Способы и системы для эффективного восстановления высокочастотного аудиоконтента

Иллюстрации

Показать все

Изобретение относится к области техники кодирования, декодирования и обработки аудиосигнала, в частности, он относится к средствам восстановления высокочастотного контента аудиосигнала из низкочастотного контента того же аудиосигнала. Технический результат заключается в обеспечении возможности уменьшения сложности вычислений при аудиокодировании на основе систем со спектральным расширением. Определеяют первое значение полосовой тональности для первой частотной субполосы. Первое значение полосовой тональности используют для аппроксимации высокочастотной компоненты аудиосигнала на основании низкочастотной компоненты этого аудиосигнала. Определяют набор коэффициентов преобразования в соответствующем наборе частотных бинов на основании блока выборок аудиосигнала. Определяют набор значений тональности бина для набора частотных бинов с соответствующим использованием набора коэффициентов преобразования. Формируют первый поднабор из двух или более значений из набора значений тональности бина для двух или более соответствующих соседних частотных бинов из набора частотных бинов, находящихся в первой частотной субполосе, в результате чего получают первое значение полосовой тональности для первой частотной субполосы. 9 н. и 20 з.п. ф-лы, 15 ил., 2 табл.

Реферат

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

По настоящей заявке испрашивается приоритет на основании заявки на европейский патент №12156631.9, поданной 23 февраля 2012 года, и предварительной заявки на патент США №61/680805, поданной 08 августа 2012 года, содержание которых в полном объеме включено в настоящий документ путем ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящий документ относится к области кодирования, декодирования и обработки аудиосигналов. В частности, он относится к способам восстановления высокочастотного контента аудиосигнала из низкочастотного контента того же аудиосигнала эффективным образом.

УРОВЕНЬ ТЕХНИКИ

Эффективное кодирование и декодирование аудиосигналов часто сопровождается сокращением объема аудиоданных, подлежащих кодированию, передаче и/или декодированию на основании психоакустических принципов. Это включает в себя, например, отбрасывание так называемого «маскированного» аудиоконтента, который присутствует в аудиосигнале, но не воспринимается слушателем. В качестве дополнения или альтернативы ширина полосы пропускания аудиосигнала, подлежащего кодированию, может быть ограничена при сохранении только соответствующих вычислений некоторой информации о контенте на более высоких частотах без реального кодирования упомянутого контента на более высоких частотах. Затем сигнал с ограниченной полосой пропускания кодируют и передают (или сохраняют) вместе с упомянутой информацией, относящейся к более высоким частотам, причем последний вариант требует меньше ресурсов, чем непосредственное кодирование контента, относящегося к более высоким частотам.

Система с репликацией спектральных полос (SBR) в HE-AAC (высокоэффективное усовершенствованное аудиокодирование) и система со спектральным расширением (SPX) в Dolby Digital Plus являются двумя примерами систем аудиокодирования, которые аппроксимируют или восстанавливают высокочастотную компоненту аудиосигнала на основании низкочастотной компоненты того же аудиосигнала и на основании дополнительной информации (также называемой информацией, относящейся к более высоким частотам). В дальнейшем описании используются ссылки на схему SPX в системе Dolby Digital Plus. Однако следует заметить, что способы и системы, описанные в настоящем документе, можно использовать в методиках высокочастотного восстановления в целом, включая SBR в HE-AAC.

Определение упомянутой дополнительной информации в устройстве аудиокодирования на основе SPX, как правило, связано со значительной сложностью вычислений. Например, определение дополнительной информации может потребовать около 50% общих вычислительных ресурсов устройства аудиокодирования. В настоящем документе описаны способы и системы, позволяющие уменьшить сложность вычислений для устройств аудиокодирования на основе SPX. В частности, в настоящем документе описаны способы и системы, позволяющие упростить вычисления, связанные с расчетами тональностей в контексте устройств аудиокодирования на основе SPX (где на вычисления тональностей может уходить порядка 80% объема сложных вычислений, используемых для определения упомянутой дополнительной информации).

В публикации US2010/0094638A1 описаны устройство и способ определения адаптивного уровня шума для расширения полосы пропускания.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Согласно одному аспекту описан способ определения первого значения полосовой тональности для первой частотной субполосы аудиосигнала. Аудиосигнал может представлять собой аудиосигнал канала многоканального аудиосигнала (например, стерео, многоканальный сигнал 5.1 или 7.1). Аудиосигнал может иметь ширину полосы пропускания в диапазоне от низкой частоты сигнала до высокой частоты сигнала. Упомянутая ширина полосы пропускания может содержать низкочастотную полосу и высокочастотную полосу. Первая частотная субполоса может находиться в границах низкочастотной или в границах высокочастотной полосы. Первое значение полосовой тональности может указывать тональность аудиосигнала в первой частотной полосе. Можно считать, что аудиосигнал имеет относительно высокую тональность в частотной субполосе, если эта частотная субполоса содержит относительно высокую долю стабильного синусоидального контента. С другой стороны, можно считать, что аудиосигнал имеет низкую тональность в данной частотной субполосе, если эта частотная субполоса содержит относительно высокую долю шума. Первое значение полосовой тональности может зависеть от дисперсии фазы аудиосигнала в первой частотной субполосе.

Способ определения первого значения полосовой тональности можно использовать в контексте устройства кодирования аудиосигнала. Устройство кодирования может использовать методики высокочастотного восстановления, такие как репликация спектральных полос (SBR) (как это используется, например, в контексте высокоэффективного усовершенствованного аудиокодера, (HE-AAC)) или спектральное расширение (SPX) (используемое, например, в контексте устройства кодирования Dolby Digital Plus). Первое значение полосовой тональности можно использовать для аппроксимации высокочастотной компоненты (в высокочастотной полосе) аудиосигнала на основании низкочастотной компоненты (в низкочастотной полосе) аудиосигнала. В частотности, первое значение полосовой тональности можно использовать для определения дополнительной информации, которая может быть использована соответствующим устройством аудиодекодирования для восстановления высокочастотной компоненты аудиосигнала на основании принятой (декодированной) низкочастотной компоненты аудиосигнала. Упомянутая дополнительная информация может, например, задавать уровень шума, добавляемый к перенесенным частотным субполосам низкочастотной компоненты, чтобы аппроксимировать частотную субполосу высокочастотной компоненты.

Способ может содержать определение набора коэффициентов преобразования в соответствующем наборе частотных бинов на основании блока выборок аудиосигнала. Последовательность выборок аудиосигнала может быть сгруппирована в последовательность кадров, каждый из которых содержит заданное количество выборок. Кадр из упомянутой последовательности кадров может быть разбит на один или более блоков выборок. Соседние блоки кадра могут перекрываться (например, до 50%). Блок выборок может быть преобразован из временной области в частотную область с использованием преобразования из временной области в частотную область, такого как модифицированное дискретное косинусное преобразование (MDCT) и/или модифицированное дискретное синусное преобразование (MDST), в результате которого получают набор коэффициентов преобразования. Применяя MDST и MDCT к блоку выборок, можно получить набор комплексных коэффициентов преобразования. Как правило, количество N коэффициентов преобразования (и количество N частотных бинов) соответствует количеству N выборок в блоке (например, N=128 или N=256). Первая частотная субполоса может содержать множество из N частотных бинов. Другими словами, N частотных бинов (имеющих относительно высокое разрешение по частоте) можно сгруппировать в одну или более частотных субполос (имеющих относительно низкое разрешение по частоте). В результате можно обеспечить сокращение количества частотных субполос (что, как правило, выгодно в связи с пониженными скоростями передачи данных кодированного аудиосигнала), где частотные субполосы имеют относительно высокую частотную избирательность в отношении друг друга (благодаря тому, что эти частотные субполосы получают посредством группирования множества частотных бинов с высоким разрешением).

Способ может дополнительно содержать определение набора значений тональности элементов для набора частотных бинов с использованием, соответственно, набора коэффициентов преобразования. Значения тональности элементов, как правило, определяют для отдельного частотного бина (с использованием коэффициента преобразования этого отдельного частотного бина). Фактически, значение тональности элемента указывает тональность аудиосигнала в отдельном частотном бине. Например, значение тональности элемента зависит от дисперсии фазы коэффициента преобразования в соответствующем отдельном частотном бине.

Способ может дополнительно содержать формирование первого поднабора из двух или более значений тональности элементов для двух или более соответствующих соседних частотных бинов из набора частотных бинов, лежащих в первой частотной субполосе, в результате чего получают первое значение полосовой тональности для первой частотной субполосы. Другими словами, первое значение полосовой тональности можно определить путем формирования двух или более значений тональностей элементов для двух или более частотных бинов, лежащих в первой частотной субполосе. Формирование первого поднабора из двух или более значений тональности элементов из соответствующего набора значений может содержать усреднение двух или более значений тональности элементов и/или суммирование двух или более значений тональности элементов. Например, первое значение полосовой тональности можно определить на основании суммы значений тональности частотных бинов, лежащих в первой частотной субполосе.

По существу способ определения первого значения полосовой тональности задает определение первого значения полосовой тональности в первой частотной субполосе (содержащей множество частотных бинов) на основании значений тональности частотных бинов, лежащих в первой частотной субполосе. Другими словами, предлагается двухэтапное определение первого значения полосовой тональности, где на первом этапе получают набор значений тональности элементов, а на втором этапе формируют (по меньшей мере частично) набор значений тональности элементов для получения значения тональности первой полосы. В результате такого двухэтапного подхода можно определить разные значения полосовых тональностей разных полос (для разных структур субполос) на основании одного и того же набора значений тональности элементов, в результате чего упрощаются вычисления, выполняемые устройством аудиокодирования, которое использует значения тональности разных полос.

В одном варианте способ, кроме того, содержит определение второго значения полосовой тональности во второй частотной субполосе путем объединения второго поднабора из двух или более значений из набора значений тональности элемента для двух или более соответствующих соседних частотных бинов из набора частотных бинов, лежащих во второй частотной субполосе. Первая и вторая частотные субполосы могут содержать по меньшей мере один общий частотный бин, а первый и второй поднаборы могут содержать по меньшей мере одно общее значение тональности элемента. Другими словами, значения тональности первой и второй полос можно определить на основании по меньшей мере одного общего значения тональности элемента, в результате чего можно упростить расчеты, связанные с определением значений тональности полос. Например, первая и вторая частотные субполосы могут находиться в высокочастотной полосе аудиосигнала. Первая частотная субполоса может быть уже второй частотной субполосы и может находиться в границах второй частотной субполосы. Первое значение тональности можно использовать в контексте значительного затухания дисперсии устройства кодирования на основе SPX, а второе значение тональности можно использовать в контексте шумового смешения устройства кодирования на основе SPX.

Как указывалось выше, описанные здесь способы, как правило, используют в контексте устройства аудиокодирования, использующего методики высокочастотного восстановления (HFR). Упомянутые методики HFR, как правило, преобразуют один или более частотных бинов из низкочастотной полосы аудиосигнала в один или более частотных бинов из высокочастотной полосы, чтобы аппроксимировать высокочастотную компоненту аудиосигнала. Фактически, аппроксимация высокочастотной компоненты аудиосигнала на основании низкочастотной компоненты этого же аудиосигнала может содержать копирование одного или более низкочастотных коэффициентов преобразования одного или более частотных бинов из низкочастотной полосы, соответствующей низкочастотной компоненте, в высокочастотную полосу, соответствующую высокочастотной компоненте аудиосигнала. Этот заданный процесс копирования может быть учтен при определении значений тональности полос. В частности, можно учесть, что значения тональности элементов, как правило, не претерпевают изменений в процессе копирования, что позволяет использовать значения тональностей элементов, которые были определены для частотного бина в низкочастотной полосе, для соответствующих скопированных частотных бинов в высокочастотной полосе.

В одном варианте первая частотная субполоса находится в низкочастотной полосе, а вторая частотная субполоса находится в высокочастотной полосе. Способ может дополнительно содержать определение значения тональности второй полосы во второй частотной субполосе путем формирования второго набора из двух или более значений из набора значений тональности элементов для двух или более соответствующих частотных бинов, которые были скопированы во вторую частотную субполосу. Другими словами, значение тональности второй полосы (для второй частотной субполосы, находящейся в высокочастотной полосе) можно определить на основании значения тональности частотных бинов, которые были скопированы в высокочастотную полосу. Вторая частотная субполоса может содержать по меньшей мере один частотный бин, который был скопирован из частотного бина, находящегося в первой частотной полосе. По существу первый и второй поднаборы могут содержать соответствующее по меньшей мере одно общее значение тональности элемента, что упрощает вычисления, связанные с определением значений тональности полос.

Как указано выше, аудиосигнал, как правило, группируют в последовательность блоков (содержащих, например, N выборок каждый). Способ может содержать определение последовательности наборов коэффициентов преобразования на основании соответствующей последовательности блоков аудиосигнала. В результате, для каждого частотного бина можно определить последовательность коэффициентов преобразования. Другими словами, для конкретного частотного бина последовательность наборов коэффициентов преобразования может содержать последовательность конкретных коэффициентов преобразования. Последовательность конкретных коэффициентов преобразования можно использовать для определения последовательности значений тональности элементов для конкретного частотного бина для упомянутой последовательности блоков аудиосигнала.

Определение значения тональности для конкретного частотного бина может содержать определение последовательности фаз на основании последовательности конкретных коэффициентов преобразования и определение фазового ускорения на основании последовательности фаз. Значение тональности для конкретного частотного бина, как правило, зависит от фазового ускорения. Например, значение тональности элемента для текущего блока аудиосигнала можно определить на основании текущего фазового ускорения. Текущее фазовое ускорение можно определить на основании текущей фазы (определенной на основании коэффициента преобразования текущего блока) и на основании двух или более предыдущих фаз (определенных на основании двух или более коэффициентов преобразования двух или более предыдущих блоков). Как было указано выше, значение тональности для конкретного частотного бина, как правило, определяется только на основании коэффициентов преобразования того же самого конкретного частотного бина. Другими словами, значение тональности для частотного бина, как правило, не зависит от значений тональности других частотных бинов.

Как уже отмечалось выше, первое значение полосовой тональности можно использовать для аппроксимации высокочастотной компоненты аудиосигнала на основании низкочастотной компоненты того же аудиосигнала с использованием схемы спектрального расширения (SPX). Первое значение полосовой тональности можно использовать для определения стратегии повторной отправки координат SPX, коэффициента шумового смешения и/или значительного затухания дисперсии.

Согласно другому аспекту описан способ определения коэффициента шумового смешения. Следует заметить, что описанные в настоящем документе различные аспекты и способы можно произвольным образом комбинировать друг с другом. Коэффициент шумового смешения можно использовать для аппроксимации высокочастотной компоненты аудиосигнала на основании низкочастотной компоненты того же сигнала. Как отмечалось выше, высокочастотная компонента, как правило, содержит компоненты аудиосигнала в высокочастотной полосе. Высокочастотную полосу можно разбить на одну или более высокочастотных субполос (например, вышеописанные первая и/или вторая частотная субполоса). Компонента аудиосигнала в высокочастотной подобласти может называться сигналом высокочастотной субполосы. Аналогичным образом, низкочастотная компонента, как правило, содержит компоненты аудиосигнала в низкочастотной полосе, и низкочастотную полосу можно разбить на одну или более низкочастотных субполос (например, вышеописанные первая и/или вторая частотные субполосы). Компонента аудиосигнала в низкочастотной субполосе может называться сигналом низкочастотной субполосы. Другими словами, высокочастотная компонента может содержать один или более (исходных) сигналов высокочастотной субполосы в высокочастотной полосе, а низкочастотная компонента может содержать один или более сигналов низкочастотной субполосы в низкочастотной полосе.

Как подчеркивалось выше, аппроксимация высокочастотной компоненты может содержать копирование одного или более сигналов низкочастотной субполосы в высокочастотную полосу, что порождает один или более аппроксимируемых сигналов высокочастотной субполосы. Для указания уровня шума, который должен быть добавлен к одному или более аппроксимированным сигналам высокочастотной субполосы, можно использовать шумовое смешение, чтобы выровнять тональность аппроксимированных сигналов высокочастотной субполосы с тональностью исходного сигнала высокочастотной субполосы аудиосигнала. Другими словами, коэффициент шумового смешения может указывать уровень шума, добавляемый к одному или более аппроксимированным сигналам высокочастотной субполосы для аппроксимации (исходной высокочастотной компоненты аудиосигнала).

Способ может содержать определение значения тональности целевой полосы на основании одного или более (исходных сигналов высокочастотной субполосы). Кроме того, способ может содержать определение значения полосовой тональности источника сигнала на основании одного или более аппроксимированных сигналов высокочастотной субполосы. Значения тональности могут указывать на изменение фазы сигналов соответствующей субполосы. Кроме того, значения тональности можно определить, как это описано в настоящем изобретении. В частности, значения полосовой тональности можно определить на основании двухэтапного подхода, предложенного в настоящем изобретении, то есть значения полосовой тональности можно определить на основании набора значений тональности частотного бина.

Способ может, кроме того, содержать определение коэффициента шумового смешения на основании целевого значения полосовой тональности и значения полосовой тональности источника сигнала. В частности, способ может содержать определение коэффициента шумового смешения на основании значения полосовой тональности источника сигнала, если ширина полосы пропускания высокочастотной компоненты, подлежащий аппроксимации, меньше ширины полосы пропускания низкочастотной компоненты, которую используют для аппроксимации высокочастотной компоненты. В результате можно упростить вычисления, необходимые для определения коэффициента шумового смешения, по сравнению со способом, в котором коэффициент шумового смешения определяют на основании значения полосовой тональности, которое получают из низкочастотной компоненты аудиосигнала.

В одном варианте низкочастотная полоса содержит стартовую полосу (указанную, например, параметром spxstart в случае использования устройства кодирования на основе SPX), которая указывает низкочастотную субполосу, имеющую самую низкую частоту среди низкочастотных субполос, которые доступны для копирования. Кроме того, высокочастотная полоса может содержать начальную полосу (указанную, например, параметром spxbegin в случае использования устройства кодирования на основе SPX), которая указывает высокочастотную субполосу, содержащую минимальную частоту высокочастотной субполосы, которая не должна аппроксимироваться. Вдобавок, высокочастотная полоса может содержать концевую полосу (указанную, например, параметром spxend в случае использования устройства кодирования на основе SPX), которая указывает высокочастотную субполосу, имеющую максимальную частоту среди высокочастотных субполос, которые подлежат аппроксимации.

Способ может содержать определение первой ширины полосы между стартовой полосой (например, параметр spxstart) и начальной полосой (например, параметр spxbegin). Кроме того, способ может содержать определение второй ширины полосы пропускания между начальной полосой (например, параметр spxbegin) и концевой полосой (например, параметр spxend). Способ может содержать определение коэффициента шумового смешения на основании целевого значения полосовой тональности и значения полосовой тональности источника, если первая ширина полосы частот больше второй ширины полосы частот. В частности, если первая ширина полосы частот больше или равна второй ширине полосы частот, значение полосовой тональности источника можно определить на основании одного или более сигналов низкочастотной субполосы, находящейся между стартовой полосой и стартовой полосой плюс вторая ширина полосы частот. Как правило, эти сигналы низкочастотной субполосы являются сигналами низкочастотной субполосы, скопированными в высокочастотную полосу. В результате можно упростить вычисления в ситуациях, когда упомянутая первая ширина полосы частот больше или равна упомянутой второй ширине полосы частот.

С другой стороны, способ может содержать определение значения тональности низкочастотной полосы на основании одного или более сигналов низкочастотной субполосы между стартовой полосой и начальной полосой и определение коэффициента шумового смешения на основании целевого значения полосовой тональности и значения тональности низкочастотной полос, если первая ширина полосы частот меньше, чем вторая ширина полосы частот. Сравнение упомянутых первой и второй ширины поможет обеспечить определение коэффициента шумового смешения (и значений полосовой тональности) на минимальном количестве субполос (независимо от упомянутых первой и второй ширины полосы частот), что упростит вычисления.

Коэффициент шумового смешения можно определить на основании дисперсии целевого значения полосовой тональности и значения полосовой тональности источника (либо целевого значения полосовой тональности и значения тональности низкочастотной полосы). В частности, коэффициент b шумового смешения можно определить как

где - дисперсия значения Tcopy тональности источника сигнала (или значения тональности низкочастотной полосы) и целевого значения Thigh полосовой тональности.

Как было указано выше, значения полосовой тональности (источника, целевой или низкочастотной) можно определить, используя двухэтапный подход, описанный в настоящем документе. В частности, значение тональности частотной субполосы можно определить путем определения набора коэффициентов преобразования в соответствующем наборе частотных бинов на основании блока выборок аудиосигнала. Затем, используя набор коэффициентов преобразования, можно определить набор значений тональности для набора частотных бинов. Затем можно определить значение тональности частотной субполосы путем формирования первого поднабора из двух или более значений тональности из набора значений для двух или более соответствующих бинов набора частотных бинов, находящихся в границах данной частотной субполосы.

Согласно еще одному аспекту описан способ для определения значения тональности для первого частотного бина аудиосигнала. Значение тональности первого бина можно определить в соответствии с принципами, описанными в настоящем документе. В частности, значение тональности первого бина можно определить на основании дисперсии фазы коэффициента преобразования первого частотного бина. Кроме того, как подчеркивалось в настоящем документе, значение тональности первого бина можно использовать для аппроксимации высокочастотной компоненты аудиосигнала на основании низкочастотной компоненты аудиосигнала. Способ для определения значения тональности первого бина фактически можно использовать в контексте устройства аудиокодирования, использующего методики HFR.

Способ может содержать обеспечение последовательности коэффициентов преобразования в первом частотном бине для соответствующей последовательности блоков выборок аудиосигнала. Последовательность коэффициентов преобразования можно определить, применив преобразование из временной области в частотную область для последовательности блоков выборок (как было описано выше). Кроме того, способ может содержать определение последовательности фаз на основании последовательности коэффициентов преобразования. Коэффициент преобразования может представлять собой комплексную величину, а фазу коэффициента преобразования можно определить на основании функции арктангенса, применяемой к действительной и мнимой части комплексного коэффициента преобразования. Кроме того, способ может содержать определение фазового ускорения на основании последовательности фаз. Например, текущее фазовое ускорение для текущего коэффициента преобразования для текущего блока выборок можно определить на основании текущей фазы и на основании двух или более предыдущих фаз. Вдобавок, способ может содержать определение мощности бина на основании текущего коэффициента преобразования из последовательности коэффициентов преобразования. Мощность текущего коэффициента преобразования можно определить на основании квадрата величины текущего коэффициента преобразования.

Способ, кроме того, содержит аппроксимацию весового коэффициента, указывающего корень четвертой степени отношения мощности последовательных коэффициентов преобразования, с использованием логарифмической аппроксимации. Затем согласно данному способу выполняется взвешивание фазового ускорения с использованием аппроксимированного весового коэффициента и/или мощности текущего коэффициента преобразования для получения значения тональности первого бина. В результате аппроксимации весового коэффициента с использованием логарифмической аппроксимации можно обеспечить высококачественную аппроксимацию весового коэффициента одновременно со значительным упрощением расчетов по сравнению с тем случаем, когда определяют точный весовой коэффициент, что включает извлечение корня четвертой степени из отношения мощностей последовательных коэффициентов преобразования. Логарифмическая аппроксимация может содержать аппроксимацию логарифмической функции линейной функцией и/или полиномом (например, порядка 1, 2, 3, 4 или 5).

Последовательность коэффициентов преобразования может содержать текущий коэффициент преобразования (для текущего блока выборок) и непосредственно предыдущий коэффициент преобразования (для непосредственно предыдущего блока выборок). Весовой коэффициент может указывать корень четвертой степени отношения мощностей текущего коэффициента преобразования и непосредственно предшествующего коэффициента преобразования. Кроме того, как было указано выше, коэффициенты преобразования могут представлять собой комплексные числа, содержащие действительную часть и мнимую часть. Мощность текущего (предшествующего) коэффициента преобразования можно определить на основании квадрата действительной части и квадрата мнимой части текущего (предшествующего) коэффициента преобразования. Вдобавок, можно определить текущую (предшествующую) фазу на основании функции арктангенса действительной части и мнимой части текущего (предшествующего) коэффициента преобразования. На основании фазы текущего коэффициента преобразования и на основании фаз двух или более непосредственно предшествующих коэффициентов преобразования можно определить текущее фазовое ускорение.

Аппроксимация весового коэффициента может содержать получение текущей мантиссы и текущего показателя степени, представляющих текущий коэффициент преобразования из последовательности предшествующих коэффициентов преобразования. Кроме того, аппроксимация весового коэффициента может содержать определение значения индекса для заданной справочной таблицы на основании текущей мантиссы и текущего показателя степени. Справочная таблица, как правило, представляет взаимосвязь между множеством значений индекса и соответствующим множеством значений показателя степени для множества значений индекса. По существу, такая справочная таблица может обеспечить эффективное средство для аппроксимации показательной функции. В одном варианте справочная таблица содержит 64 или менее записей (то есть пар, состоящих из значения индекса и значения показателя степени). Аппроксимированный весовой коэффициент можно определить, используя значение индекса и данную справочную таблицу.

В частности, способ может содержать определение вещественного значения индекса на основании мантиссы и показателя степени. Затем можно определить значение индекса (в виде целочисленной оценки) путем усечения и/или округления вещественного значения индекса. В результате систематического выполнения операции усечения или округления в процесс аппроксимации можно ввести систематическое смещение. Упомянутое систематическое смещение может оказаться полезным в отношении воспринимаемого качества аудиосигнала, который кодируют с использованием способа определения значения тональности частотного бина, описанного в настоящем документе.

Аппроксимация весового коэффициента может, кроме того, содержать обеспечение предшествующей мантиссы и предшествующего показателя степени, представляющих коэффициент преобразования, предшествующий текущему коэффициенту преобразования. Затем можно определить значение индекса на основании однократного или многократного применения операции суммирования и/или операции вычитания к текущей мантиссе, предшествующей мантиссе, текущему показателю степени и предшествующему показателю степени. В частности, значение индекса можно определить, выполнив операцию взятия по модулю для ( е y − e z + 2 ⋅ m y − 2 ⋅ m z ) , где ey - текущая мантисса, ez - предшествующая мантисса, my - текущий показатель степени и mz - предшествующий показатель степени.

Как было указано выше, способы, описанные в настоящем документе, можно применить к многоканальным аудиосигналам. В частности, эти способы применимы к каналу многоканального аудиосигнала. В устройствах аудиокодирования для многоканальных аудиосигналов, как правило, применяется методика кодирования, называемая «связыванием каналов» (или сокращенно «связыванием»), для совместного кодирования множества каналов многоканального аудиосигнала. В этой связи согласно одному аспекту изобретения описан способ определения множества значений тональности для множества сопряженных каналов многоканального аудиосигнала.

Способ может содержать определение первой последовательности коэффициентов преобразования для соответствующей последовательности блоков выборок первого канала из множества связанных каналов. В качестве альтернативы, первую последовательность коэффициентов преобразования можно определить на основании последовательности блоков выборок связанного канала, полученного из множества связанных каналов. Способ может далее определять первое значение тональности для первого канала (или для связанного канала). С этой целью способ может содержать определение первой последовательности фаз на основании последовательности первых коэффициентов преобразования и определение первого фазового ускорения на основании последовательности первых фаз. Затем можно определить первое значение тональности для первого канала (или для связанного канала) на основании фазового ускорения для первой фазы. Кроме того, можно определить значение тональности для второго канала из множества связанных каналов на основании фазового ускорения для первой фазы. По существу, значения тональности для множества связанных каналов можно определить на основании фазового ускорения, определенного, исходя только из одного из связанных каналов, в результате чего упрощаются вычисления, связанные с определением тональности. Это возможно благодаря тому, что в результате связывания наблюдается выравнивание фаз множества связанных каналов.

Согласно другому аспекту описан способ определения значения полосовой тональности для первого канала многоканального аудиосигнала в устройстве кодирования на основе спектрального расширения (SPX). Устройство кодирования на основе SPX может быть выполнено с возможностью аппроксимации высокочастотной компоненты первого канала из низкочастотной компоненты первого канала. С этой целью устройство кодирования на основе SPX может использовать значение полосовой тональности. В частности, устройство кодирования на основе SPX может использовать значение полосовой тональности для определения коэффициента шумового смешивания, указывающего уровень шума, добавляемого к аппроксимированной высокочастотной компоненте. По существу значение полосовой тональности может указать тональность аппроксимированной высокочастотной компоненты перед шумовым смешением. Первый канал может быть связан устройством кодирования на основе SPX с одним или более другими каналами многоканального аудиосигнала.

Способ может содержать обеспечение множества коэффициентов преобразования на основании первого канала до связывания каналов. Кроме того, способ может содержать определение значения полосовой тональности на основании множества коэффициентов преобразования. Фактически, коэффициент шумового смешения можно определить на основании множества коэффициентов преобразования исходного первого канала, а не на основании связанного/несвязанного первого канала. Это может быть выгодным, так как это позволяет упростить вычисления, связанные с определением тональности в устройстве аудиокодирования на основе SPX.

Как подчеркивалось выше, множество коэффициентов преобразования, которые были определены на основании первого канала до связывания (то есть на основании исходного первого канала), можно использовать для определения значений тональности бинов и/или значений полосовой тональности, которые используют для определения стратегии повторной отправки координат SPX и/или для определения значительного затухания дисперсии (LVA) устройства кодирования на основе SPX. Используя вышеупомянутый подход к определению коэффициента шумового смешения первого канала на основании исходного первого канала (а не на основании связанного/несвязанного первого канала), можно повторно использовать значения тональности бинов, которые были определены для стратегии повторной отправки координаты SPX и/или для значительного затухания дисперсии