверху вниз, используя шунты 250/260).

[0060] Кроме того, внутренняя рабочая колонна 210 может быть использована для закачивания растворов для обработки приствольной зоны или других типов растворов в окружающую зону. Например, система 200 на фиг. 2A-6B может быть использована для выполнения ГРП с установкой гравийного фильтра из одной точки и затем гравийной набивки (через шунты 250 и/или 260) из другой точки вдоль секций фильтров 240A-B. В ГРП с установкой гравийного фильтра, операторы выполняют обработку гидроразрыва пласта, доставляя большие объемы градуированного песка, проппанта, или т.п. в кольцевое пространство и в пласт при давлениях, превышающих градиент гидроразрыва пласта. Градуированный песок или проппант заполняет разломы в скважине 10, чтобы сохранить разломы открытыми. После обработки гидроразрыва, операторы могут затем выполнить операцию гравийной набивки, чтобы заполнить кольцевое пространство гравием. Альтернативно, гравийная набивка и обработка гидроразрыва пласта могут быть выполнены в одно и то же время.

[0061] В конструкции ГРП с установкой гравийного фильтра, раскрытая система 200 может доставить раствор для ГРП и гравийную суспензию через несколько перфорированных кожухов 230A-B в кольцевое пространство вокруг секций фильтров 240A-B. Диспергирование раствора для ГРП и суспензии через несколько окон 232А-B может обеспечить более равномерное распределение через большую площадь. Для части процесса гидроразрыва пласта, раствор для ГРП может выйти из нижнего перфорированного кожуха 230A, и буровая жидкость может пройти через секцию фильтра 240B, примыкающую к кольцевому пространству обсадной трубы до тех пор, пока разлом не будет выполнен. После этого внутренняя рабочая колонна 210 может быть перемещена в верхний перфорированный кожух 230B так, что гравийная суспензия может протекать через шунты 250 и/или 260 для гравийной набивки кольцевого пространства. Может быть сделан обратный процесс, в котором раствор для ГРП может выйти в верхний кожух 230B, так что гравийная набивка может быть сделана в первую очередь в нижнем кожухе 230A с использованием гравийной набивки от носка к пятке.

[0062] При использовании для ГРП/гравийной набивки, система 200 может уменьшить шансы прилипания. Поскольку система 200 может иметь меньшую объемную область вокруг точек выхода, может быть меньше шансов для прилипания проппанта вокруг окон гравийной набивки 212. Так как суспензия выходит рядом с концом внутренней рабочей колонны 210, только короткий участок трубы должен быть протянут вверх через остаток суспензии или обезвоженного песка, которые могут быть оставлены. Если происходит прилипание вокруг окон гравийной набивки 212, во внутреннюю рабочую колонну 210 может быть встроен разъединитель, работающий на срез (не показан) так, что нижняя часть внутренней рабочей колонны 210 может быть отсоединена от верхней части внутренней рабочей колонны 210. Этот позволит внутренней рабочей колонне 210 последующее перемещение.

[0063] Расширяя до универсальности раскрытую систему, фиг. 7 показывает систему 300, сегментированную несколькими разделенными на блоки обособленными зонами. Опять же, система 300 может быть использована для обработок пласта, таких как процессы ГРП, процесс ГРП с установкой гравийного фильтра, процессы гравийной набивки или другие процессы. Система 300 включает в себя производственную колонну или хвостовик 325 (например, трубчатую конструкцию или корпус) и включает в себя внутреннюю рабочую колонну 310. Хвостовик 325 простирается в скважине 10 от пакера хвостовика 14, который удерживается в обсадной трубе 12. Опять же, эта скважина 10 может быть горизонтальной или отклоненной необсаженной скважиной.

[0064] Хвостовик 325 имеет несколько секций гравийной набивки 302А-С, разделенных пакерами 360/370. Пакеры 360/370 и секции гравийной набивки 302A-C развернуты в скважине в один рейс. Один пакер 360/370 или сочетание пакеров 360/370 может быть использован, чтобы изолировать секции гравийной набивки 302A-C друг от друга. Могут быть использованы любые подходящие пакеры, и они могут, например, включать в себя гидравлические или гидростатические пакеры 360 и набухающие пакеры 370. Каждый из этих пакеров 360/370 может быть использован в сочетании друг с другом, как показано, или пакеры 360 или 370 могут быть использованы отдельно.

[0065] Гидравлические пакеры 360 обеспечивают более оперативную изоляцию зоны при установке в скважине 10, чтобы остановить продвижение процессов гравийной набивки в изолированных зонах. Со своей стороны, набухающие пакеры 370, могут быть использованы для долгосрочной изоляции зоны. Гидравлические пакеры 360 могут быть установлены гидравлически с внутренней рабочей колонны 310 и их конструкции уплотнения 314, или пакеры 360 могут быть установлены с помощью кулачковых муфт (не показаны) в пакерах 360 с толкателями (не показаны) на внутренней рабочей колонне 310.

[0066] Каждая секция гравийной набивки 302A-C может быть похожа на сборный узел 200, как обсуждалось выше на фиг. 2А-6В. Таким образом, каждая секция гравийной набивки 302A-C имеет два фильтра 340A-B, устройства альтернативного пути или шунты 350 и окна 332A-B и может иметь перфорированные кожухи и другие компоненты, обсуждаемые ранее. Далее, внутренняя рабочая колонна 310 развертывается в первой секции гравийного фильтра 302A и выполняет промывку выпускных окон колонны 312, изолирует своими прокладками 314 нижние расходные окна 332A для гравийной упаковки и/или ГРП первой секции гравийной набивки 302A. Затем внутренняя рабочая колонна 310 может быть перемещена таким образом, чтобы выпускные окна 312 изолировались с верхними проточными окнами 332В, соединенными с шунтами 350, чтобы заполнить кольцевое пространство вокруг нижнего конца первой секции грави