Генератор газообразного аммиака для выработки аммиака для восстановления оксидов азота в отработавших газах

Иллюстрации

Показать все

Настоящее изобретение относится к генератору газообразного аммиака для выработки аммиака из предшественника аммиака и его применению для восстановления оксидов азота в отработавших газах, в частности, из промышленных установок, из двигателей внутреннего сгорания, из газовых двигателей, из дизельных двигателей или из бензиновых двигателей. Предлагаемый генератор газообразного аммиака содержит катализаторный блок, который содержит катализатор для разложения и/или гидролиза предшественников аммиака до аммиака, и расположенную выше по ходу потока от катализатора смесительную камеру, впрыскивающее устройство для подачи раствора предшественника аммиака в смесительную камеру и выпуск для образовавшегося газообразного аммиака. При этом впрыскивающее устройство содержит сопло, которое имеет теоретический угол α распыления от 10° до 90° и удаление отверстия сопла от передней поверхности катализатора составляет от 15 до 2000 мм, причем генератор имеет по меньшей мере один теплоизоляционный слой. Техническим результатом изобретения является обеспечение высокой степени превращения предшественников аммиака в газообразный аммиак. 2 н. и 12 з.п. ф-лы, 3 ил., 2 табл., 5 пр.

Реферат

Настоящее изобретение относится к генератору газообразного аммиака для выработки аммиака из предшественника аммиака и применению его в системах обработки отработавших газов для восстановления оксидов азота в отработавших газах.

В отработавших газах тепловых двигателей часто содержатся вещества, эмиссия которых в окружающую среду является нежелательной. Поэтому во многих странах устанавливаются подлежащие соблюдению предельно допустимые показатели для эмиссии таких вредных веществ, как, например, в отработавшем газе промышленных установок или автомобилей. К этим вредным веществам, наряду с рядом других вредных веществ, причисляют также оксиды азота (NOx), как в частности монооксид азота (NO) или диоксид азота (NO2).

Уменьшение эмиссии этих оксидов азота из отработавших газов двигателей внутреннего сгорания может достигаться разными путями. В качестве примера на этом этапе изложения следует указать на восстановление посредством дополнительных мероприятий по обработке отработавших газов, которые основываются, в частности, на селективном каталитическом восстановлении (selective catalytic reduction - SCR). Общим для этих методов является то, что в отработавший газ вводится действующий селективно на оксиды азота восстановитель, вследствие чего в присутствии соответствующего катализатора (SCR-катализатор) происходит превращение оксидов азота. При этом оксиды азота превращаются в менее вредные для окружающей среды вещества, как например азот и воду.

Уже используемым в настоящее время восстановителем для оксидов азота является мочевина (H2N-CO-NH2), которая вводится в отработавший газ в форме ее водного раствора. При этом мочевина в потоке отработавшего газа может разлагаться до аммиака (NH3), например, в результате воздействия теплоты (термолиз) и/или вследствие реакции с водой (гидролиз). Образовавшийся таким путем аммиак представляет собой непосредственно восстановитель для оксидов азота.

Разработка систем для обработки отработавших газов для автомобилей ведется с давнего времени и является предметом многочисленных публикаций. Так, например, в европейском патентном документе EP 487886 B1 описывается способ селективного каталитического восстановления NOx в содержащих кислород отработавших газах дизельных двигателей, в котором мочевину и продукты ее термолиза используют в качестве восстановителя. К тому же, описывается устройство для выработки аммиака в форме трубчатого испарителя, который включает в себя распыляющее устройство, испаритель с испарительными трубами и катализатор гидролиза.

Кроме того, в европейском патентном документе EP 1052009 B1 описываются способ и устройство для осуществления способа для термического гидролиза и дозирования мочевины или растворов мочевины в реакторе с задействованием частичного потока отработавшего газа. В данном способе из линии отработавших газов выше по ходу потока от SCR-катализатора отводится частичный поток отработавшего газа и направляется через реактор, причем обогащенный аммиаком после гидролиза в реакторе ответвленный поток также выше по ходу потока от SCR-катализатора снова возвращается в линию отработавших газов.

К тому же, европейским патентным документом EP 1338562 B1 описываются устройство и способ, который предусматривает каталитическое восстановление оксидов азота аммиаком. Аммиак при этом получают в условиях мгновенного термолиза из мочевины в твердой форме, а также гидролиза из изоциановой кислоты и вводят в поток отработавшего газа транспортного средства.

Кроме того, европейской патентной заявкой EP 1348840 A1 описывается установка для очистки отработавших газов в качестве транспортируемого как целое агрегата в форме 20-футового контейнера. Установка эксплуатируется таким образом, что раствор мочевины или аммиака впрыскивающим устройством впрыскивается непосредственно в поток отработавшего газа. Восстановление содержащихся в отработавшем газе оксидов азота происходит на SCR-катализаторе.

Кроме того, немецкой патентной заявкой DE 102006023147 A1 описывается устройство для выработки аммиака, которое является частью системы для обработки отработавшего газа.

Кроме того, международными заявками WO 2008/077587 A1 и WO 2008/077588 A1 описывается способ селективного каталитического восстановления оксидов азота в отработавших газах транспортных средств посредством водных растворов гуанидиновых солей. В способе используется реактор, который вырабатывает аммиак из водных растворов гуанидиновых солей.

Хотя генераторы газообразного аммиака известны с давних пор, все-таки до сегодняшнего дня это оборудование так и не реализовано в каком-нибудь транспортном средстве или в другой области. До сих пор рассматривалась концепция непосредственного впрыскивания предшественника аммиака в поток отработавшего газа двигателя внутреннего сгорания, причем этот предшественник аммиака посредством пригодных для этого мероприятий разлагается до непосредственно восстановителя. Вследствие неполного разложения или побочных реакций продуктов разложения в линии отработавших газов то и дело приходится, однако, наблюдать отложения, которые приводят к повреждению также находящихся в линии отработавших газов, катализаторов и фильтров.

Поэтому в основе настоящего изобретения лежит задача, предложить генератор газообразного аммиака, который преодолевает эти недостатки уровня техники. В основе настоящего изобретения лежит, кроме того, задача, предложить генератор газообразного аммиака, который имеет простое устройство, а также обеспечивает высокую степень превращения предшественников аммиака в газообразный аммиак и может длительно использоваться без технического обслуживания. К тому же, генератор газообразного аммиака должен быть универсальным в использовании, причем в нем, в частности, могут также использоваться разнообразные предшественники аммиака.

Эти задачи решаются за счет генератора газообразного аммиака согласно пункту 1.

Тем самым, согласно первому осуществлению объектом настоящего изобретения является генератор газообразного аммиака для выработки аммиака из раствора предшественника аммиака, содержащий катализаторный блок, который в свою очередь содержит катализатор для разложения и/или гидролиза предшественников аммиака до аммиака, и расположенную выше по ходу потока от катализатора смесительную камеру, при этом катализатор имеет объем Vкат, а смесительная камера объем Vсмес. Кроме того, генератор газообразного аммиака содержит впрыскивающее устройство для подачи раствора предшественника аммиака в смесительную камеру и выпуск для образовавшегося газообразного аммиака, причем впрыскивающее устройство, в свою очередь, содержит сопло, имеющее теоретический угол α распыления от 10° до 90°, а удаление отверстия сопла от передней поверхности катализатора составляет от 15 до 2000 мм.

Теперь следует отметить, что генератор газообразного аммиака согласно настоящему изобретению является отдельным агрегатом для выработки аммиака из предшественников аммиака. Такой агрегат может использоваться, например, для восстановления оксидов азота в промышленных отработавших газах или для обработки отработавших газов из двигателей внутреннего сгорания, как, например, дизельных двигателей. Этот генератор газообразного аммиака может работать автономно или же приводиться в действие с помощью ответвленных потоков отработавшего газа, причем, однако, в любом случае уменьшение содержания оксидов азота посредством аммиака происходит лишь на последующем этапе процесса. Если соответствующий изобретению генератор газообразного аммиака используется в качестве отдельного конструкционного блока установки для обработки отработавшего газа двигателя внутреннего сгорания, например дизельного двигателя, с помощью его может достигаться уменьшение содержания оксидов азота в потоке отработавших газов без размещения в самом потоке отработавших газов других катализаторов для разложения предшественников аммиака или других конструкционных блоков. Выработанный соответствующим изобретению генератором газообразного аммиака аммиак может, таким образом, направляться в поток отработавших газов по мере необходимости. Исключается также возможное уменьшение срока службы SCR-катализатора из-за загрязнителей в форме отложений, например, из предшественников аммиака или продуктов расщепления предшественников аммиака.

Согласно изобретению, таким образом, в поток отработавшего газа подается не предшественник аммиака, когда из предшественника аммиака in situ образуется аммиак, который в потоке отработавшего газа действует как восстановитель. Напротив, согласно изобретению в поток подается аммиак, который до этого выработан в отдельном агрегате, а именно в соответствующем изобретению генераторе газообразного аммиака. Согласно изобретению аммиак, следовательно, в частности образуется из предшественника аммиака заранее в генераторе газообразного аммиака как отдельном конструкционном блоке. Этот аммиак, а не предшественник аммиака, направляется затем в поток отработавшего газа, в частности, чтобы осуществить там восстановление оксидов азота.

Подача образовавшегося в соответствующем изобретению генераторе газообразного аммиака в отработавший газ происходит преимущественно в находящемся ниже по ходу потока от двигателя внутреннего сгорания месте и, в частности, в месте ниже по ходу потока от катализатора окисления. Выработанный в соответствующем изобретению генераторе газообразного аммиака аммиак подается в поток отработавшего газа, в частности, выше по ходу потока от SCR-катализатора.

Существенными для изобретения являются при этом расположение и геометрия впрыскивающего устройства и катализатора гидролиза в генераторе газообразного аммиака, причем впрыскивающее устройство, в свою очередь, содержит сопло, которое имеет теоретический угол α распыления от 10° до 90°, а удаление отверстия сопла от передней поверхности катализатора составляет от 15 до 2000 мм.

Под теоретическим углом α распыления (далее называется также углом α распыления) согласно настоящему изобретению следует понимать такой угол распыления, какой образуется при рабочем давлении на подлежащий разбрызгиванию раствор от 0,1 до 10 бар при 25°С, и при необходимости давлении распыляющего воздуха в рабочем диапазоне от 0,5 до 10 бар (у двухпоточных сопел) на выходе из отверстия сопла или отверстий сопла, без наличия газа-носителя или какого-нибудь иного влияния на распыленный раствор.

К удивлению оказалось, что только такие генераторы газообразного аммиака с соплами, имеющими теоретический угол α распыления от 10° до 90°, обеспечивают приемлемое превращение предшественников аммиака с коэффициентом AG выхода аммиака больше 95%, причем удаление отверстия сопла от передней поверхности катализатора при этом должно составлять 15-2000 мм. Отклонение в меньшую или большую сторону от подлежащих установке удалений и/или использование сопел с другими теоретическими углами распыления становятся причиной выработки лишь недостаточного общего количества аммиака в единицу времени и/или приводят к неполному превращению предшественника аммиака в аммиак и/или способствуют отложениям, образующимся из предшественника и/или продуктов его разложения или в результате реакций с его участием на внутренней стенке генератора или передней поверхности катализатора. Коэффициент AG выхода аммиака на этом этапе изложения и в последующем рассматривается как образовавшееся в рассматриваемом процессе молярное количество NH3, соотнесенное с молярным количеством аммиака, которое теоретически должно образоваться при полном гидролизе предшественника аммиака. Коэффициент AG выхода аммиака >95% согласно настоящему изобретению расценивается как полное превращение. Это, удивительным образом, наблюдалось вне зависимости от использовавшегося раствора.

Диаметр передней поверхности катализатора составляет предпочтительно по меньшей мере 30 мм, особенно по меньшей мере 100 мм и еще более предпочтительно по меньшей мере 100 мм и не более 1000 мм, более предпочтительно не более 800 мм и еще более предпочтительно не более 500 мм.

Если, например, используется сопло с углом α распыления больше 90°, и удаление меньше 15 мм, например, при диаметре передней поверхности катализатора 30 мм, то внутренняя стенка катализаторного блока излишне смачивается впрыснутым раствором, поэтому образуются отложения не превращенного предшественника аммиака и/или продуктов его разложения или реакций с его участием и внутри смесительной камеры можно наблюдать непрерывное их нарастание. Если же используется сопло, у которого угол α распыления меньше 10° и удаление превышает 2000 мм, например, при диаметре внешней поверхности катализатора 1000 мм, то впрыснутым раствором смачивается слишком малая поверхность передней поверхности катализатора, поэтому на поверхности передней поверхности катализатора образуются более крупные капли, а также может отмечаться слишком большая концентрация предшественника аммиака в расчете на единицу площади передней поверхности и наблюдаться прирост передней поверхности катализатора. В обоих экстремальных случаях можно, к тому же, отмечать лишь коэффициент выхода аммиака меньше 95%.

В идеале, т.е. чтобы добиться превращения предшественника аммиака в аммиак на уровне больше 95% и предотвратить контакт предшественника с внутренней стенкой катализаторного блока, при дозировании должны выдерживаться некоторые основополагающие соответствующие изобретению условия. Если бы предшественник покрывал и внутреннюю стенку катализаторного блока перед катализатором гидролиза, вследствие недостаточного катализируемого разложения это могло бы привести к нежелательным побочным реакциям и в итоге, следовательно, к проблематичным отложениям на этих местах. Поэтому необходимо проводить впрыскивание таким образом, чтобы при имеющейся передней поверхности катализатора диаметр конуса распыления при достижении передней поверхности катализатора составлял не более 98% диаметра катализатора. В то же время диаметр конуса распыления должен составлять по меньшей мере 80% диаметра передней поверхности катализатора, чтобы предотвратить слишком высокую концентрацию при имеющейся поверхности и, следовательно, слишком большое количество попадающего на переднюю поверхность предшественника. При слишком большом его количестве на передней поверхности катализатора контакт с катализатором бывает недостаточным, происходит слишком сильное охлаждение испаряющейся жидкостью и, следовательно, также неполное превращение и нежелательные побочные реакции в сочетании с отложениями. Согласно изобретению этим обусловлены подлежащие соблюдению комбинации из угла α распыления сопла и удаления отверстия сопла от имеющейся передней поверхности катализатора.

Тем самым, согласно другому аспекту объектом настоящего изобретения является также способ выработки аммиака из раствора предшественника аммиака с использованием генератора газообразного аммиака, в соответствии с которым диаметр конуса распыления составляет не более 98%, предпочтительно не более 95% и особенно не более 93% и по меньшей мере 80%, предпочтительно по меньшей мере 83% и особенно по меньшей мере 95% диаметра используемого катализатора. Особенно предпочтителен такой способ, в соответствии с которым диаметр конуса распыления составляет не более 95% и по меньшей мере 80% и в высшей степени предпочтительно не более 95% и по меньшей мере 85% диметра используемого катализатора.

Конусом распыления согласно настоящему изобретению является тот конус подлежащего распылению раствора, который может создаваться посредством одного сопла или нескольких сопел с заданным углом α распыления, причем диаметром конуса распыления является тот диаметр, который получается при попадании капелек на переднюю поверхность катализатора. Он обусловлен давлением жидкости от 0,1 до 10 бар на подлежащий распылению раствор при 25°С и в случае необходимости распыляющего воздуха в рабочем диапазоне от 0,5 до 10 бар (у двухпоточных сопел). При использовании соответствующего изобретению необязательного газа-носителя диаметр конуса распыления получается при давлении жидкости от 0,1 до 10 бар на подлежащий распылению раствор при 25°С и в случае необходимости распыляющего воздуха в рабочем диапазоне от 05, до 10 бар (у двухпоточных сопел) при использовании газа-носителя.

В связи с настоящим изобретением под впрыскивающим устройством следует понимать при этом любое устройство, которое распыляет, преобразует в туман или превращает другим путем в капли раствор, предпочтительно водный раствор, предшественника аммиака, причем раствор предшественника аммиака приобретает форму капель, которые имеют, в частности, диаметр d32 капелек меньше, чем 25 мкм. Под диаметром d32 капель в связи с настоящим изобретением имеется в виду средний диаметр Заутера согласно немецкому промышленному стандарту DIN 66 141.

Следовательно, согласно предпочтительному исполнению настоящего изобретения предусмотрено, что впрыскивающее устройство, в свою очередь, содержит сопло, которое создает капельки со средним диаметром d32, меньшим, чем 25 мкм. Согласно настоящему изобретению при этом кроме того предпочтительно предусмотрено, что сопло создает капельки с диаметром d32, меньшим, чем 20 мкм и совсем предпочтительно меньшим, чем 15 мкм. Одновременно или независимо от этого, кроме того, предусмотрено, что сопло создает капельки со средним диаметром d32, большим, чем 0,1 мкм и особенно большим, чем 1 мкм. И за счет использования таких сопел может достигаться коэффициент выхода аммиака >95% (смотри выше). К тому же, может быть особенно равномерным распределение раствора на передней поверхности катализатора.

В качестве альтернативы может быть, однако, предусмотрено также, что впрыскивающее устройство содержит так называемый испаритель мгновенного действия.

К удивлению оказалось, кроме того, что в случае генератора газообразного аммиака с производительностью по произведенному NH3 от 10 до 100 г/ч больше всего пригоден катализатор с диаметром Dкат от 30 до 80 мм и сопло с теоретическим углом α распыления от 20° до 60°. Эти параметры делают возможным впрыскивание раствора предшественника аммиака без смачивания внутренних стенок катализаторного блока, обеспечивают наличие необходимой равномерной передней поверхности катализатора для реакции с образованием аммиака и исключают образование нежелательных побочных продуктов и отложений. Этими параметрами гарантируется, что в обусловленном ими объеме катализатора от 50 мл до 1000 мл объемная скорость устанавливается в диапазоне от 5000 л/ч до 30000 л/ч. Измерения показали, что при объемных скоростях этого диапазона может происходить количественно полное разложение (степень превращения >95%) предшественников аммиака, в частности гуанидиновых солей, как например формиата гуанидина.

Таким образом, объектом настоящего изобретения является также генератор газообразного аммиака с впрыскивающим устройством, которое содержит сопло, имеющее угол α распыления от 20° до 90°, особенно от 20° до 60° и в высшей степени предпочтительно от 30° до 60°, и причем диаметр катализатора Dкат составляет от 30 до 80 мм. Кроме того, предпочтительным при этом является то, что удаление отверстия сопла от передней поверхности катализатора составляет от 15 до 200 мм, особенно от 50 до 200 мм и в высшей степени предпочтительно от 50 до 150 мм. Кроме того, предпочтительным при этом является то, что этот катализатор имеет длину L от 30 мм до 2000 мм, особенно предпочтительно от 70 мм до 1000 мм и в высшей степени предпочтительно от 70 мм до 700 мм.

Если, напротив, определяется производительность по выработанному NH3 от 100 до 1000 г/ч, то оказалось, что необходимы катализаторы с диаметром Dкат от 80 до 450 мм, предпочтительно в сочетании с соплом, имеющим теоретический угол распыления а от 20° до 60°. И при этом обеспечивается то, что на окружной внутренней стенке катализаторного блока капелек не бывает, капельки достаточно равномерно оседают на передней поверхности катализатора и в итоге становится возможным полное превращение (>95%) без побочных продуктов и отложений. Обусловленным этим общим объемом катализатора от 1 до 100 л поддерживается также объемная скорость от 5000 л/ч до 30000 л/ч. Ведь при скоростях этого диапазона может происходить количественно полное разложение (степень превращения >95%) предшественников аммиака, в частности солей гуанидина, как например формиата гуанидина, в аммиак.

Следовательно, объектом настоящего изобретения является также генератор газообразного аммиака с впрыскивающим устройством, которое содержит сопло, имеющее угол распыления α от 20° до 90°, особенно от 20° до 60° и в высшей степени предпочтительно от 30° до 60°, и причем диаметр катализатора Dкат составляет от 80 до 450 мм. Кроме того, предпочтительно при этом, что удаление отверстия сопла от передней поверхности катализатора составляет от 15 до 500 мм, особенно от 50 до 500 мм и в высшей степени предпочтительно от 100 до 400 мм. Кроме того, предпочтительно при этом, что катализатор имеет длину L от 30 мм до 2000 м, особенно предпочтительно от 70 мм до 1000 мм и в высшей степени предпочтительно от 70 мм до 700 мм.

В случае производительности по NH3 от 1000 до 50000 г/ч количество выработанного NH3 показало, что необходимы катализаторы с диаметром Dкат от 450 до 1000 мм, предпочтительно в сочетании с соплом, имеющим теоретический угол α распыления от 20° до 60°. Следствием такого размера катализатора является то, что перед катализатором впрыск происходит так, что не бывает капелек на окружной внутренней стенке катализаторного блока, эти капельки достаточно равномерно оседают на передней поверхности катализатора и, следовательно, становится возможным полное превращение (>95%) без побочных продуктов и отложений. Благодаря обусловленному этим объему катализатора от 100 до 1000 литров также поддерживается объемная скорость от 5000 л/ч до 30000 л/ч. Ведь при объемных скоростях этого диапазона может происходить количественно полное разложения (степень превращения >95%) предшественников аммиака, в частности солей гуанидина, как например формиата гуанидина, в аммиак.

Тем самым, объектом настоящего изобретения является и генератор газообразного аммиака с впрыскивающим устройством, содержащим сопло, имеющее угол α распыления от 20° до 90°, особенно от 30° до 90° и в высшей степени предпочтительно от 20° до 60°, и причем диаметр катализатора Dкат составляет от 450 до 1000 мм. Кроме того, предпочтительно при этом, если удаление отверстия сопла от передней поверхности катализатора составляет от 15 до 1500 мм, особенно от 50 до 1000 мм и в высшей степени предпочтительно от 300 до 1000 мм. Кроме того, предпочтительно при этом, если этот катализатор имеет длину L от 30 мм до 2000 мм, особенно предпочтительно от 70 мм до 1000 мм и в высшей степени предпочтительно от 70 мм до 700 мм.

В высшей степени предпочтителен генератор газообразного аммиака, который содержит катализаторный блок, катализатор которого имеет отношение своего диаметра Dкат к своей длине L от 1:1 до 1:5, особенно от 1:2 до 1:4 и в высшей степени предпочтительно 1:3. Диаметр Dкат катализатора составляет предпочтительно от 20 до 2000 мм, особенно от 30 до 1000 мм и еще более предпочтительно от 30 до 100 мм. Может быть, однако, также предусмотрено, что диаметр Dкат составляет от 30 до 80 мм, от 80 до 450 мм или от 450 до 1000 мм.

В связи с настоящим изобретением и, в частности, с особым исполнением для генератора газообразного аммиака предусмотрено, кроме того, что удаление отверстия сопла от передней поверхности катализатора может составлять, в частности, от 15 до 1500 мм, особенно предпочтительно от 15 до 1000 мм и особенно предпочтительно от 15 до 800 мм. Независимо или одновременно может быть, однако, предусмотрено также, что удаление отверстия сопла от передней поверхности катализатора составляет по меньшей мере 30 мм, кроме того предпочтительно по меньшей мере 40 мм, особенно предпочтительно по меньшей мере 50 мм, особенно предпочтительно по меньшей мере 60 мм, особенно предпочтительно по меньшей мере 100 мм и в высшей степени предпочтительно по меньшей мере 300 мм и, кроме того, независимо или одновременно не более 1500 мм, особенно не более 1000 мм, особенно не более 800 мм, особенно не более 500 мм, особенно не более 400 мм, особенно предпочтительно не более 200 мм и совершенно особенно не более 150 мм.

Согласно развитию настоящего изобретения предусмотрено также, что отношение объема смесительной камеры Vсмес к объему катализатора Vкат соответствует отношению от 1,5:1 до 5:1. К удивлению, оказалось, что впрыснутый предшественник аммиака может разлагаться полностью (степень превращения >95%) до аммиака тогда, когда капельки раствора частично испаряются уже до попадания на переднюю поверхность катализатора. Это может быть обеспечено тем, что объем смесительной камеры больше, чем объем катализатора. Вследствие частичного испарения капелек раствору уже подводится достаточно энергии, поэтому предотвращается сильное охлаждение на передней поверхности катализатора слишком большими каплями и, следовательно, устраняются предпосылки для худшего разложения или образования побочных продуктов. Кроме того, соответствующим объемом Vсмес смесительной камеры гарантируется, что распыленный предшественник аммиака в виде аэрозоля поступает на катализатор в потоке газа-носителя равномерно распределенным по поперечному сечению и предотвращается появление участков со слишком высокой концентрацией, что, в свою очередь, имело бы следствием худшее разложение. В высшей степени предпочтительно предусмотрено при этом, что отношение объема Vсмес смесительной камеры к объему Vкат катализатора составляет от 2,5:1 до 5:1, особенно предпочтительно от 3:1 до 5:1 и в высшей степени предпочтительно от 3,5:1 до 5:1.

Объем катализатора Vкат составляет предпочтительно от 50 мл до 1000 л. Объем Vсмес смесительной камеры составляет предпочтительно по меньшей мере 10 мл, предпочтительно по меньшей мере 50 мл, кроме того, предпочтительно по меньшей мере 100 мл, кроме того, предпочтительно по меньшей мере 200 мл, кроме того, предпочтительно по меньшей мере 1000 мл, кроме того, предпочтительно по меньшей мере 2000 мл и, кроме того, предпочтительно по меньшей мере 5000 мл. Одновременно или независимо от этого объем Vсмес смесительной камеры составляет предпочтительно не более 2,5 л, кроме того, предпочтительно не более 10 л, кроме того, предпочтительно не более 80 л, кроме того, предпочтительно не более 500 л, кроме того, предпочтительно не более 1200 л и, кроме того, предпочтительно не более 2000 л.

Важной составной частью настоящего изобретения является впрыскивающее устройство, которое содержит по меньшей мере одно сопло для подачи раствора предшественника аммиака в смесительную камеру. Это сопло может быть согласно настоящему изобретению предпочтительно так называемым однопоточным соплом или двухпоточным соплом. В качестве альтернативы может быть, однако, предусмотрено, что впрыскивающее устройство в качестве сопла содержит так называемый испаритель мгновенного действия. В испарителе мгновенного действия в жидкость дополнительно подводится энергия в форме теплоты, так что устанавливается частично сверхкритическое состояние и после места дросселирования при сбросе давления в сопле происходит мгновенный или ускоренный фазовый переход. Особенно предпочтительно, однако, двухпоточное сопло.

Согласно особенно предпочтительному варианту может быть, в частности, предусмотрено, что впрыскивающее устройство, в свою очередь, содержит сопло, которое является так называемым двухпоточным соплом. При этом под двухпоточным соплом понимается сопло, которое в качестве рабочей среды использует находящийся под давлением газ, обычно воздух, служащий для разрушения поверхности жидкой фазы и тем самым для образования капелек. Этот находящийся под давлением газ называется также распыляющим воздухом. Этот вид сопла дает возможность особенно тонкого диспергирования предшественника аммиака и достижения диаметра капелек меньше, чем 25 мкм, особенно меньше, чем 20 мкм.

Рабочая среда, в частности распыляющий воздух, вводится при этом в смесительную камеру преимущественно вместе с раствором предшественника аммиака через одно и то же отверстие сопла.

Независимо или одновременно впрыскивающее устройство может иметь для введения предшественника аммиака в смесительную камеру также по меньшей мере два сопла, которые, в частности, могут включаться одновременно или независимо друг от друга.

Согласно одному из развитии генератора газообразного аммиака предусмотрено, что сопло, в частности двухпоточное сопло, имеет угол α распыления по меньшей мере 10°, особенно по меньшей мере 20°, особенно по меньшей мере 25°, особенно предпочтительно по меньшей мере 30°, особенно предпочтительно по меньшей мере 35°, особенно предпочтительно по меньшей мере 40° и в высшей степени предпочтительно по меньшей мере 45°. Одновременно или независимо от этого предпочтительны, кроме того, такие сопла, которые имеют теоретический угол α распыления не более 90°, особенно не более 80°, особенно не более 75°, особенно не более 70°, особенно предпочтительно не более 65°, особенно предпочтительно не более 60°, особенно предпочтительно не более 55° и в высшей степени предпочтительно не более 50°. Как уже было изложено, путем целенаправленного использования сопла с заданным углом α распыления достигается равномерное распределение подлежащего впрыскиванию раствора, без появления отложений на стенках или передней поверхности катализатора.

В качестве другого приема, с тем чтобы внутренняя стенка катализаторного блока не покрывалась раствором предшественника аммиака, согласно другому развитию изобретения может быть предусмотрено, чтобы у генератора газообразного аммиака был дополнительный вход для газа-носителя, который создает тангенциальный относительно впрыснутого в смесительную камеру раствора поток газа-носителя. В качестве альтернативы может быть предусмотрено также, что по окружности сопла предусмотрен по меньшей мере один вход для газа-носителя, который выполнен таким образом, что газ-носитель образует оболочку вокруг введенного в смесительную камеру раствора. Таким образом введенный раствор окутывается оболочкой из газа-носителя, так что смачивания внутренней стенки не наблюдается.

В еще одном варианте осуществления изобретение относится, поэтому, к генератору газообразного аммиака, который содержит по меньшей мере один впуск для газа-носителя. Впуск находится преимущественно в смесительной камере и является, в частности, отдельным или отделенным от отверстия сопла, через которое подается раствор предшественника аммиака. Газ-носитель, тем самым, может вводиться независимо от раствора предшественника аммиака. Предпочтительно впуск создает тангенциальный или параллельный поток газа-носителя относительно впрыснутого в смесительную камеру раствора. Для параллельного потока газа-носителя преимущественно одно или несколько впускных отверстий для газа-носителя располагаются в стенке, в которой также находится впрыскивающее устройство для введения раствора предшественника аммиака.

Газ-носитель и, в частности, тангенциальный или параллельный поток газа-носителя подается в смесительную камеру преимущественно с температурой до 550°С, предпочтительно с температурой от 250 до 550°С, кроме того, предпочтительно с температурой от 250 до 400°С и в высшей степени предпочтительно с температурой от 300 до 350°С.

Неожиданно выяснилось, что благодаря тангенциальному потоку газа-носителя отложения на стенках катализаторного блока в области смесительной камеры могут предотвращаться в еще большей степени и может обеспечиваться на протяжении длительного срока хорошее перемешивание газа-носителя и раствора предшественника аммиака. Тем самым смачивание стенки катализаторного блока в области смесительной камеры исключается почти полностью. Тангенциальным потоком газа-носителя создается вихревое туманообразное течение с капельками, которые направляются аксиально в направлении катализатора гидролиза на его переднюю поверхность. Это вихревое туманообразное течение создает условия для очень хорошего превращения до аммиака на катализаторе. Тангенциальный подвод газа-носителя происходит в головной области генератора, на высоте распыляющего устройства для раствора предшественника аммиака в катализаторном блоке или в смесительной камере. При этом поток газа направляется насколько можно плотнее к стенке смесительной камеры таким образом, чтобы в катализаторном блоке устанавливалось направленное вниз вихревое течение в направлении передней поверхности катализатора.

Подобный эффект создается, когда используется сопло, которое имеет некоторое первое число отверстий сопла для подачи раствора предшественника аммиака, которые окружены в виде кольца некоторым вторым числом отверстий сопла для подачи газа-носителя или распыляющего воздуха в катализаторный блок.

В частности, настоящим изобретением предлагается генератор газообразного аммиака, который независимо от потока отработавшего газа, то есть без помощи потока отработавшего газа из газообразных продуктов горения работает как газ-носитель. В частности, в соответствующем изобретению генераторе газообразного аммиака аммиак образуется из предшественника аммиака без наличия потока отработавшего газа. Напротив, в данном случае преимущественно образовавшийся аммиак вводится лишь на последующем этапе в поток отработавшего газа в качестве восстановителя.

Может быть, однако, также предусмотрено, что в качестве газа-носителя используется частичный поток отработавшего газа, подлежащего освобождению от оксидов азота. При этом оказалось, что генератор аммиачного газа согласно настоящему изобретению должен эксплуатироваться с долей частичного потока не более 20%, особенно не более 15%, особенно 10% и в высшей степени предпочтительно 5%. Может быть также предусмотрено, что в качестве газа-носителя используется частичный поток отработавшего газа, который содержит по меньшей мере 0,1% всего отработавшего газа и, кроме того, предпочтительно меньше, чем 4% и в высшей степени предпочтительно меньше, чем 2% всего отработавшего газа. К тому же, соответствующий изобретению генератор газообразного аммиака может иметь по меньшей мере один теплоизоляционный слой.

В качестве частичного потока отработавшего газа рассматривается процентная доля, выраженная массовым процентом, которая ответвляется от основного потока отработавшего газа и в качестве транспортирующего потока или потока газа-носителя направляется через генератор.

В принципе согласно изобретению в качестве потока газа-носителя может использоваться любой газ. Поскольку поток газа-носителя преимущественно должен иметь температуру от 250 до 550°С, для хорошей энергетической эффективности преимущественно используется газ, который является уже нагретым, как например наддувочный воздух или часть потока отработавшего газа. Однако можно также нагреть любой газ-носитель до требуемой температуры.

К тому же, может быть предусмотрено, что генератор газообразного аммиака дополнительно содержит дозирующее устройство для дозирования раствора предшественника аммиака, которое расположено выше по ходу потока от впрыскивающего устройства. Таким образом, посредством этого дозирующего устройства может происходить точное регулирование подлежащего выработке количества аммиака. Если, например, отмечается увеличенный выброс оксидов азота в отработавшем газе двигателя, то путем целенаправленного регулирования количества впрыснутого впрыскивающим устройством предшественника может высвобождаться заданное количество аммиака.

Под предшественниками аммиака согласно настоящему изобретению понимаются химические вещества, которые могут переводиться в раствор и отщеплять аммиак в результате физических и/или химических процессов или высв