Способ и система подготовки жидкости для гидроразрывов
Иллюстрации
Показать всеНастоящее изобретение относится к получению расклинивающего агента, используемого при добыче углеводородов. Способ создания расклинивающего агента с частицами требуемых размеров, получаемого из шлама, извлеченного из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащий стадии: отделение воды от шлама с образованием потока мокрых твердых частиц и потока жидкости, смешивание потока мокрых твердых частиц с твердыми частицами с образованием загружаемого материала, расплавление загружаемого материала с получением материала расплавленного расклинивающего агента, резкое охлаждение расплавленного материала, измельчение охлажденного материала расклинивающего агента, сортировка частиц измельченного материала по размерам и смешивание частиц измельченного материала, не соответствующих установленным размерам, с загружаемым материалом. Система создания расклинивающего агента с частицами требуемого размера, получаемого из шлама, извлеченного из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащая элементы: средства отделения воды от шлама, средства для смешивания потока мокрых твердых частиц с твердыми частицами, средства для расплавления загружаемого материала, средства для резкого охлаждения расплавленного материала, средства для измельчения охлажденного материала, средства сортировки измельченного материала до получения частиц требуемого размера и средства для смешивания измельченного материала, размеры частиц которого не соответствуют установленным, с загружаемым материалом. Система для использования при выполнении операций по гидроразрыву, содержащая: первый сепаратор, содержащий патрубок для забора шлама и патрубок для выпуска шлама с первым содержанием воды, второй сепаратор, содержащий патрубок для забора шлама, расположенный так, чтобы в него мог поступать шлам из патрубка для выпуска шлама из первого сепаратора, и патрубок для выпуска потока мокрых твердых частиц со вторым - более низким - содержанием воды, печь для получения расплавленного расклинивающего агента, расположенная так, чтобы в нее мог поступать шлам из патрубка для выпуска потока мокрых твердых частиц из второго сепаратора, и снабженная выпускным отверстием, охладитель, расположенный так, чтобы в него мог поступать расплавленный расклинивающий агент из печи, дробилка, расположенная так, чтобы в нее мог поступать охлажденный расклинивающий агент из охладителя, мельница, расположенная так, чтобы в нее мог поступать дробленый расклинивающий агент из дробилки, первое сито, расположенное так, чтобы на него мог поступать размолотый материал из мельницы, и второе сито, расположенное так, чтобы на него мог поступать материал, пропущенный первым ситом. Изобретение развито в зависимых пунктах. Технический результат - обеспечение общественной безопасности при гидроразрыве пластов. 3 н. и 26 з.п. ф-лы, 10 ил.
Реферат
Предшествующий уровень техники настоящего изобретения
Настоящее изобретение относится к устройству и технологическим стадиям обработки промывочной и пластовой воды, вытекающей из скважины в процессе ее отработки, и иных компонентов, которые используются для создания каналов или разрывов или трещин гидравлическим методом в скважинах для добычи углеводородов (например, на глубоко залегающих сланцевых месторождениях).
На протяжении многих веков люди пытаются найти применение свойствам, присущим углеводородным соединениям природного происхождения, и эффективно использовать их для повышения своего жизненного уровня и решения многочисленных жизненных задач. В течение более двухсот лет «Горючие пески» Киркука обеспечивают теплом курдские племена Ирака. Для этого надо просто поджечь метан, который по сей день непрерывно выходит на поверхность земли из глубоко залегающих геологических образований. Кроме того, нефтепроявления на поверхности земли в Пенсильвании и Калифорнии использовались местными индейцами для просмаливания каноэ, на которых они путешествовали по водным артериям Северной Америки. Это только два примера раннего использования человеком природного газа и сырой нефти для совершенствования своего образа жизни.
Успешное бурение неглубокой нефтяной скважины в Пенсильвании, которое в конце 19-ого века выполнил Эдвин Дрейк, ознаменовало собой начало эпохи самого масштабного экономического роста в истории человечества, локомотивом которого - в значительной мере - стали успехи в разведке, добыче и переработке газообразных и жидких углеводородных соединений природного происхождения. В настоящее время они используются для производства различных видов топлива для транспортных средств, электроэнергии, горюче-смазочных материалов, продукции нефтехимии и многих тысяч других продуктов, которые мы используем в повседневной жизни. Зарождение и развитие нефтяной промышленности стало движущей силой и одним из основных факторов, способствующих формированию и небывалому росту мировой экономики. Этот период экономического развития известен как «Промышленная революция».
В этот период было открыто множество новых нефтяных месторождений в самых разных частях света; при этом наблюдались фантастические темпы роста спроса на сырую нефть и нефтепродукты за счет множества новых сфер применения продукции, получаемой из нефти, которые продолжают появляться и в двадцать первом веке. На протяжении всего этого периода в нефтяной промышленности было открыто множество новых месторождений и крупных пластов или залежей смесей жидких и газообразных углеводородных соединений традиционного состава (как на наземных, так и на морских нефтяных промыслах в самых разных точках мирового океана по всему миру). Вместе с тем, в нефтяной промышленности были также разведаны огромные запасы смесей тяжелых и легких углеводородных соединений, обладающих нестандартной структурой, которые так переплетены в матрицах материалов сложного строения, что извлечение содержащихся в них углеводородных молекулярных соединений становится нерентабельным.
Источники этих нестандартных углеводородных соединений подразделяются на две разные категории. Во-первых, существуют «тяжелые» или длинноцепочечные углеводородные молекулярные соединения, такие как нефть марки «майя» (Мексика) или соединения, добываемые на нефтеносных песках в Канаде и на месторождениях тяжелой нефти в нефтедобывающих полях Керн Ривер и Бэлридж (Калифорния) или в нефтеносном поясе в дельте реки Ориноко (Венесуэла). Добываемая в этих местах тяжелая нефть характеризовалась чрезвычайно высокой вязкостью и студенистым состоянием при температуре окружающей среды. В этих случаях первостепенное значение придавалось уменьшению температуры застывания нефти или вязкости. Во-вторых, существуют «легкие» или короткоцепочечные углеводородные молекулярные соединения, содержащиеся в залежах сланцев по всей территории Соединенных Штатов, а также во многих других регионах мира.
В некоторых странах, а именно в Испании, Эстонии и Бразилии, имеются крупные, но не глубоко залегающие, месторождения сланцевой нефти; при этом в указанных странах нет крупных запасов или залежей обычной сырой нефти. Здесь для извлечения сланцевой нефти или керогена использовался способ «грубой силы», заключающийся в нагреве сланцевой породы в герметичных высокотемпературных ретортах. Такая практика получила распространение еще в двадцатых годах прошлого века. Топливо на основе извлеченного керогена или горючих сланцев затем сжигалось в печах для обогрева или использовалось в транспортных средствах с дизельными двигателями или двигателями внутреннего сгорания других типов. Топливо на основе извлеченного керогена характеризовалось почти такой же калорийностью в британских тепловых единицах и схожими характеристиками горения, что и бензин стандартного качества, полученный из обычной сырой нефти на нефтеперегонных заводах. Указанные страны испытывали также дефицит твердой валюты или долларов США, что препятствовало приобретению природной сырой нефти на международных сырьевых рынках, но зато они обладали большими запасами сланцевых пород (хотя объемы керогена или битуминозных сланцев, добываемых на этих сланцевых месторождениях, составляли менее четырех весовых процентов от всего объема сланцевых пород, т.е. около девяноста пяти процентов сланцевых пород уходило в отходы). Горячие конденсируемые углеводородные соединения сжижались в обычных конденсирующих теплообменниках, превращаясь в топливо на основе керогена. Неконденсируемые углеводороды, главным образом метан, просто сжигались или выбрасывались в атмосферу. Все эти короткоцепочечные или легкие углеводородные соединения заключены в матричную структуру битуминозных сланцев, и при нагреве под давлением они высвобождаются из указанной матрицы в виде газа.
В Соединенных Штатах Америки существует множество районов, где можно обнаружить сланцевые породы, но большинство таких месторождений залегает на глубине от пяти до десяти тысяч футов. Еще до двадцатых годов прошлого века предпринимались попытки извлечения керогена из пластовых сланцевых формаций. Хотя сланцевое масло доказало свою пригодность для использования в качестве углеводородного продукта, расходы на его извлечение намного превосходили рыночную стоимость аналогичных продуктов; таким образом, добыча горючих сланцев оказалась нерентабельной. На то время дополнительные меры по развитию и капиталовложения не оправдались.
В течение последних нескольких лет все эти факторы и условия резко изменились, что обусловлено, главным образом, стремительным развитием и внедрением двух новых технологий. Первая из них предусматривает методы точно регулируемого и управляемого наклонно-направленного бурения, которые позволяют буровым установкам сначала осуществлять вертикальное бурение, а затем выполнять регулируемый или управляемый поворот в горизонтальное положение с бурением до заданной глубины. После этого можно продолжать бурение ствола скважины в горизонтальной плоскости, пробуривая сланцевую формацию на значительное расстояние. Второе наиболее значимое технологическое новшество заключается в применении старой технологии, а именно гидравлического разрыва старых вертикальных нефтяных скважин для повышения их дебита, а также для стимулирования дальнейшей разработки старых скважин с целью продления экономичного срока службы истощающихся нефтяных месторождений.
За долгие годы было разработано и внедрено множество способов продления жизненного цикла старых нефтяных месторождений и месторождений поздней стадии разработки. Один из приемов, который был использован для поддержания энергии пласта на истощающихся нефтяных месторождениях, предусматривал затопление. Кроме того, аналогичный результат давала закачка метана под давлением (при его наличии и при условии, что он не горит). Другой испробованный способ предусматривал использование «кумулятивных зарядов» взрывчатки, которая закладывалась в колонну обсадных труб таким образом, чтобы сдетонировать в стволе скважины в области продуктивной зоны, и чтобы сила взрыва могла пробить стенку колонны обсадных труб и открыть разрывы или трещины.
Применение таких способов добычи нефти вторичными методами (ДНВМ) было нормой на протяжении многих лет. Однако некоторые нефтяные компании были обеспокоены опасностью использования взрывчатых веществ для продления жизненного цикла истощающихся нефтяных месторождений; и в конце сороковых годов двадцатого века для создания разрывов или трещин в продуктивных зонах получила распространение практика применения песчано-водяных смесей под большим давлением. Эта технология была разработана в попытках добиться повышения дебита нефтяных скважин, а также продления жизненного цикла старых и истощающихся нефтяных месторождений без использования взрывчатки. Открытие новых каналов гидравлическим способом в старых продуктивных пластах облегчало выход газообразных и жидких углеводородов под забойным давлением на поверхность, где они собирались в виде сырой нефти или газообразных продуктов.
Кроме того, в этот период была широко распространена практика использования установок для капитального ремонта скважин с целью очистки колонн обсадных труб старых нефтяных скважин от наслоений парафинистых и битуминозных соединений, которые ограничивали выход углеводородов.
Применение всех этих способов интенсификации притока на нефтяных скважинах, а также использование других способов добычи нефти вторичными методами продолжалось в течение долгих лет, на протяжении которых было разработано множество усовершенствований. Одним из таких усовершенствований стала разработка более мощных грязевых насосов повышенной производительности для выкачивания барита, которые были необходимы для бурения все более глубоких нефтяных скважин, как на прибрежных, так и на морских месторождениях. Некоторые из этих нефтяных скважин были пробурены на морских глубинах, превышающих восемь тысяч футов; а дальнейшее бурение может добавить к указанным глубинам еще более двадцати тысяч футов, вследствие чего появилась необходимость в увеличении производительности и повышении максимального давления на выходе насосов, используемых в процессе гидравлического разрыва.
Открытие ряда крупных месторождений горючих сланцев вкупе со вновь разработанными технологиями управляемого наклонно-направленного бурения, а также возможность использования оборудования для выполнения гидравлических разрывов под высоким давлением позволили нефтяной промышленности продвинуться в разработке новых способов гидроразрыва. Они дали возможность осуществлять наклонно-направленное бурение в глубоко залегающих сланцевых формациях, как в вертикальных, так и в горизонтальных плоскостях, а затем выполнять гидравлический разрыв формации для высвобождения газообразных и жидких углеводородов, содержащихся в сланцевых матрицах. Эти новые технологии привели к кардинальным изменениям в оценке жидких и газообразных углеводородов на мировом рынке энергоресурсов.
Однако в тот период времени, когда применение метода гидравлического разрыва получало все более широкое распространение, его развитие - как в технологическом плане, так и с точки зрения применения на практике - осуществлялось неупорядоченно, бессистемно и спонтанно. Многие их внесенных усовершенствований явились результатом попыток повышения дебита нефтяных скважин и продления жизненного цикла действующих нефтяных месторождений с использованием ненаучных подходов, т.е. методом проб и ошибок. Все это делалось без должного всестороннего анализа или понимания обоснованных научных причин необходимости внесения таких усовершенствований. Лучшим примером такого ненаучного подхода в попытках найти решения конкретных задач по обработке воды служит то, что происходит при выборе и использовании различных типов расклинивающих агентов в процессе гидроразрыва пласта.
После завершения первоначального разрыва водой под давлением в разрывах или трещинах, образованных за счет применения метода воды под давлением, должны остаться прочные расклинивающие агенты или проппанты, если необходимо повысить дебит добываемых углеводородов до требуемого уровня. Расклинивающие агенты представляют собой средства «расклинивания» новых отверстий или трещин в формациях, специально подобранные для того, чтобы они могли поддерживать новые разрывы или трещины в открытом состоянии, а также позволять углеводородным соединениям свободно проходить по стволу скважины; и поэтому они могут нагнетаться с помощью контрольно-измерительного оборудования устья скважины.
Без тщательно подобранных расклинивающих агентов, характеризующихся достаточной прочностью и правильными размерами для непрерывного поддержания трещин в открытом состоянии, дебит скважины будет быстро уменьшаться по мере измельчения расклинивающего агента и заполнения трещин частицами более мягкого материала. Это все приведет к сокращению дебита и, в итоге, заблокирует приток углеводородов в ствол скважины. Было протестировано множество типов песка разного состава, формы и размеров, а также множество других типов расклинивающих агентов, таких как оксиды алюминия и пр.
Основная проблема в этом случае состоит в том, что правильно подобранный расклинивающий агент, который должен быть использован в процессе гидроразрыва пласта, является единственным значимым фактором, влияющим на достижение и сохранение коэффициента пористости, который необходим для того, чтобы каналы, образованные в результате разрыва водой под давлением, могли реализовать все преимущества процесса гидроразрыва.
Хотя эти аспекты важны при гидроразрыве в вертикально пробуренных нефтяных скважинах с выделенными продуктивными пластами, они имеют гораздо большее значение при применении гидроразрыва в горизонтально-слоистых формациях нефтеносных сланцев. Благодаря «Сланцевой революции» во всем ее масштабе мы только начинаем познавать и понимать природу и характеристики многочисленных видов сланцевых формаций.
Нефтеносные сланцы представляют собой вид осадочных отложений, сформированных миллиарды лет тому назад преимущественно в виде карбонатов кальция, карбонатов натрия, гидрокарбонатов кальция и кварца, а также почвенных материалов и прочих соединений, которые заключались в матрицу материалов по мере формирования этих сланцев, и в итоге были отложены в известных на сегодняшний день сланцевых формациях. Многие сланцевые формации пересекают линии тектонических разломов в земной коре, и поэтому они могут характеризоваться не сплошной формой. Некоторые сланцевые формации немного наклонены, как в вертикальных, так и в горизонтальных плоскостях. Вследствие этого важнейшей составной частью процесса разведочных работ и освоения месторождений сланцевого газа становится локализация с помощью каротажных кабелей, а также трехмерный сейсмический анализ.
Оглядываясь назад, важно понять и акцентировать свое внимание на том важнейшем факте, что надлежащим образом структурированные расклинивающие агенты с частицами правильных размеров способствуют обеспечению оптимальной добычи газообразных и жидких углеводородных соединений, которые являются продуктом, полученным в результате гидроразрыва залежей горючих сланцев. В нефтяной промышленности этот факт не был до конца понят и осмыслен вплоть до начала двадцать первого века. К концу двадцатого столетия нефтяная промышленность уже более пятидесяти лет использовала технологию гидроразрыва для добычи нефти вторичными методами и интенсификации притока в добывающие нефтяные скважины. Все операции по гидроразрыву пластов, которые проводились до начала двадцать первого века, были нацелены на то, чтобы продлить жизненный цикл уже действующих вертикально пробуренных нефтяных скважин или повысить величину добычи углеводородов на вновь освоенных скважинах. Все эти операции по гидроразрыву выполнялись на вертикально пробуренных нефтяных скважинах и приводили к разрыву продуктивных пластов, состоящих в основном из песка, в результате чего жидкие или газообразные углеводороды могли выходить наружу в условиях забойного давления и температуры. Все это выполнялось в песчаных пластах, характеризующихся относительно высокими фильтрационно-емкостными показателями или коэффициентами пористости.
С внедрением оборудования для управляемого вертикально-горизонтального бурения вместе с насосными установками сверхвысокого давления для гидроразрывов (называемыми также «напорными насосными установками») нефтяная промышленность стала использовать те же методы гидроразрыва, что были успешно разработаны и опробованы в ходе выполнения операций по гидроразрыву на вертикально пробуренных нефтяных скважинах, а также выполнять такие же операции применительно к стволам скважин, пробуренных в горизонтальной плоскости в глубоко залегающих сланцевых формациях, но с гораздо менее удовлетворительными результатами. Некоторые сланцевые формации характеризовались большей продуктивностью в сравнении с другими отложениями, и было испробовано множество подходов в попытках увеличить объем инкапсулированных углеводородов, высвобожденных в результате гидроразрыва пластов. Для регулирования роста водных микроорганизмов, препятствующих выходу углеводородов, пробовали добавлять химикаты. Химикаты также добавляли для регулирования уровня коррозии и коркообразования. Кроме того, в попытках повысить способность воды для гидроразрывов проникать в трещины, образованные водой под высоким давлением, добавлялись химикаты, уменьшающие поверхностное натяжение. Некоторые комбинации операций оказывались более результативными в отношении определенных сланцевых образований в сравнении с теми же действиями, предпринимаемыми в отношении других сланцевых формаций, что проявлялось, в частности, в разных процентных долях или объемах углеводородного продукта, получаемого в итоге из определенного количества углеводородов, содержащихся в данной залежи сланцев.
Это продолжалось до тех пор, пока в нефтяной промышленности не начали приходить к понимаю того, что традиционные технологические принципы не могут быть в полной мере применены ко вновь разработанным методикам извлечения жидких и газообразных углеводородов, содержащихся в пластах минерализованных пород, которые позволяют без труда выводить эти углеводороды на поверхность даже из глубоко залегающих пластов, характеризующихся высокой температурой и давлением. В поисках понятных решений этих задач и их комплексного анализа инженеры-нефтяники обратились к принципам применения критериев геологии минералов в рамках механики скальных пород. Результаты недавно проведенных научно-исследовательских работ показали, что все сланцевые формации можно классифицировать и условно разбить на две легко измеряемые и идентифицируемые группы, а именно на «мягкие сланцы» и «твердые сланцы» (смотрите, например: Denney Dennis, Fracturing-Fluid Effects on Shale and Proppant Embedment, журнал JPT, c. 59-61, (март 2012 года)). Критерии тестирования основаны на принципе измерения напряжения/деформации или величины модуля нормальной упругости заданного материала, как до, так и после гидроразрыва. В ходе тестирования измеряется наноинденторная твердость минерала после приложения напряжения определенного уровня. Протестированные твердые сланцы показали низкие значения наноинденторной твердости, тогда как мягкие сланцы продемонстрировали более высокие показатели наноинденторной твердости. Твердые сланцы содержали, главным образом, карбонаты кальция, кремнезем, кальциты и кварц в их сочетании с коллоидными глинами; при этом мягкие сланцы содержали гидрокарбонаты натрия, нахколиты и компоненты коллоидных глин.
Способность точно определять истинные характеристики минералов горючих сланцев чрезвычайно важна при выборе наиболее подходящих нефтедобывающих технологий, необходимых для оптимизации или максимального увеличения суммарной добычи углеводородных компонентов из конкретной залежи или месторождения сланцев. Реакция пластов мягких сланцев отличается от реакции пластов твердых сланцев, когда и те и другие подвергаются воздействию давления гидравлической воды одинаковой величины в течение одного и того же времени выдержки. В твердых сланцах под высоким гидравлическим давлением образуются трещины или каналы с относительно короткой длиной проникновения и небольшим диаметром в поперечном сечении. С другой стороны, в мягких сланцах под таким же высоким гидравлическим давлением в течение того же времени выдержки образуются трещины, характеризующиеся большей длиной проникновения и большим диаметром поперечного сечения, чем при гидроразрыве материалов в формациях твердых сланцев.
Помимо регулирования роста количества микроорганизмов, предотвращения коркообразования и предоставления реагента на водной основе для снижения поверхностного натяжения, важнейшим фактором, влияющим на возможность извлечения максимального или оптимального объема углеводородов из конкретной сланцевой формации, является правильный выбор размеров частиц и типа расклинивающего агента, который подается в продуктивный пласт вместе с жидкостью для гидроразрыва. Если гидроразрыву подлежат твердые сланцы, то частицы расклинивающего агента или проппанта должны обладать достаточно небольшими размерами с тем, чтобы они могли без труда заходить в трещины малого диаметра, образованные в результате гидроразрыва твердых сланцев, и достаточно прочными с тем, чтобы они могли поддерживать трещины или каналы в открытом состоянии в течение достаточно длительного периода времени, позволяя содержащемуся в них жидкому или газообразному углеводородному продукту свободно перемещаться по стволу скважины в вертикальных и горизонтальных направлениях для того, чтобы его можно было извлечь после выхода на поверхность и поступления в наземное оборудование. Если размеры частиц используемого расклинивающего агента слишком велики для трещин малого диаметра, то этот расклинивающий агент не сможет проникнуть в трещины и остаться там для поддержания каналов в открытом состоянии, вследствие чего объем извлекаемых углеводородов резко сократится. В альтернативном варианте, если операция по гидроразрыву проводится на формации мягких сланцев, то частицы правильно подобранного расклинивающего агента должны быть больше в диаметре, чем частицы расклинивающего агента, пригодного для использования в пластах твердых сланцев. Это позволит частицам расклинивающего агента зайти в трещины большего диаметра, которые были образованы в результате гидроразрыва пласта мягких сланцев. Расклинивающий агент с частицами меньшего размера не будет таким эффективным, и это приведет к существенному уменьшению объемов добываемого углеводородного продукта.
Теперь мы вооружены научными данными в отношении разницы между различными типами сланцевых формаций, которыми может оперировать нефтяная промышленность, в частности, в отношении экономической важности правильного выбора расклинивающего агента или проппанта для гидроразрыва пластов горючих сланцев разного типа. Теперь мы знаем, что наилучший расклинивающий агент для гидроразрыва мягких сланцев отличается от наилучшего расклинивающего агента, который может быть использован для гидроразрыва твердых сланцев. Таким образом, для каждого конкретного сланца требуется свой расклинивающий агент.
Соответственно, цель примеров осуществления настоящего изобретения состоит в том, чтобы предложить широкий спектр расклинивающих агентов или проппантов с частицами надлежащих размеров с использованием практически всех шламоподобных материалов, выходящих на поверхность и содержащихся в потоке жидкости, вытекающей из скважины в результате гидроразрыва газовых или нефтяных пластов.
Вследствие стремительного увеличения масштабов и роста интенсивности применения гидроразрывов на сланцевых месторождениях, разрабатываемых в разных частях Соединенных Штатов, возник ряд вопросов экологического характера, на которые следует найти ответы, если эта отрасль собирается успешно развиваться. Например, для уничтожения, регулирования или устранения водных микроорганизмов, находящихся в жидкости, используемой в процессе гидроразрыва пластов, используются токсичные химикаты (такие как глютаральдегид). Существуют серьезные опасения в отношении того, что такая жидкость для гидроразрывов с токсичными химикатами может проникать в водоносные слои питьевой воды. Кроме того, определенную озабоченность вызывает возможность проникновения химикатов, уменьшающих трение (например, полиакриламида), или ингибиторов образования отложений (например, солей фосфиновой кислоты) в водоносный горизонт и его загрязнение. Очищающие мыльные растворы, а также химикаты, такие как хлористый калий, широко применяются в качестве поверхностно-активных веществ, снижающих поверхностное натяжение, что также может представлять угрозу для здоровья людей. Общественность озабочена также существующей практикой закачки насыщенной солями жидкости, вытекающей из скважины в процессе ее отработки, в ликвидируемые скважины.
В некоторых примерах стандартных операций по гидроразрыву водяная смесь после взрывного пробития горизонтальной обсадной колонны поэтапно закачивается под высоким давлением во множество отдельных зон разломов, каждая из которых закупоривается пакерными втулками. Это позволяет водяной смеси оставаться под давлением в сланцевой формации в течение нескольких дней, образуя каналы, разломы или трещины, которые после сброса гидравлического давления в результате бурения гибкой трубой обеспечивают проходы для газообразных или жидких углеводородов, позволяющие им выходить на поверхность. Для каждой отдельной зоны разлома давление в водяной смеси уменьшается поочередно с тем, чтобы вода, не находящаяся под давлением, могла перетекать обратно в горизонтальной плоскости в ствол скважины, а затем идти вверх по вертикальному сечению зацементированной скважины до отметки поверхности земли. Большой объем расклинивающего агента остается в этих каналах, но значительное его количество выходит наружу вместе с водой, вытекающей из скважины.
Объем воды, вытекающей из скважины после гидроразрыва, составляет менее пятидесяти процентов от общего объема воды, закачанной для проведения гидроразрыва. Поток воды, вытекающей из скважины, также содержит материалы, выщелачивающиеся из пласта сланцев, такие как гидрокарбонаты (например, нахколиты). Водяная смесь, вытекающая из скважины, также несет в себе множество летучих органических соединений, а также останки микроорганизмов, растворенные соли или солевые растворы и значительный объем первоначально закаченного расклинивающего агента с его мелкими частицами. Обработка и/или утилизация этого обратного потока представляет серьезную проблему для отрасли. Смотрите, например, следующие материалы: Smyth Julie Can, Ohio quakes put pressure on use of fracturing, издательство Associated Press, c. D1 и D6 (2012 год); Lowry Jeff с соавторами, Haynesville trial well applies environmentally focused shale technologies, журнал World Oil, c. 39-40 и 42 (декабрь 2011 года); Beckwith Robin, Hydraulic Fracturing The Fuss, The Facts, The Future, журнал JPT, c. 34-35 и 38-41 (декабрь 2010 года); Ditoro Lori К, The Haynesville Shale. Upstream Pumping Solutions, c. 31-33 (2011 год); Walser Doug, Hydraulic Fracturing in the Haynesville Shale: What's Different? Upstream Pumping Solutions, c. 34-36 (2011 год); Bybee Karen, In-Line-Water-Separation Prototype Development and Testing, журнал JPT, c. 84-85 (март 2011 года); Bybee Karen, Produced-Water-Volume Estimates and Management Practices, журнал JPT, c. 77-79 (март 2011 года); Katz Jonathan, Report: Fracking to Grow U.S. Water-Treatment Market Nine-Fold by 2020, журнал Industry Week (май 2012 года); заявка на патент США №2012/0012307 А1; заявка на патент США №2012/0024525 А1; заявка на патент США №2012/0070339 А1; заявка на патент США №2012/0085236 А1; и заявка на патент США №2012/0097614 А1. Каждый из указанных выше документов включен в настоящую заявку посредством ссылки для использования в любых целях.
В настоящее время распространена практика уничтожения микроорганизмов, находящихся в водной смести (или изначально, или на месте), с помощью химикатов или различных биоцидов с тем, чтобы газообразные или жидкие углеводороды, содержащиеся в сланцевой формации, могли свободно перемещаться по каналам и трещинам, освобожденным водяной смесью, вытекающей из скважины в процессе ее отработки. Кроме того, каналы, образованные в процессе гидроразрыва, должны поддерживаться в открытом состоянии с помощью расклинивающих агентов или проппантов, которые были внесены в трещины продуктивных пластов путем закачки водяной смеси на начальной стадии. Если микроорганизмы не уничтожить, то они начнут быстро размножаться; и если эти микроорганизмы останутся в трещинах, их количество будет увеличиваться, и в итоге они уменьшат или полностью заблокируют выход углеводородов из этих трещин. Еще одна существенная проблема, связанная с микроорганизмами, заключается в возможном присутствии штаммов микробов, которые обладают свойством поглощать серу в свободном состоянии или любые серосодержащие соединения и вырабатывать сероводород, который в обязательном порядке должен удаляться из потока газообразного углеводородного продукта, поскольку он является чрезвычайно опасным канцерогенным веществом. Во избежание обозначенной проблемы должны быть уничтожены все типы микроорганизмов.
Помимо возможности размножения микроорганизмов и блокирования ими потока углеводородного продукта, проблемой при закачке водяной смеси может также стать наличие растворенных примесей в водном растворе, которые могут откладываться в виде осадка или корки в тех же каналах или трещинах. Если допустить коркообразование в этих каналах, то это сократит или даже заблокирует выход углеводородов на поверхность. Во избежание такой ситуации в практике нефтяной отрасли, существующей на сегодняшний день, предпринимаются попытки связывания растворенных примесей и их прикрепление к взвешенным или иным коллоидным частицам, присутствующим в водной смеси, которые удаляются перед закачкой в скважину; впрочем, эти усилия пока еще не продемонстрировали достаточную эффективность. Смотрите, например, следующие материалы: Denney Dennis, Fracturing-Fluid Effects on Shale and Proppant Embedment, журнал JPT, c. 59-61 (март 2012 года); Kealser Vic., Real-Time Field Monitoring to Optimize Microbe Control, журнал JPT, c. 30, 32-33 (апрель 2012 года); Lowry Jeff с соавторами, Haynesville trial well applies environmentally focused shale technologies, журнал World Oil, c. 39-40 и 42 (декабрь 2011 года); Rassenfoss Stephen, Companies Strive to Better Understand Shale Wells, журнал JPT, c. 44-48 (апрель 2012 года); Ditoro Lori K, The Haynesville Shale. Upstream Pumping Solutions, c. 31-33 (2011 год); Walser Doug, Hydraulic Fracturing in the Haynesville Shale: What's Different? Upstream Pumping Solutions, c. 34-36 (2011 год); Denney Dennis, Stimulation Influence on Production in the Haynesville Shale: A Playwide Examination, журнал JPT, c. 62-66 (март 2012 года); Denney Dennis, Technology Applications, журнал JPT, c. 20, 22 и 26 (январь 2011 года). Все указанные работы включены в настоящую заявку посредством ссылки для использования в любых целях.
В последние годы в нефтяной промышленности предпринимаются попытки выработать ряд мер по решению этих проблем. Использование ультрафиолета вместе с небольшим количеством химических биоцидов оказалось недостаточно эффективным способом уничтожения водных микроорганизмов. Такую же ограниченную эффективность в плане уничтожения микроорганизмов показало использование ультразвука высокой частоты. Обеим этим системам недостает интенсивности и мощности для эффективного уничтожения всех водных микроорганизмов только с помощью одного слабого кратковременного воздействия и практически без какой-либо остаточной эффективности. Для действенного уничтожения всех микроорганизмов, присутствующих в воде, обеим системам требуется некоторое количество химических биоцидов. Кроме того, в качестве биоцидов/коагуляторов некоторые компании используют генераторы электромагнитных волн низкой частоты или интенсивности; однако этот способ также демонстрирует минимальную эффективность.
Таким образом, цель некоторых из представленных ниже примеров заключается в том, чтобы представить экономичные и удовлетворительные решения некоторых основных экологических вопросов, имеющих общеотраслевое значение. Цели других примеров состоят в том, чтобы устранить необходимость в скважинах для закачки в пласт соленой воды, прекратить использование токсичных химикатов в качестве биоцидов для уничтожения микроорганизмов или предотвращения коркообразования и восстановления обратной или пластовой воды с целью ее повторного использования при проведении последующих операций по гидроразрыву пластов. Примеры осуществления настоящего изобретения дают технически обоснованные и экономически жизнеспособные решения многих вопросов, связанных с обеспечением общественной безопасности при гидроразрыве пластов, которыми обеспокоены в отрасли.
Краткое раскрытие настоящего изобретения
К преимуществам различных примеров осуществления настоящего изобретения относится уменьшенная потребность в использовании соленой воды или полное отсутствие такой потребности, поскольку практически все растворенные твердые частицы связываются и преобразуются во взвешенные частицы, которые выделяются и смешиваются с извлекаемым расклинивающим агентом для последующего включения в состав материала, подаваемого на разложение методом пиролиза во вращающейся печи. Подобным же образом в примерах реализации заявленного изобретения устранена потребность в химических биоцидах за счет применения генератора электромагнитных волн высокой интенсивности и сверхвысокой переменной частоты, предназначенного для уничтожения микроорганизмов, присутствующих в воде до ее закачки в формацию. Электромагнитные волны также предотвращают коркообразование, вследствие чего устраняется необходимость в добавлении ингибиторов образования отложений в водяную смесь для гидроразрыва. В результате практически вся промывочная вода, вытекающая из скважины после выполнения гидроразрыва, может быть повторно использована; при этом все оставшиеся твердые вещества могут быть переработаны и повторно растворены в расклинивающем агенте, подготовленном надлежащим образом и содержащим частицы требуемого размера, для последующего использования в операциях по гидроразрыву. Кроме того, поскольку летучие органические соединения сжигаются и испаряются, существует потребность в установках по удалению осадков или иных видов твердых отходов.
Согласно одному из аспектов настоящего изобретения предложена система, предназначенная для использования при операциях по гидроразрыву пластов, которая включает в себя следующие элементы: первый сепаратор, содержащий патрубок для забора шлама и патрубок для выпуска шлама с первым содержанием воды; второй сепаратор, содержащий патрубок для забора шлама, расположенный таким образом, чтобы в него мог поступать шлам из патрубка для выпуска шлама из первого сепаратора, и патрубок для выпуска шлама со вторым - более низким - содержанием воды; печь, расположенная таким образом, чтобы в нее мог поступать шлам из патрубка для выпуска шлама из второго сепаратора, и снабженная выпускным отверстием; охладитель, расположенный таким образом, чтобы в него мог поступать шлак из печи; дробилка, расположенная таким образом, чтобы в нее могу поступать охлажденный шлак из охладителя; мельница, расположенная таким образом, чтобы в нее мог поступать дробленый шлак из дробилки; первое сито, расположенное таким образом, чтобы на него мог поступать размолотый материал из мельницы (при этом размер ячеек первого сита задает верхний предел размера частиц расклинивающего агента); и второе сито, расположенное таким образом, чтобы на него мог поступать материал, пропущенный первым ситом (при этом размер ячеек второго сита задает нижний предел размера частиц расклинивающего агента). По меньшей мере, в одном из примеров осуществления настоящего изобретения система также включает в себя бункер для хранения расклинивающего агента, расположенный таким образом, чтобы в него мог поступать расклинивающий агент, скапливающийся м