Торцевое уплотнение
Иллюстрации
Показать всеИзобретение относится к торцевым уплотнениям роторов насосных агрегатов для разделения сред или перепада давлений. Изобретение может быть использовано в конструкции насосов, применяемых на АЭС, в частности главных циркуляционных насосах. Конструкция многоступенчатого торцевого уплотнения содержит последовательно установленные рабочие ступени и концевую ступень, каждая из которых включает в себя расположенный на валу роторный элемент и контактирующий с ним подпружиненный аксиально подвижный статорный элемент, уплотненный относительно корпуса уплотнительными кольцами, причем полости высокого и низкого давления рабочих ступеней последовательно соединены дроссельными отверстиями в статорном элементе, который выполнен так, чтобы исполнять функции аксиально-подвижного уплотненного относительно корпуса ступенчатого поршня. Приведена формула зависимости внешних диаметров ступеней поршня статорного элемента. Данное соотношение обеспечивает отсутствие дополнительного усилия на статорный элемент при его нормальной работе, позволяя, в случае раскрытия уплотнения, усилить воздействие на статорный элемент, направленное на закрытие уплотнения, за счет гидростатических сил, действующих на поршень. Изобретение повышает надежность узла, а также технологичность деталей и сборки уплотнения. 1 з.п. ф-лы, 1 ил.
Реферат
Изобретение относится к торцевым уплотнениям роторов насосных агрегатов для разделения сред или перепада давлений.
Изобретение может быть использовано в конструкции насосов, применяемых на АЭС, в частности главных циркуляционных насосах.
Известен блок торцевых уплотнений (Патент РФ №2084730, опуб. 20.07.1997, МПК F16J 15/34). Данная конструкция представляет собой многоступенчатое торцевое уплотнение содержащее последовательно установленные рабочие ступени и концевую ступень, каждая из которых включает в себя расположенный на валу роторный элемент и контактирующий с ним подпружиненный аксиально подвижный статорный элемент, уплотненный относительно корпуса уплотнительным кольцом, причем полости высокого и низкого давления рабочих ступеней последовательно соединены дроссельными отверстиями в корпусе статора. В корпусе параллельно оси вала выполнены ступенчатые цилиндрические расточки, сообщающиеся по меньшему диаметру с полостью высокого давления, а по большему - с полостью низкого давления, в которые установлены аксиально подвижные ступенчатые цилиндрические поршни, уплотненные в расточках по большему и меньшему диаметрам с возможностью взаимодействия конца поршня меньшего диаметра со статорным элементом. Данная конструкция служит для принудительного закрытия каждой ступени уплотнения, в случае ее раскрытия, путем снабжения блока в дополнение к пружинам силовыми ступенчатыми поршнями. Недостаток конструкции заключается в наличии дополнительного механического узла - поршня, который может повлиять на работоспособность изделия в случае его заклинивания, например, в крайнем нижнем положении. Это может привести к разрушению пары трения уплотнения. Также в конструкции торцевого уплотнения имеется конструктивная недоработка, связанная с работой поршня. В связи с тем что поршень выполнен ступенчатым, при его работе между торцевой поверхностью, ограниченной диаметрами большего и меньшего его цилиндров, а также ответной торцевой поверхностью в корпусе образуется полость с изменяемым объемом. В связи с полной герметичностью полости, в ней будут создаваться разрежение или сжатие заключенной в объеме полости среды. Данный эффект будет препятствовать свободному перемещению поршня и, как следствие, его корректной работе.
Задачи, решаемые изобретением:
- повышение надежности торцевого уплотнения за счет уменьшения количества подвижных узлов;
- повышение технологичности за счет упрощения сборки и уменьшения количества деталей в изделии.
При осуществлении изобретения могут быть получены, в частности, следующие технические результаты:
- сокращение сроков на техническое обслуживание торцевого уплотнения;
- сокращение металлоемкости за счет уменьшения количества деталей.
Как решение задачи, позволяющее достигнуть технического результата, предлагается конструкция торцевого уплотнения, отличающаяся от прототипа следующим.
Многоступенчатое торцевое уплотнение, содержащее последовательно установленные рабочие ступени и концевую ступень, каждая из которых включает в себя расположенный на валу роторный элемент и контактирующий с ним подпружиненный аксиально подвижный статорный элемент, уплотненный относительно корпуса уплотнительными кольцами, причем полости высокого и низкого давления рабочих ступеней последовательно соединены дроссельными отверстиями, выполненными в статорном элементе. Корпус, в свою очередь, состоит из внешнего цилиндра, в который последовательно установлены ступенчатое и упорное кольца по одному на ступень. Упорное кольцо служит для упора пружины между ним и статорным элементом. Статорный элемент и ступенчатое кольцо корпуса выполнены так, чтобы статорный элемент выполнял функции аксиально подвижного ступенчатого поршня, уплотненного резиновыми уплотнениями, при этом часть поршня с меньшим диаметром расположена в области высокого давления - перед уплотнением, а вторая часть с большим внешним диаметром - со стороны меньшего давления или за уплотнением. В области перехода меньшего цилиндра в больший на статорном элементе выполнена обнизка. В свою очередь, в ступенчатом кольце, ответном статорному элементу, в области переходов диаметров цилиндров ответных поршню статорного элемента выполнено сквозное отверстие так, чтобы при любом положении статорного элемента не выходить за границы обнизки на нем. Данное отверстие служит для компенсации разрежения-сжатия в объеме образующейся полости при перемещениях статорного элемента. Уплотнение отверстия в корпусе реализовано между внешним цилиндром и ступенчатым кольцом двумя резиновыми кольцами, между которыми оно расположено.
Работа уплотнения заключается в следующем. При нормальной работе блока торцевых уплотнений с помощью дроссельных отверстий на каждой рабочей ступени уплотнения срабатывает часть рабочего давления, в зависимости от пропускной способности дросселя. В результате на поршень статорного элемента со стороны перед уплотнением действует сила F 1 = P 1 × π D 1 2 − D 0 2 4 , где D1 - меньший диаметр поршня статорного элемента, D0 - внутренний диаметр статорного элемента, P1 - давление перед уплотнением, со стороны за уплотнением на поршень статорного элемента действует сила F 2 = P 2 × π D 2 2 − D 0 2 4 , где D2 - больший диаметр поршня статорного элемента, Р2 - давление за уплотнением, равное kP1, где k(0<k<1) - коэффициент снижения давления за счет дросселя в статорном элементе. Для того чтобы в рабочем положении на статорный элемент действовала только сила пружины, необходимо чтобы силы F1 и F2 были равными, для этого D 2 = D 1 2 − D 0 2 ( 1 − k ) k . В случа, когда уплотнение раскрывается, давление за уплотнение, Р2 выравнивается по значению с давлением перед уплотнением Р1, в результате чего на поверхность поршня статорного элемента за уплотнением начинает действовать сила F 2 ' = F 1 × D 2 2 − D 0 2 D 1 2 − D 0 2 , больше, чем перед уплотнением, что заставляет его перемещаться в сторону закрытия разъема. Для компенсации изменений объема в камере поршня при его перемещениях область, образованная обнизкой на статорном элементе, ответной частью ступенчатого кольца и сквозным отверстием соединена с расширительной емкостью.
Изобретение поясняется чертежом, на котором изображен общий вид (осевой разрез) торцевого уплотнения.
Многоступенчатое торцевое уплотнение состоит из корпуса 10, выполненного в виде внешнего цилиндра, в котором последовательно установлены ступенчатые 11 и упорные 12 кольца по одному на ступень, а также расположенные на валу роторные элементы 3 с контактными поверхностями 1 и контактирующие с ними подпружиненные аксиально подвижные статорные элементы 4 с контактными поверхностями 2.
Между упорными кольцами 12 и подвижными статорными элементами 4 установлены пружины 13, обеспечивающие усилие поджатия между контактными поверхностями 1 и 2.
Полости высокого давления 7, образованные ступенчатыми кольцами 11, статорными элементами 4 и роторными элементами 3, соединены с полостями низкого давления 8, образованными между упорными кольцами 12, ступенчатыми кольцами 11, статорными элементами 4 и роторными элементами 3, дроссельными отверстиями 9, выполненными в статорных элементах 4.
Полости высокого и низкого давления разделены резиновыми кольцами 6.
Статорный элемент 4 и ступенчатое кольцо 11 выполнены так, чтобы статорный элемент выполнял функции аксиально подвижного ступенчатого поршня, при этом часть поршня с меньшим диаметром расположена в области высокого давления - перед уплотнением, а вторая часть с большим внешним диаметром - со стороны меньшего давления или за уплотнением. В области перехода меньшего цилиндра в больший на статорном элементе 4 выполнена обнизка 14. В свою очередь, в ступенчатом кольце 11, ответном статорному элементу 4, в области переходов диаметров цилиндров выполнено сквозное отверстие 15 так, чтобы при любом положении статорного элемента не выходить за границы обнизки на нем. Данное отверстие служит для компенсации разрежения-сжатия в объеме между ступенчатым кольцом 11 и статорным элементом 4 ограниченной резиновыми кольцами 6 образующейся полости при перемещениях статорного элемента 4.
Уплотнение данного объема между внешним цилиндром 10 и ступенчатым кольцом 11 выполнено двумя резиновыми кольцами 5.
Работа уплотнения заключается в следующем. При нормальной работе блока торцевых уплотнений с помощью дроссельных отверстий 9 на каждой рабочей ступени уплотнения срабатывает часть рабочего давления, в зависимости от пропускной способности дросселя. В результате на поршень статорного элемента 4 со стороны полости высокого давления 7 действует сила F 1 = P 1 × π D 1 2 − D 0 2 4 , где D1 - меньший диаметр поршня статорного элемента, D0 - внутренний диаметр статорного элемента, Р1 - давление со стороны полости высокого давления. Со стороны полости низкого давления 8 на поршень статорного элемента действует сила F 2 = P 2 × π D 2 2 − D 0 2 4 , где D2 - больший диаметр поршня статорного элемента, Р2 - давление со стороны полости низкого давления, равное kP1, где k(0<k<1) - коэффициент снижения давления за счет дросселя в статорном элементе. Для того чтобы в рабочем положении на статорный элемент 4 действовала только сила пружины 13, необходимо чтобы силы F1 и F2 были равными, для этого D 2 = D 1 2 − D 0 2 ( 1 − k ) k . В случае когда уплотнение раскрывается, давление в полостях выравнивается, в результате чего на поверхность поршня статорного элемента начинает действовать сила F 2 ' = F 1 × D 2 2 − D 0 2 D 1 2 − D 0 2 , что заставляет его перемещаться в сторону закрытия разъема.
Для компенсации изменений давления в объеме, образованном между ступенчатым кольцом 11, статорным элементом 4 и ограниченном резиновыми кольцами 6, образующихся при перемещениях статорного элемента 4, он соединен с расширительной емкостью за пределом торцевого уплотнения сквозным отверстием 15.
1. Торцевое уплотнение содержащее последовательно установленные рабочие ступени, каждая из которых включает в себя расположенный на валу роторный элемент и контактирующий с ним подпружиненный аксиально подвижный статорный элемент, уплотненный относительно корпуса уплотнительными кольцами, причем полости высокого и низкого давления рабочих ступеней последовательно соединены дроссельными отверстиями, отличающееся тем, чтокорпус состоит из внешнего цилиндра и последовательно установленных в него ступенчатого и упорного колец, по одному на ступень, при этом ступенчатое кольцо уплотнено относительно цилиндра и является ответным к статорному элементу, а упорное кольцо выполняет функции упора для пружины между ним и статорным элементом,дроссельные отверстия выполнены в статорном элементе, который, в свою очередь, выполнен так, чтобы исполнять функции аксиально подвижного ступенчатого поршня, уплотненного относительно ступенчатого кольца корпуса, при этом часть поршня с меньшим диаметром расположена в области высокого давления - перед уплотнением, а другая часть с большим внешним диаметром - со стороны меньшего давления или за уплотнением,также во внешнем цилиндре корпуса и ступенчатом кольце, в области переходов диаметров цилиндров, ответных поршню статорного элемента, выполнено сквозное отверстие, соединяющее образованную полость между корпусом и статорным элементом с расширительной емкостью.
2. Торцевое уплотнение по п. 1, отличающееся тем, что внешние диаметры ступеней поршня статорного элемента выполнены с соотношением , где D2 - диаметр большего цилиндра поршня; D1 - диаметр меньшего цилиндра поршня; D0 - внутренний диаметр статорного элемента; k - коэффициент снижения давления за счет дросселя в статорном элементе.