Способ удаления радона из воздуха помещения
Иллюстрации
Показать всеИзобретение относится к экологии и может быть использовано для осуществления радонозащитных мероприятий в различных зданиях. Способ удаления радона из воздуха помещений заключается в пропускании воздуха через поглотительные фильтры из активированного угля, сорбирующие радон. Очищенный воздух подвергают сжатию, пропуская его через воздушный компрессор, и поддерживают установленное значение величины подпора воздуха в помещении сооружения с помощью управляемого редуктора. Изобретение позволяет очистить атмосферный воздух от радона, поступающего в помещения защитных сооружений, и создать препятствие для поступления почвенного радона через подземные ограждающие конструкции сооружения. 1 ил.
Реферат
Изобретение относится к экологии и может быть использовано для осуществления радонозащитных мероприятий в различных зданиях, а также в защитных сооружениях гражданской обороны (ЗС ГО).
В режиме повседневной деятельности ЗС ГО по решению руководителей объектов экономики могут использоваться для нужд организаций и обслуживания населения. При этом ЗС ГО допускается использовать для нужд организаций и для обслуживания населения только при выполнении обязательных требований действующих нормативных документов к помещениям соответствующего функционального назначения. Таким образом, в режиме повседневной деятельности среднегодовая эквивалентная равновесная объемная активность (ЭРОА) дочерних продуктов радона и торона в воздухе помещений не должна превышать 200 Бк/м3.
Объемная активность радона в почвенном воздухе может составлять от нескольких тысяч до нескольких сотен тысяч Бк/м3. На открытой территории выделяемый из почвы радон быстро рассредоточивается в практически неограниченном объеме наружного воздуха. При возведении здания выделяющий радон участок территории изолируется от окружающего пространства. Поэтому радон, выделяющийся из залегающих под зданием грунтов, не может свободно рассредоточиваться в атмосфере, проникает в здание, и его концентрация в воздухе помещений становится выше, чем в наружном воздухе. В настоящее время разработан ряд способов противорадоновой защиты в жилых зданиях и сооружениях, расположенных на территориях с повышенными выделениями радона из почв или в которых радон выделяется из строительных материалов стен и перекрытий. В общем случае снижение радона в воздухе помещений может быть достигнуто за счет следующих технических решений: подбор участка для строительства на территории с минимальным выходом природного радона из почвы; применение различных конструктивных решений, препятствующих проникновению радона из почвы в здание; вентиляция (принудительная или естественная) с целью удаления радона из воздуха помещений.
Известен способ защиты от проникновения радона в помещения зданий (Патент №2374404 РФ, МПК Е04В 1/92, G21F 1/04. Способ защиты от проникновения радона в помещения зданий / Р.А. Назиров, И.В. Тарасов, Е.В. Пересыпкин. С.А. Кургуз; Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет (РФ). - №2007123683/0; Заявл. 25.06.2007; Опубл. 27.11.2009, Бюл. №33).
Способ защиты от проникновения радона в помещения зданий включает устройство монолитной стяжки на цементном вяжущем, причем стяжку наносят на свежеуложенный по грунту дополнительный защитный слой из гипса или гипсосодержащего вещества с образованием, вблизи границы раздела между гипсом и монолитной стяжкой дополнительного количества гидросульфоалюмината кальция, толщина которого составляет не более 10 мм.
В качестве гипсосодержащего вещества использован отход производства цветных металлов (кек). Маточные растворы, содержащие в основном ионы железа, натрия, аммония, хлора и сульфат-ион, нейтрализуют известковым молоком. Отходы нейтрализации этих растворов называются гипсосодержащими кеками, представляющими собой тестообразную массу, состоящую в основном из тонкодисперсного двуводного гипса, известкового теста, аморфных соединений железа и воды. Минералогический состав кека представлен в основном гипсом, гидратированной известью и вторичным карбонатом кальция.
Способ осуществляют следующим образом.
На грунтовое основание здания наносят слой гипса или гипсосодержащего вещества толщиной не более 10 мм. В качестве гипсосодержащего вещества используют, например, отход производственной деятельности Красноярского завода цветных металлов (кек). Далее выполняют стяжку путем нанесения второго слоя на цементном вяжущем.
Нанесение монолитной стяжки на цементном вяжущем на свежеуложенный слой гипса или гипсосодержащего вещества способствует значительному снижению радонопроницаемости за счет образования вблизи границы раздела между гипсом и монолитной стяжкой дополнительного количества гидросульфоалюмината кальция (ГСАК). Образуясь в межпоровом пространстве цементного камня, ГСАК кольматирует поры, образуя барьер, что обеспечивает снижение диффузии радона сквозь барьер.
Известный способ противорадоновой защиты обеспечивает снижение диффузии радона сквозь барьер, что приводит к повышению степени защищенности зданий от радиоактивного газа радона. Кроме того, применение таких барьеров, обладающих низкой радонопроницаемостью, обеспечит снижение уровня облучения населения в помещениях зданий.
Недостатком данного способа является то, что он не позволяет защитить защитные сооружения гражданской обороны от проникновения в них радона. Это обусловлено тем, что защитный слой, образующий барьер от проникновения радона из почвы, наносится только на грунтовое основание зданий. Поскольку защитные сооружения гражданской обороны заглублены в грунт, то радон из грунта через стены защитных сооружений проникает в само сооружение. Кроме того, по условиям содержания защитных сооружений оштукатуривание потолков и стен не допускается. В результате необходимо принимать меры по удалению радона из воздуха сооружения.
Наиболее близким по технической сущности к достигаемому результату является способ удаления радона из воздуха помещений (Патент №2400675 РФ, МПК F24F 7/007, F24F 3/16. Способ удаления радона из воздуха помещений / И.М. Хайкович, В.Н. Виноградов, А.Л. Павлов; ФГУНПП "Геологоразведка (РФ) - 2008151265/06; Заявл. 23.12.2008; Опубл. 27.09.2010, Бюл. №27).
Способ удаления радона из воздуха помещений включает в себя принудительную вентиляцию, обеспечивающую вентиляцию воздуха только внутри помещения, без поступления наружного воздуха, пропускание воздуха через поглотительные фильтры из активированного угля, сорбирующие радон, с интенсивностью прокачки и размещение вентиляторов в помещении, обеспечивающих превышение поглощенного радона над поступающим в единицу времени.
Способ удаления радона из воздуха помещений осуществляют следующим образом.
Вначале измеряют количество радона, поступающего в помещение в единицу времени, затем выбирают установку, обеспечивающую необходимую производительность для осуществления рециркуляции воздуха в должном объеме через фильтр-поглотитель из активированного угля. После чего корректируют параметры установки (установок) и их размещение с учетом распределения потоков внутри помещения (для исключения мертвых зон) и осуществляют контрольные измерения содержания радона в воздухе помещения, после прохождения его через фильтр-поглотитель из активированного угля.
Достоинством способа является то, что для удаления радона из воздуха помещения используется активированный уголь, который при толщине сорбирующего слоя в несколько сантиметров практически полностью поглощает радон и позволяет понизить концентрацию радона до установленных гигиенических нормативов.
Недостатком этого способа является то, что воздух вентилируется только внутри помещения, без поступления наружного воздуха. В случае длительного нахождения людей в помещении это приводит к снижению концентрации кислорода в воздухе защищаемого помещения и невозможности пребывания в нем людей, что приводит к необходимости проветривания помещения. В результате с атмосферным воздухом в помещение поступает радон.
Задача, решаемая изобретением, заключается в разработке способа удаления радона из воздуха помещений, позволяющего очистить атмосферный воздух от радона, поступающий в помещение защитных сооружений ГО, и создать препятствие для поступления почвенного радона через подземные ограждающие конструкции сооружения.
Для решения поставленной задачи в способе удаления радона из воздуха помещений, заключающемся в пропускании воздуха через поглотительные фильтры из активированного угля, сорбирующие радон, очищенный воздух сжимают, пропуская его через воздушный компрессор, и поддерживают установленное значение величины подпора воздуха в помещении сооружения с помощью управляемого редуктора.
Признаками, отличающими заявляемое решение от прототипа, являются сжатие очищенного воздуха пропусканием его через воздушный компрессор и поддержание установленного значения величины подпора воздуха в помещении сооружения с помощью управляемого редуктора.
Наличие существенных отличительных признаков свидетельствуют о соответствии заявляемого решения критерию патентоспособности изобретения «новизна».
Благодаря отличительным признакам предлагаемый способ позволяет очистить атмосферный воздух, поступающий в помещение сооружения от радона, и защитить сооружение от поступления почвенного радона в помещение через подземные ограждающие конструкции. Это обусловлено тем, что, сжимая очищенный воздух в помещении сооружения, создают давление внутри защитного сооружения ГО выше, чем наружное, и которое поддерживают с помощью управляемого редуктора. В результате почвенный радон не поступает в помещение через подземные ограждающие конструкции.
На чертеже представлено устройство, предназначенное для осуществления предлагаемого способа удаления радона из воздуха помещений.
Устройство содержит поглотительный фильтр из активированного угля 1, расположенный снаружи защитного сооружения ГО, на вход которого поступает атмосферный воздух, воздушный компрессор 2, управляемый редуктор 3, устройство для управления редуктором 4, внутренний и наружный датчики давления 5, 6. При этом выход фильтра из активированного угля 1 соединен с входом компрессора 2, выход которого подключен к входу управляемого редуктора 3, а через выход управляемого редуктора 3 очищенный и сжатый воздух поступает в защитное сооружение, устройство управления редуктором 4, на входы которого поступают сигналы с наружного и внутреннего датчиков давления 5, 6, подключен своим выходом к управляемому редуктору 3.
Способ осуществляют следующим образом:
Атмосферный воздух поступает на фильтр из активированного угля 1, где происходит очистка воздуха от радона путем его сорбирования, затем по воздуховоду очищенный от радона воздух поступает внутрь сооружения на вход воздушного компрессора 2, где он сжимается и создается необходимый запас сжатого воздуха для регулирования давления воздуха в сооружении, далее очищенный и сжатый воздух с заданным давлением через управляемый редуктор 3 поступает в защитное сооружение. Заданное давление в помещении защитного сооружения ГО, которое должно быть выше атмосферного, поддерживают с помощью устройства управления редуктором 4, на входы которого подается информация с датчиков давления 5, 6. Устройство управления редуктором 4 обрабатывает полученную с датчиков давления информацию и вырабатывает управляющий сигнал. Управляющий сигнал поступает на управляемый редуктор 3, который поддерживает заданное давление (установленное значение подпора воздуха) в защитном сооружении.
Таким образом, в защитное сооружение поступает очищенный от радона воздух, и предотвращается проникновение радона внутрь защитного сооружения через ограждение конструкций за счет установленного значения величины подпора воздуха.
Способ удаления радона из воздуха помещений, заключающийся в пропускании воздуха через поглотительные фильтры из активированного угля, сорбирующие радон, отличающийся тем, что очищенный воздух подвергают сжатию, пропуская его через воздушный компрессор, и поддерживают установленное значение величины подпора воздуха в помещении сооружения с помощью управляемого редуктора.