Способ и устройство обратной связи для кооперативной многоточечной связи в системе связи

Иллюстрации

Показать все

Изобретение относится к системе сотовой мобильной связи и предназначено для обеспечения эффективного формирования обратной связи посредством кооперативной многоточечной передачи (СоМР). Способ обратной связи для СоМР связи в системе связи включает в себя этапы, на которых проверяют число распределений обратной связи, настроенных сигнализацией управления радиоресурсами (RRC), определяют число битов указателя апериодической обратной связи на основании проверенного числа распределений обратной связи, принимают управляющую информация нисходящей линии связи (DCI), включающую в себя указатель апериодической обратной связи, представляют указатель апериодической обратной связи на основании определенного числа битов указателя апериодической обратной связи и осуществляют апериодическую обратную связь по меньшей мере одного распределения обратной связи на основании указателя апериодической обратной связи. 4 н. и 10 з.п. ф-лы, 16 ил., 125 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к системе сотовой мобильной связи и, в частности, к способу и устройству для формирования сигнала обратной связи для поддержки передачи по нисходящей линии связи оборудования (UE) пользователя посредством множества базовых станций (BS или Узлов B).

УРОВЕНЬ ТЕХНИКИ

С момента ранней стадии обеспечения только голосовых услуг, системы мобильной связи развились в высокоскоростные и высококачественные беспроводные системы связи пакетных данных, которые обеспечивают услуги данных и мультимедиа. В последнее время для поддержки услуг высокоскоростной и высококачественной беспроводной передачи пакетных данных были разработаны различные стандарты мобильной связи, например, Высокоскоростной пакетный доступ (HSDPA) по нисходящей линии связи Партнерского проекта (3GPP) третьего поколения, Высокоскоростной пакетный доступ (HSUPA) по восходящей линии связи, Долгосрочное развитие (LTE), Усовершенствованное долгосрочное развитие (LTE-А), Высокоскоростные пакетные данные (HRPD) 3GPP2, 802.16 Института (IEEE) инженеров по электротехнике и электронике, и так далее.

Система LTE была разработана для эффективной поддержки высокоскоростной беспроводной передачи пакетных данных, и она максимизирует пропускную способность беспроводной системы посредством использования различных способов беспроводного соединения. Система LTE-A, то есть беспроводная система, усовершенствованная из системы LTE, улучшила способность передачи данных по сравнению с системой LTE.

Существующие системы беспроводной связи пакетных данных третьего поколения, например, HSDPA, HSUPA, HRPD и так далее, используют схему Адаптивной модуляции и кодирования (AMC) и схему каналозависимого планирования для улучшения эффективности передачи. При использовании схемы АМС, передатчик может устанавливать количество данных для передачи в соответствии с состоянием канала. АМС и каналозависимое планирование применяют подходящую модуляцию и кодирование в самое эффективное время, определяемое на основании частичной информации канала, переданной по обратной связи от приемника.

В системе беспроводной связи пакетных данных с применением АМС, передатчик может устанавливать количество данных передачи в соответствии с состоянием канала. Например, при плохих состояниях канала, передатчик может сократить количество данных передачи, чтобы установить вероятность ошибки приема на требуемом уровне; а при хороших состояниях канала передатчик может увеличить количество данных передачи, чтобы установить вероятность ошибки приема на требуемом уровне и эффективно передать большое количество информации.

В системе беспроводной связи передачи пакетных данных, в которой применяется управление ресурсами с каналозависимым планированием, передатчик выборочно обслуживает пользователя, имеющего лучшее состояние канала среди нескольких пользователей, тем самым вкладывая в увеличение пропускной способности системы, по сравнению с передатчиком, который просто распределяет канал одному пользователю и затем обслуживает соответствующего пользователя. Такое увеличение пропускной способности системы называют «многопользовательский коэффициент усиления при разнесенном приеме».

АМС, при использовании совместно со схемой передачи со множеством входов и множеством выходов (MIMO), может определять число пространственных уровней или ранг для сигнала передачи. В этом случае, система беспроводной связи пакетных данных с применением АМС при определении оптимальной скорости данных учитывает скорость кода, схему модуляции и число уровней, через которые должен быть передан сигнал посредством MIMO.

В основном, система сотовой мобильной связи образована посредством создания множества ячеек в ограниченном участке. В каждой ячейке, оборудование Узла B предоставляет услугу мобильной связи для UE в ячейке. Когда услуга мобильной связи независимо обеспечена в каждой ячейке по отдельности, опорный сигнал (RS) для оценки канала передается для UE в каждую ячейку, чтобы измерить состояние канала нисходящей линии (DL) связи для каждой ячейки.

В системе 3GPP LTE-A, UE измеряет состояние канала между узлом В и им самим, используя опорный сигнал (CSI-RS) информации состояния канала, переданный от Узла В.

Однако традиционный способ обратной связи учитывает только обратную связь CSI одного Узла B, то есть одну точку передачи, передаваемую конкретному UE.

В системе сотовой мобильной связи, для UE, расположенного на краю ячейки, смежные ячейки сотрудничают друг с другом для передачи данных посредством кооперативной многоточечной (CoMP) передачи, также упрощенно называемой «CoMP». Следовательно, при CoMP передаче, учитывающей одновременные передачи из различных точек передачи, требуется способ обратной связи для множества CSI.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Техническая задача

Настоящее изобретение предназначено для решения вышеуказанных задач и устранения недостатков уровня техники и для обеспечения по меньшей мере преимуществ, описанных далее.

Соответственно, одним аспектом настоящего изобретения является обеспечение эффективного способа формирования обратной связи посредством CoMP передачи в системе беспроводной связи.

Другим аспектом настоящего изобретения является обеспечение устройства эффективного формирования обратной связи посредством CoMP передачи в системе беспроводной связи.

Другим аспектом настоящего изобретения является обеспечение способа и устройства детальной обратной связи для сценария обратной связи множества CSI.

Решение задачи

В соответствии с аспектом настоящего изобретения, предложен способ обратной связи для СоМР связи в системе связи. Способ обратной связи включает в себя этапы, на которых проверяют число распределений обратной связи посредством сигнализации управления (RRC) радиоресурсами; определяют число битов указателя апериодической обратной связи на основании проверенного числа распределений обратной связи; принимают управляющую информацию (DCI) нисходящей линии связи, включающую в себя указатель апериодической обратной связи; представляют указатель апериодической обратной связи на основании определенного числа битов указателя апериодической обратной связи; и осуществляют апериодическую обратную связь по меньшей мере одного распределения обратной связи на основании указателя апериодической обратной связи.

В соответствии с другим аспектом настоящего изобретения, предложен способ обратной связи для СоМР связи в системе связи. Способ обратной связи включает в себя этапы, на которых проверяют число распределений обратной связи, настроенных посредством сигнализации управления (RRC) радиоресурсами; определяют число битов указателя апериодической обратной связи на основании проверенного числа распределений обратной связи; передают на оборудование (UE) пользователя управляющую информацию (DCI) нисходящей линии связи, включающую в себя указатель апериодической обратной связи, сформированный посредством определенного числа битов; и принимают от UE по меньшей мере одну апериодическую обратную связь на основании указателя апериодической обратной связи.

В соответствии с другим аспектом настоящего изобретения, предложено устройство UE осуществления обратной связи для СоМР связи в системе связи. Устройство UE включает в себя контроллер, который проверяет число распределений обратной связи, настроенных посредством сигнализации управления (RRC) радиоресурсами; определяет число битов указателя апериодической обратной связи на основании проверенного числа распределений обратной связи; и представляет указатель апериодической обратной связи на основании определенного числа битов указателя апериодической обратной связи; и приемо-передатчик, который принимает управляющую информацию (DCI) нисходящей линии связи, включающую в себя указатель апериодической обратной связи, и осуществляет апериодическую обратную связь на основании указателя апериодической обратной связи.

В соответствии с другим аспектом настоящего изобретения, обеспечено сетевое устройство для осуществления обратной связи для СоМР связи в системе связи. Сетевое устройство включает в себя контроллер, который проверяет число распределений обратной связи, настроенных посредством сигнализации управления (RRC) радиоресурсами; определяет число битов указателя апериодической обратной связи на основании проверенного числа распределений обратной связи; и формирует управляющую информацию (DCI) нисходящей линии связи, включающую в себя указатель апериодической обратной связи; и приемо-передатчик, который передает DCI на оборудование (UE) пользователя и принимает по меньшей мере одну апериодическую обратную связь от UE на основании указателя апериодической обратной связи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеуказанные и другие аспекты, характеристики и преимущества конкретных вариантов осуществления настоящего изобретения будут более очевидны из последующего детального описания, рассматриваемого совместно с сопровождающими чертежами, на которых:

Фиг. 1 изображает традиционную систему сотовой мобильной связи, в которой антенна передачи/приема расположена в центре каждой ячейки;

Фиг. 2 изображает положение традиционного CSI-RS, который Узел B передает UE в системе LTE-A;

Фиг. 3 изображает пример традиционного графика времени обратной связи UE в режиме 1-0 или 1-1 обратной связи в системе LTE-A;

Фиг. 4 изображает пример традиционного графика времени обратной связи UE в режиме 2-0 или 2-1 обратной связи в системе LTE-A;

Фиг. 5 изображает другой пример традиционного графика времени обратной связи UE в режиме 2-0 или 2-1 обратной связи в системе LTE-A;

Фиг. 6 изображает другой пример традиционного графика времени обратной связи UE в режиме 2-0 или 2-1 обратной связи в системе LTE-A;

Фиг. 7 изображает систему сотовой мобильной связи в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 8 является диаграммой, показывающей положение CSI-RS, который Узел B передает UE, в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 9 является блок-схемой, изображающей способ определения числа битов указателя апериодической обратной связи в случае только CoMP, в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 10 является блок-схемой, изображающей способ определения числа битов указателя апериодической обратной связи, когда учитываются одновременно CoMP и СА, в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 11-13 изображают примеры формата DCI, в соответствии с вариантами осуществления настоящего изобретения;

Фиг. 14 является блок-схемой, изображающей способ UE, у которого запрошено осуществление обратной связи CSI для СоМР, в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 15 является структурной схемой, изображающей UE, в соответствии с вариантом осуществления настоящего изобретения; и

Фиг. 16 является структурной схемой, изображающей центральное устройство управления, в соответствии с вариантом осуществления настоящего изобретения.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Различные варианты осуществления настоящего изобретения будут описаны подробно со ссылкой на сопровождающие чертежи. В последующем описании, конкретные детали, как, например, подробная конфигурация и компоненты, предусмотрены, чтобы помочь только общему пониманию этих вариантов осуществления настоящего изобретения. Следовательно, специалистам в данной области техники будет очевидно, что различные изменения и модификации вариантов осуществления, описанные в настоящем документе, могут быть сделаны без отступления от объема и сущности настоящего изобретения. Дополнительно, описания хорошо известных функций и конструкций опущены для ясности и краткости.

Хотя различные варианты осуществления настоящего изобретения будут описаны далее со ссылкой на систему беспроводной связи, основанную на мультиплексировании (OFDM) с ортогональным частотным разделением, то есть 3GPP стандарте универсального наземного радиодоступа (EUTRA), настоящее изобретение равно применимо к другим системам связи, имеющим подобный технический фон и формат канала, с небольшой модификацией, без отступления от объема настоящего изобретения.

Схема множественного доступа (OFDM) с ортогональным частотным разделением улучшает пропускную способность системы по сравнению со схемой множественного доступа (CDMA) с кодовым разделением. Одна причина, по которой схема OFDMA повышает пропускную способность, заключается в том, что схема OFDMA может выполнять планирование в области частот, то есть планирование области частот. Соответственно, огромное количество исследований было проделано для преобразования CDMA, которая является схемой множественного доступа, используемой во втором поколении и третьем поколении систем мобильной связи, в OFDMA системы следующего поколения. Например, 3GPP и 3GPP2 начали стандартизацию улучшенных систем посредством OFDMA.

Фиг. 1 изображает традиционную систему сотовой мобильной связи, в которой антенна передачи/приема расположена в центре каждой ячейки. В системе сотовой мобильной связи, сформированной из множества ячеек, UE обеспечено услугой мобильной связи посредством различных вышеописанных способов из выбранной ячейки во время полустатического периода.

Со ссылкой на Фиг. 1, система сотовой мобильной связи включает в себя три ячейки 100, 110 и 120. Ячейка 100 обеспечивает услугу мобильной связи UE 101 и UE 102, которые расположены в ячейке 100. Ячейка 110 обеспечивает услугу мобильной связи UE 111, и ячейка 120 обеспечивает услугу мобильной связи UE 121.

Как изображено на Фиг. 1, UE 102 расположено от антенны 130 ячейки 100 дальше, чем UE 101. Следовательно, UE 102, вероятно, подвергается помехам, вызванным антенной ячейки 120, так что скорость передачи данных, поддерживаемая ячейкой 100, относительно низкая.

Ячейки 100, 110 и 120 передают RS для оценки канала, чтобы позволить UE 101, 102, 111 и 121 измерить состояние канала нисходящей линии связи для каждой соответственной ячейки. В частности, в системе 3GPP LTE-A, UE 101, 102, 111 и 121 измеряют состояние канала между множеством Узлов B (или улучшенных Узлов B (eNBs)) и ними самими, посредством CSI-RS, передаваемых Узлами B ячеек 100, 110 и 120. CSI-RS соответствуют заранее заданным положениям в пространствах ресурсов, используемых для передачи Узлами B, и эти положения известны UE 101, 102, 111 и 121.

Фиг. 2 изображает положение традиционного CSI-RS, который Узел B передает UE в системе LTE-A.

Со ссылкой на Фиг. 2, в пространстве ресурсов заранее заданного размера, RS размещены по временным и частотным блокам, определенным в соответствии с заранее заданным шаблоном. Блоки 200-219 ресурсов могут включать в себя по меньшей мере один символ OFDM и по меньшей мере одну поднесущую, и могут передавать два сигнала для портов антенны CSI-RS в каждом положении. Например, Узел B передает UE два CSI-RS для измерения нисходящей линии связи в положении 200. В системе сотовой мобильной связи, сформированной из множества ячеек, CSI-RS распределены по различным положениям для различных ячеек.

Например, ячейка 100, как изображено на Фиг. 1, передает CSI-RS в положении 200, ячейка 110 передает CSI-RS в положении 205, и ячейка 120 передает CSI-RS в положении 210. Соответственно, посредством распределения временно-частотных ресурсов для передачи CSI-RS в различных положениях для соответственных различных ячеек, CSI-RS различных ячеек не пересекаются друг с другом.

UE оценивает канал нисходящей линии связи посредством CSI-RS, формирует, в качестве информации канала для оцененного канала, информацию обратной связи, например, указатель (RI) ранга, указатель (CQI) качества канала, указатель (PMI) матрицы предварительного кодирования и так далее, и выполняет обратную связь с BS. UE может выполнять периодическую обратную связь по физическому управляющему каналу восходящей линии связи (PUCCH), и периодическая обратная связь может выполняться в одном из четырех режимов обратной связи:

1. Режим 1-0: RI, широкополосный CQI (wCQI)

2. Режим 1-1: wCQI, широкополосный PMI (wPMI)

3. Режим 2-0: RI, wCQI, wPMI, подполосный PMI (sCQI)

4. Режим 2-1: wCQI, wPMI, sCQI, sPMI

График времени обратной связи индивидуальной информации, в зависимости от четырех режимов обратной связи, определяется параметрами Npd, NOFFSET,CQI, MRI, NOFFSET,RI и так далее, направленных посредством сигнала верхнего уровня. В режиме 1-0 обратной связи период передачи wCQI является подкадрами Npd, и его график времени обратной связи определяется посредством отклонения подкадра NOFFSET,CQI. Период передачи RI равен Npd×MRI, и отклонение подкадра для определения графика времени обратной связи RI определяется посредством NOFFSET,CQI+NOFFSET,RI.

Фиг. 3 изображает пример традиционного графика времени обратной связи UE в режиме 1-0 или 1-1 в системе LTE-A.

Со ссылкой на Фиг. 3, изображены графики времени обратной связи RI и wCQI для Npd=2, MRI=2, NOFFSET,CQI=1, и NOFFSET,RI=1. Здесь, каждый график времени указан индексом подкадра. То есть, RI передается в подкадрах 0, 4, 8, …, а wCQI передается в подкадрах 1, 3, 5, 7, … Режим 1-1 имеет такой же график времени обратной связи, что и режим 1-0, но в отличие от режима 1-0 обратной связи, PMI также передается по графику времени передачи wCQI.

В режиме 2-0 обратной связи, интервал обратной связи sCQI равен Npd, и его отклонение равно NOFFSET,CQI. Интервал обратной связи wCQI равен H×Npd, и его отклонение равно NOFFSET,CQI, что равно отклонению sCQI. Здесь, Н=J×K+1, где K - значение, переданное посредством сигнализации верхнего уровня, а J - значение, определенное в соответствии с пропускной способностью системы. Например, значение J для системы 10 МГц задано как равное 3. Наконец, wCQI передается в положение sCQI один раз за H передач sCQI. Период RI равен MRI×H×Npd, и его отклонение равно NOFFSET,CQI+NOFFSET,RI.

Фиг. 4 изображает пример традиционного графика времени обратной связи UE в режиме 2-0 или 2-1.

Со ссылкой на Фиг. 4, изображены графики времени обратной связи RI, sCQI и wCQI для Npd=2, MRI=2, J=3 (10 МГц), NOFFSET,CQI=1, и NOFFSET,RI=1. В данном примере, RI передается в подкадрах 0, 16, …, а sCQI передается в подкадрах 3, 5, 7, 11, …, и wCQI (совместно с PMI) передается в подкадрах 1, 9, 17, … Режим 2-1 обратной связи имеет такой же график времени обратной связи, что и режим 2-0, PMI также передается по графику времени передачи wCQI.

Вышеописанный график времени обратной связи связан менее с чем 4 портами антенны CSI-RS.

Когда используют 8 портов антенны CSI-RS, два типа PMI передаются по каналу обратной связи. Для 8 портов антенны CSI-RS, режим 1-1 разделен на два подрежима. В первом подрежиме, первый PMI передается вместе с RI, а второй PMI передается вместе с wCQI. Здесь, интервалы обратной связи и отклонения wCQI и второй PMI определены как Npd и NOFFSET,CQI, а интервалы обратной связи и отклонения RI и первый PMI определены как MRI×Npd и NOFFSET,CQI+NOFFSET,RI. С другой стороны, во втором подрежиме, RI передается индивидуально и первый PMI передается вместе со вторым PMI и wCQI. Здесь, интервалы обратной связи и отклонения wCQI, первый PMI, и второй PMI определены как Npd и NOFFSET,CQI, и интервал обратной связи и отклонение RI определены как MRI×Npd и NOFFSET,CQI+NOFFSET,RI.

Режим 2-1 для 8 портов антенны CSI-RS дополнительно включает в себя указатель (PTI) типа предварительного кодирования, который передается по каналу обратной связи вместе с RI, и интервал обратной связи PTI определен как MRI×H×Npd, а его отклонение определено как NOFFSET,CQI+NOFFSET,RI.

Для PTI=0, первый PMI, второй PMI и wCQI передаются по каналу обратной связи, а wCQI, второй PMI передаются вместе по одному графику времени. Интервалы обратной связи wCQI и второй PMI равны Npd, а их отклонения равны NOFFSET,CQI. Интервал обратной связи первого PMI равен H′×Npd, а его отклонение равно NOFFSET,CQI. Здесь, H′ передается посредством сигнализации верхнего уровня.

Для PTI=1, PТI и RI передаются вместе, wCQI и второй PMI передаются вместе, и sCQI дополнительно передается по каналу обратной связи. Первый PMI не передается. Интервалы обратной связи и отклонения PTI и RI те же, что и для PTI=0. Интервал обратной связи sCQI равен Npd, а его отклонение равно NOFFSET,CQI. wCQI и второй PMI передаются по каналу обратной связи с периодом H×Npd и отклонением NOFFSET,CQI. Здесь, Н определяется так же, как и в случае, когда число портов антенны CSI-RS равно 4.

Фиг. 5 и 6 изображают примеры традиционных графиков времени обратной связи UE в режиме 2-0 или 2-1, когда Npd=2, MRI=2, J=3 (10МГц), K=1, H′=3, NOFFSET,CQI=1, и NOFFSET,RI=-1. В частности, изображены графики времени обратной связи для PTI=0 и PTI=1.

Со ссылкой на Фиг. 5, RI и PTI передаются в подкадрах 0, 16,…; первый PMI передается в подкадрах 1, 7, 13, …; и второй PMI и wCQI передаются в подкадрах 3, 5, 9, 11, …

Со ссылкой на Фиг. 6, RI и PTI передаются в подкадрах 0, 16,…; второй PMI и wCQI передаются в подкадрах 1, 9, 17, …; и второй PMI и sCQI передаются в подкадрах 3, 5, 7, 11, …

Информация канала нисходящей линии связи, оцененная посредством CSI-RS, может быть направлена от Узла B UE посредством апериодической обратной связи по физическому каналу (PUSCH) восходящей линии связи совместного использования. Когда Узел B желает получить информацию апериодической обратной связи конкретного UE, Узел B может настраивать указатель апериодической обратной связи, включенный в управляющую информацию (DCI), передаваемую по нисходящей линии связи, для планирования данных UE, передаваемых по восходящей линии (UL) связи, чтобы указать апериодическую обратную связь и передать указатель настройки апериодической обратной связи UE. Приняв указатель апериодической обратной связи от подкадра #n, UE включает информацию апериодической обратной связи в UL передачу данных в подкадр #(n+k). Здесь, k является заранее заданным параметром, например, 4 в дуплексной связи (FDD) с частотным разделением, и может быть определено в соответствии с числом подкадра, n, в дуплексной связи (TDD) с временным разделением, как показано в таблице 1 ниже.

Таблица 1
Конфигурации TTD UL/DL Подкадр номер n
0 1 2 3 4 5 6 7 8 9
0 - - 6 7 4 - - 6 7 4
1 - - 6 4 - - - 6 4 -
2 - - 4 - - - - 4 - -
3 - - 4 4 4 - - - - -
4 - - 4 4 - - - - - -
5 - - 4 - - - - - - -
6 - - 7 7 5 - - 7 7 -

В таблице 1, конфигурация TDD UL/DL определяет положения подкадров UL и подкадров DL в кадре TDD. Например, конфигурация TDD UL/DL #0 может указывать, что подкадры 2, 3, 4, 7 и 8 являются подкадрами UL.

Указатель апериодической обратной связи включен в формат UL DCI 0 или формат DCI 4 и может быть определен одним или двумя битами. Для указателя апериодической обратной связи в один бит, если он установлен на «Включено», UE направляет информацию канала, в зависимости от «обслуживающей ячейки с», Узлу B посредством апериодической обратной связи PUSCH. Здесь, «обслуживающая ячейка с» представляет собой по меньшей мере одну несущую (СС) компонентов DL, в которой DCI передает в случае агрегирования (СА) несущих. В соответствии с уровнем агрегирования, одна или несколько поднесущих могут быть распределены в качестве поискового пространства для передачи DCI. UE контролирует поисковое пространство, определенное как поисковое пространство, в котором DCI может быть передан для попытки обнаружить DCI.

Однако, для указателя апериодической обратной связи двух битов, UE может осуществлять апериодическую обратную связь, как определено в таблице 2 ниже.

Таблица 2
Значение поля запроса CSI Описание
′00′ Никакой апериодический отчет CSI не запущен
′01′ Апериодический отчет CSI запущен для обслуживающей ячейки с
′10′ Апериодический отчет CSI запущен для первого набора обслуживающих ячеек, настроенного верхними уровнями
′11′ Апериодический отчет CSI запущен для второго набора обслуживающих ячеек, настроенного верхними уровнями

В таблице 2, «обслуживающая ячейка с» относится к DL CC, связанной с UL CC, указанной полем (CIF) индикации несущей, включенным в DCI для планирования UL. Приняв указатель апериодической обратной связи, настроенный на ′01′, UE передает информацию обратной связи DL CC, связанную с UL CC, в UL CC, указанной CIF.

Приняв указатель апериодической обратной связи, настроенный на ′10′ или ′11′, UE передает информацию обратной связи в UL CC, указанной CIF, в зависимости от DL CC, настроенной верхним уровнем. Отчет CSI является отчетом обратной связи одного или нескольких распределений обратной связи или процесса CSI.

Когда апериодическая обратная связь настроена, информация обратной связи для каждой СС включает в себя RI, PMI и CQI, как и в периодической обратной связи, и, соответственно, конфигурации обратной связи, RI и PMI могут опционально передаваться по обратной связи. CQI может включать в себя wCQI и sCQI или может включать в себя только wCQI.

Как описано выше, в системе сотовой мобильной связи, UE, расположенное на краю ячейки, часто испытывает помехи со стороны другой ячейки, и, таким образом, имеет ограничения в поддержке высокой скорости передачи данных.

В частности, высокая скорость передачи данных, обеспеченная UE в ячейке, сильно зависит от положения UE в этой ячейке. Таким образом, в традиционной системе сотовой мобильной связи, UE, расположенное ближе к центру ячейки, может быть обеспечено более высокой скоростью передачи данных, чем UE, расположенное дальше от центра ячейки. По сравнению с традиционной системой, в которой UE поддерживается услугой только полустатически определенной ячейки, разработана система CoMP. Система СоМР передает данные посредством кооперации множества ячеек, чтобы поддержать UE, расположенное на краю ячейки, тем самым обеспечивая дополнительную улучшенную услугу мобильной связи.

UE, расположенное на краю ячейки в системе СоМР, может динамически определять ячейку, из которой должны быть получены данные. Несколько ячеек, определенных как источники больших помех, могут отключить свое питание, чтобы помочь UE, расположенным на краях соседних ячеек. Дополнительно, несколько ячеек могут одновременно передавать информацию UE, расположенному на краю ячейки, улучшая, таким образом, скорость приема информации UE. В результате, все UE в системе сотовой мобильной связи могут равным образом достичь высокой скорости передачи данных, независимо от их положений в соответствующих ячейках.

Варианты осуществления настоящего изобретения, описанные ниже, обеспечивают обратную связь, учитывая схему динамического выбора (DS) ячейки, схему DS с динамическим подавлением (DS/DB), и схему совместной передачи (JT) в системе СоМР.

В схеме DS, как только UE измерило состояние канала в ячейке и направило обратную связь, в зависимости от состояния канала ячейки, Узлу В, Узел В динамически выбирает ячейку для передачи UE данных DL и передает данные на UE.

В схеме DS/DB, конкретная ячейка не выполняет свою передачу данных, чтобы сократить помехи, оказанные на другую ячейку.

В схеме JT множество ячеек одновременно передают данные конкретному UE.

Фиг. 7 изображает систему сотовой мобильной связи, в соответствии с вариантом осуществления настоящего изобретения.

Со ссылкой на Фиг. 7, система сотовой мобильной связи включает в себя три ячейки 700, 710 и 720. Здесь, «ячейка» относится к пространству передачи данных, которое может быть обслужено конкретной точкой передачи (например, Узлом В), и каждая точка передачи может быть выносной радио головкой (RRH), имеющей идентификатор (ID) ячейки, который характерен для макро-Узла В в макро-пространстве, или может быть макро- или пико-ячейкой, имеющей другой уникальный идентификатор ID ячейки.

Здесь, когда точка передачи является RRH, имеющей ID ячейки, характерной для макро-Узла В, макро-Узел В может называться центральным устройством управления. Когда каждая точка передачи является макро- или пико-ячейкой, имеющей другой ID ячейки, устройство для интегрального управления соответствующими ячейками может также называться центральным устройством управления. В основном, центральное устройство управления передает и принимает данные от UE и обрабатывает переданные/принятые данные.

Со ссылкой на Фиг. 7, UE 710, 711, 721 принимают данные от их одной соответствующей ближайшей ячейки, и UE 702 принимает передачу СоМР от ячеек 700, 710 и 720. Центральное устройство 730 управления, включающее в себя Узел В или отдельный элемент, управляет планированием и распределением ресурсов для ячеек 700, 710 и 720.

Не-СоМР UE 701, 711 и 721, которые принимают данные от их одной соответствующей ближайшей ячейки, соответственно, оценивают каналы от CSI-RS для ячеек, в которых расположены UE 701, 711 и 721, и передают по обратной связи CSI центральному устройству 730 управления посредством соответствующих ячеек 700, 710 и 720.

UE 702, которое принимает данные, используя схему СоМР, от трех ячеек 700, 710 и 720, оценивает каналы от ячеек 700, 710 и 720. Таким образом, для оценки канала, выполненной UE 702, центральное устройство 730 управления распределяет три ресурса CSI-RS UE 720, соответствующих трем ячейкам 700, 710 и 720, которые участвуют в передаче СоМР.

Фиг. 8 изображает положение CSI-RS, который Узел В передает UE, в соответствии с вариантом осуществления настоящего изобретения.

Со ссылкой на Фиг. 8, центральное устройство 730 управления распределяет три сигнала CSI-RS трем элементам 801, 802 и 803 ресурсов, чтобы позволить UE 702 принимать передачи СоМР для оценки каналов от трех ячеек 700, 710 и 720, и передает CSI-RS, используя распределенные элементы 801, 802 и 803 ресурсов.

В частности, CSI-RS для оценки канала ячейки 700 распределен на элемент 801 ресурсов, CSI-RS для оценки канала ячейки 710 распределен на элемент 802 ресурсов, и CSI-RS для оценки канала ячейки 720 распределен на элемент 803 ресурсов. Набор элементов ресурсов, которым передается по меньшей мере один CSI-RS, для оценки канала СоМР UE, или набор ячеек, соответствующих ресурсам CSI-RS, называют набором измерений.

Альтернативно, центральное устройство 730 управления может распределить дополнительный ресурс для измерения помех в UE 702.

Количество данных, которое UE может принять за раз, зависит от амплитуды помех, а также от интенсивности сигнала. Следовательно, центральное устройство 730 управления может раздельно распределять ресурсы (IMR) измерения помех, с которыми UE 702 может измерить помехи более точно. Например, центральное устройство 730 управления распределяет один IMR одному UE, чтобы позволить UE измерить количество помех, совместно примененных к компонентам сигнала для всех CSI-RS в наборе измерений, или распределяет несколько IMR одному UE, чтобы позволить UE измерить различные ситуации помех.

Со ссылкой на Фиг. 8, UE измеряет сигналы от трех ячеек 700, 710 и 720, используя три распределенных элемента 801, 802 и 803 ресурсов CSI-RS, и измеряет помехи, сформированные при приеме сигналов от трех ячеек 700, 710 и 720, посредством IMR 810. Центральное устройство 730 управления управляет передачей сигнала соседних ячеек в IMR 810, чтобы хорошо отразить в IMR 810 помехи по отношению к UE 702.

Здесь и далее, будет сделано описание функционирования Узла В (или центрального устройства управления) для указания одного или нескольких распределений обратной связи, которые будут сформированы UE, и функционирования UE для формирования и передачи указанной обратной связи, когда UE не распределен с IMR.

Поддержка DL CoMP вводит новую обратную связь CSI для различных схем СоМР. Так как традиционная обратная связь CSI учитывает только один TP и один опорный сигнал CSI для измерения канала и отчета обратной связи CSI, то при традиционной обратной связи CSI невозможно поддерживать схемы СоМР для множества ТР, которые используют множество опорных сигналов CSI. Соответственно, дополнительная обратная связь CSI для множества ТР (или обратная связь CSI для соответствующих конфигураций CSI-RS) требуется для поддержки схем DL CoMP.

Обратная связь для схем СоМР может быть классифицирована как множество отчетов CSI для множества ТР, дополнительная обратная связь для DS/DB и дополнительная обратная связь для JT.

Для множества отчетов CSI для множества ТР, Узел В настраивает множество конфигураций CSI-RS для UE для отчетов CSI, и каждая конфигурация соответствует конкретному ТР. Случай, когда одна конфигурация CSI-RS соответствует множеству ТР, также включен. Набор множества конфигураций CSI-RS (или соответствующих ТР) для отчетов CSI определяется как набор обратной связи (или набор измерений). Каждый отчет CSI соответствует конфигурации CSI-RS для ТР.

Для дополнительной обратной связи для DS/DB, некоторые ТР (например, макро-Узлы В) могут быть выключены (подавление), чтобы способствовать приему данных, передаваемых по нисходящей линии связи, UE, закрепленным за другими ТР. По меньшей мере одно UE передает дополнительный CSI по обратной связи для подавления.

Для дополнительной обратной связи для JT, множество ТР могут одновременно передавать данные для одного UE, JT может требовать дополнительной CSI для совместной передачи от множества ТР.

Отчет CSI для СоМР может быть передан или отдельно от информации данных в PUCCH, или вместе с информацией данных в PUSCH. Следовательно, отчет CSI предоставлен для СоМР по PUSCH и PUCCH, соответственно.

Отчет CSI предоставлен для СоМР по PUSCH вследствие увеличенного размера информации CSI обратной связи. То есть, так как множество отчетов CSI требуются для СоМР, то количество обратной связи недостаточно для PUCCH, когда множество отчетов CSI передаются по обратной связи одновременно.

Другой причиной для обеспечения отчета CSI для СоМР по PUSCH является включение дополнительной обратной связи для DS/DB или JT. Эти схемы СоМР требуют обратной связи CSI для каждого ТР и также дополнительной обратной связи CSI, которая зависит от конкретного предположения помех, или которая включает в себя информацию нескольких ТР для совместной передачи от множества ТР.

Апериодический отчет CSI передается по PUSCH для множества отчетов CSI для множества TP. Апериодический отчет CSI может быть выполнен посредством повторного использования традиционного поля запроса CSI с измененным описанием или посредством увеличения размера поля запроса CSI, чтобы включить информацию обратной связи для СоМР. Новое поле запроса CSI с измененным описанием показано в таблице 3 ниже.

Таблица 3
СА СоМР CIF Запрос CSI Новый запрос CSI Описание
Нет СА Нет СоМР 0 битов 1 бит - Традиционная одноточечная передача
Нет СА СоМР 0 битов 1 бит 1+х бит Обратная связь СоМР (х>=0)
СА Нет СоМР 0/3 битов 2 бита - Традиционная одноточечная передача СА
СА СоМР 0/3 битов 2 бита 2+у битов СА+СоМР (у>=0)

Сигнализация управления (RRC) радиоресурсами от eNB к UE отправляет поле присутствия указателя конфигурации CSI-RS, указывающее, использовалось ли новое (то есть, обновленное) поле запроса CSI для обратной связи СоМР. Использовалось ли новое поле запроса CSI для обратной связи СоМР может зависеть от по меньшей мере одного из следующего: (1) число ресурсов CSI-RS с ненулевой мощностью может быть настроено eNB, (2) число предположений помех может быть настроено eNB, и (3) число конфигураций обратной связи может быть указано eNB, без вышеуказанной сигнализации RRC присутствия указателя конфигурации CSI-RS.

Сигнализация RRC может отправлять опциональное поле запуска конфигурации апериодического CSI-RS, указывающее, для какой конфигурации CSI-RS запущен апериодический отчет CSI-RS, когда настроены одна или несколько конфигураций CSI-RS. Это поле может быть определено для каждой обслуживающей ячейки (или СС).

Два различных набора от сигнализации RRC относятся к СА и СоМР. Первый набор - для СА, и каждая СС называется обслуживающей ячейкой. Например, апериодический отчет CSI запускается для первого набора обслуживающих ячеек, настроенного верхними уровнями. Другой набор - для СоМР. Отчет обратной связи CSI для каждого ТР для СоМР соответствует набору конфигураций CSI-RS для набора измерений СоМР. Например, апериодический отчет CSI запускается для первого набора конфигураций CSI-RS (в наборе измерений СОМР), настроенных верхними уровнями. В следующем примере, описание «в измерении СоМР» опущено для краткости.

Таблицы 4-7 п