Шина

Иллюстрации

Показать все

Изобретение относится к шине, препятствующей перегреву при движении. Шина содержит протектор с канавкой, проходящей в окружном направлении, множество расположенных на дне канавки выступов, каждый из которых проходит от одной боковой стенки до противоположной. На одной из боковых стенок выполнено углубление, направляющее односторонний воздушный поток через канавку грунтозацепа в окружном направлении. В проекции на поверхность шины углубление является треугольным и расположено напротив канавки грунтозацепа, включающую в себя выход в канавку. Вершина углубления расположена в направлении протяжения канавки грунтозацепа и смещена от ее центра, расположенного на центральной линии этой канавки грунтозацепа, перпендикулярно к направлению протяжения этой канавки грунтозацепа. Причем выступы расположены в канавке с заданными интервалами. Достигается предотвращение перегрева протектора во время движения. 5 з.п. ф-лы, 1 табл., 20 ил.

Реферат

Область техники

Изобретение относится к шине, препятствующей перегреву при движении.

Уровень техники

Обычно в пневматических шинах (далее именуемых «шины»), устанавливаемых на транспортных средствах, использовались различные способы предотвращения их перегрева во время движения транспортных средств. В особенности, заметному перегреву подвергаются тяжелонагруженные шины, устанавливаемые на грузовиках, автобусах и строительных транспортных средствах.

Известна шина, снабженная множеством выступов в форме ребер на боковине шины (например, JP 2009-160994, стр. 4 и 5, фиг. 2). В такой шине выступы в виде ребер создают турбулентный воздушный поток, проходящий по поверхности боковины, когда шина катится по дороге, и турбулентные потоки содействуют рассеиванию тепла от шины, предотвращая перегрев боковины.

Раскрытие изобретения

Известная шина имеет особенности, которые необходимо усовершенствовать. В частности, использование выступов на боковине имеет само по себе ограничение в отношении эффективного предотвращения перегрева протектора.

Задачей изобретения является создание шины, способной эффективно предотвращать перегрев протектора во время движения транспортного средства.

Поставленная задача решается созданием шины (шина 1), которая включает в себя протектор (протектора 5) с канавкой (кольцевая канавка 50В), проходящей в окружном направлении шины (окружное направление шины tcd), причем на дне канавки (дно 50В2 канавки) расположено множество выступов (выступы 500), проходящих от одной боковой стенки (боковая стенка 50В1) до другой боковой стенки (боковая стенка 50В3) канавки, причем выступы расположены в канавке с заданными интервалами Р, которые в проекции поверхности протектора соответствуют условию 0,75L≤P≤10L, где L - размер выступов вдоль центральной линии канавки (центральная линия WL канавки), проходящей по центру канавки. Кроме того, ширина W канавки, ширина TWf выступов в перпендикулярном направлении к их продольным направлениям «X» и образованный продольным направлением выступов и центральной линией канавки в противоположном направлении к направлению вращения шины в проекции на поверхности протектора угол 0f соответствуют условию TWf/cosθf≤0,9W

Шина в соответствии с изобретением способна эффективно предотвращать перегрев протектора при движении транспортного средства.

Краткое описание чертежей

На фиг. 1 показан рисунок протектора шины 1 в соответствии с вариантом осуществления изобретения;

на фиг. 2 - шина в разрезе в соответствии с данным вариантом осуществления изобретения в радиальном направлении trd шины и в направлении по twd ширине протектора;

на фиг. 3 - протекторный блок 100, вид в перспективе в увеличенном масштабе;

на фиг. 4 - кольцевая полоска 70А, вид сверху на поверхность протектора;

на фиг. 5(a) - 5(c) - фрагмент рисунка протектора в области углубления 300 поверхности протектора, виды в увеличенном масштабе;

на фиг. 6 - местный разрез вдоль кольцевой канавки 50В, вид в перспективе;

на фиг. 7 - кольцевая канавка 50В, вид сверху на поверхность протектора 5;

на фиг. 8 - кольцевая канавка 50В, вид в разрезе по стрелке F5 на фиг. 7;

на фиг. 9 - разрез по линии F6-F6 на фиг. 7;

на фиг. 10(a) - кольцевая канавка 50В, вид на поверхность протектора;

на фиг. 10(b) - кольцевая канавка 50В, вид в разрезе по стрелке F5 на фиг. 7;

на фиг. 11 - график зависимости теплопередачи кольцевой канавки от угла θf (в виде коэффициента);

на фиг. 12 - график зависимости коэффициента теплопередачи кольцевой канавки от множителя при длине L выступов;

на фиг. 13 - график зависимости коэффициента теплопередачи кольцевой канавки от множителя при глубине D канавки;

на фиг. 14 - кольцевая полоса 70А с протекторными блоками в соответствии с другим вариантом осуществления изобретения, вид сверху на поверхность протектора;

на фиг. 15 - кольцевая полоса 70А с протекторными блоками в соответствии с еще одним вариантом осуществления изобретения, вид сверху на поверхность протектора;

на фиг. 16 - протектор 5 в соответствии с еще одним вариантом осуществления изобретения, увеличенный вид в перспективе;

на фиг. 17 - кольцевая полоса 70А с протекторными блоками в соответствии с еще одним вариантом осуществления изобретения, вид сверху на поверхность протектора;

на фиг. 18 - протектор 5 в соответствии с еще одним другим вариантом осуществления изобретения, увеличенный вид в перспективе;

на фиг. 19 - кольцевая полоса 70А с протекторными блоками в соответствии с еще одним другим вариантом осуществления изобретения, вид сверху на поверхность протектора;

на фиг. 20(a) - 20(g) - примеры различных форм сечения выступов 500.

Варианты осуществления изобретения

Дальнейшее описание разбито на следующие разделы:

1 - общая схема конструкции шины 1;

2 - общая схема конструкции средств подачи воздуха;

3 - общая схема конструкции углубления 300;

4 - общая схема конструкции выступов 500;

5 - работа и результаты;

6 - сравнительная оценка;

7 - другие варианты осуществления изобретения.

На чертежах одинаковые или сходные ссылочные позиции обозначают одинаковые или сходные элементы и участки. Кроме того, следует отметить, что чертежи являются схематичными, и соотношения размеров и т.п. отличаются от фактических. Конкретные размеры и т.п. должны устанавливаться с учетом приведенного ниже описания. Кроме того, чертежи также включают в себя участки, которые имеют взаимные расположения и соотношения размеров, отличающиеся друг от друга.

1. Общая схема конструкции шины 1

Общая схема конструкции шины 1 согласно изобретению будет описана со ссылкой на фиг. 1 и 2. На фиг. 1 показан рисунок протектора шины 1, а на фиг. 2 вид в разрезе плоскостью, проходящей в радиальном направлении trd и в направлении twd по ширине протектора.

Шина 1 собрана на ободе стандартного типа. Шина 1 имеет нормальное внутреннее давление и подвергается нормальной нагрузке. Обод имеет реборду, поддерживающую бортовые части 3 в направлении twd по ширине протектора.

Для удобства описания предполагается, что шина 1 устанавливается на транспортное средство и катится в направлении tr1 вращения, когда транспортное средство движется вперед. Направление вращения установленной на транспортном средстве шины 1, в частности, не ограничивается.

Понятие «обод стандартного типа» относится к стандартному ободу соответствующего размера, указанного в JATMA (The Japan Automobile Tyre Manufacturers Association, Inc.). В других странах, помимо Японии, понятие «обод стандартного типа» относится к стандартным ободам принятых размеров, указанных в приведенных стандартах.

Понятие «нормальное внутреннее давление» означает пневматическое давление, определяемое способом измерения шин, описанному в Year Book 2008 (с. 0-3, раздел 5), который выпущен ассоциацией JATMA (The Japan Automobile Tyre Manufacturers Association, Inc.). В других странах, помимо Японии, понятие «нормальное внутреннее давление» относится к пневматическим давлениям во время измерения размеров шин, которые указаны в соответствующих стандартах.

Понятие «нормальная нагрузка» означает нагрузку, соответствующую наибольшей нагрузочной способности одиночного колеса, указанной в Year Book 2008, который выпущен ассоциацией JATMA (The Japan Automobile Tyre Manufacturers Association, Inc.). В других странах, помимо Японии, понятие «нормальная нагрузка» относится к наибольшим нагрузкам (наибольшим нагрузочным способностям) одиночных колес соответствующих размеров, указанных в соответствующих стандартах.

Стандарты определяются промышленными нормами, действующими в тех районах, где изготавливаются и используются шины. Например, в США стандарт именуется как «Year Boor of The tire and Rim Association Inc.,», а стандарт в Европе именуется как «Standards Manual of The European Tire and Rim Technical Organization».

Как показано на фиг. 1 и 2, шина 1 включает в себя бортовые части 3, протектора 5, боковины 7 и боковины 9 протектора.

Бортовая часть 3 имеет бортовой сердечник 10 и находятся в контакте с ободом.

Протектор 5 имеет поверхность 5а, которая контактирует с поверхностью дороги. Протектор 5 имеет торец 5е, который является наружным концом протектора 5 в направлении twd по его ширине. Рисунок протектора 5 имеет форму, симметричную относительно точки на центральной линии CL шины.

Боковина 7 образует боковую поверхность шины 1 и расположена между бортовой частью 3 и боковиной 9 протектора. Боковина 7 соединяет борт 3 с протектором 5 через боковину 9 протектора.

Боковина 9 протектора проходит внутрь в радиальном направлении trd шины от торца 5е протектора, который является наружным концом протектора 5, в направлении twd по ширине протектора. Боковина 9 протектора проходит непрерывно до боковины 7 шины. Боковина протектора 9 расположена между протектором 5 и боковиной 7 шины.

Внутреннее положение боковины протектора 9 в радиальном направлении trd шины соответствует самому удаленному в радиальном направлении trd шины внутреннему положению зоны выхода торца 5е протектора на боковые канавки (канавки 60 грунтозацепов). Боковина 9 протектора не контактирует с дорожным покрытием во время нормального движения.

Как показано на фиг. 2, шина 1 является пневматической шиной. Шина 1 имеет больший калибр резиновой смеси (толщину резины) в протекторе 5 по сравнению с пневматическими шинами, устанавливаемыми на легковых автомобилях и т.п.

В частности, наружный диаметр OD шины и калибр резиновой смеси DC протектора 5 в месте центральной линии CL шины соответствуют условию DC/OD≥0,015.

Наружный диаметр OD (в мм) является наибольшим наружным диаметром шины 1 (в общем, в области протектора 5 рядом с центральной линией CL шины). Калибр резиновой смеси DC не включает в себя толщину слоев 30 брекера. Как показано на фиг. 2, в случае, когда кольцевая канавка 50С образована в зоне, включающей в себя центральную линию CL шины, калибр резиновой смеси является толщиной резины протектора 5 в области, смежной с кольцевой канавкой 50С.

Как показано на фиг. 2, шина 1 включает в себя пару бортовых сердечников 10, каркасный слой 20 и множество слоев 30 брекера.

Бортовые сердечники 10 расположены в бортовой части 3. Каждый из бортовых сердечников 10 образован бортовой проволокой (не показана).

Каркасный слой 20 образует каркас шины и соединяет протектор 5 с бортовыми частями 3 через боковины 9 протектора и боковины 7 шины.

Каркасный слой 20 охватывает пространство между парой бортовых сердечников 10 и имеет тороидальную форму. В данном варианте осуществления изобретения каркасный слой 20 контактирует с бортовыми сердечниками 10. Оба торца каркасного слоя 20 в направлении ширины протектора twd поддерживаются двумя бортовыми частями 3.

Каркасный слой 20 содержит корд, проходящий в заданном направлении в проекции поверхности протектора. В данном случае корд каркаса проходит в направлении по ширине протектора twd. Корд каркаса представляет собой, например, стальную проволоку.

В протекторе 5 расположены слои брекера 30. Слои брекера 30 расположены снаружи каркасного слоя 20 в радиальном направлении trd шины. Слои брекера 30 проходят в окружном направлении шины и содержат корды, проходящие в направлении корда каркаса. Например, корд, используемый в качестве корда брекера, представляет собой стальной корд.

Множество слоев брекера 30 включает в себя первый слой 31, второй слой 32, третий слой 33, четвертый слой 34. пятый слой 35 и шестой слой 36.

Первый слой 31 брекера расположен снаружи каркасного слоя 20 в радиальном направлении trd шины. Первый слой 31 брекера расположен в самом удаленном внутреннем положении из множества слоев брекера 30 в радиальном направлении trd шины. В радиальном направлении trd шины второй слой 32 брекера расположен снаружи первого слоя брекера 31, третий слой 33 брекера расположен снаружи второго слоя 32 брекера, четвертый слой 34 брекера расположен снаружи третьего слоя 33 брекера, пятый слой 35 брекера расположен снаружи четвертого слоя 34 брекера, а шестой слой 36 брекера расположен снаружи пятого слоя 35 брекера. Шестой слой 36 брекера расположен в самом ближнем наружном положении из множества слоев брекера 30 в радиальном trd направлении шины. Первый слой брекера 31, второй слой брекера 32, третий слой брекера 33, четвертый слой брекера 34. пятый слой брекера 35 и шестой слой брекера 36 расположены от внутренней стороны к наружной стороне в радиальном направлении trd шины.

В данном варианте осуществления изобретения ширина первого слоя 31 брекера и второго слоя 32 брекера составляет 25-70%, включительно, ширины TW поверхности 5а протектора в направлении twd по его ширине. Ширина третьего слоя 33 брекера и четвертого слоя 34 брекера составляет 55-90%, включительно, ширины TW поверхности 5 а протектора в направлении twd по ширине протектора. Ширина пятого слоя 35 брекера и шестого слоя 36 брекера составляет 60-110%, включительно, ширины TW поверхности протектора 5а в направлении twd по ширине протектора.

В направлении twd по ширине протектора ширина пятого слоя 35 брекера больше ширины третьего слоя 33 брекера, ширина третьего слоя 33 брекера равна или больше ширины шестого слоя 36 брекера, ширина шестого слоя 36 брекера больше ширины четвертого слоя 34 брекера, ширина четвертого слоя 34 брекера больше ширины первого слоя 31 брекера, а ширина первого слоя 31 брекера больше ширины второго слоя 32 брекера. В направлении twd по ширине протектора пятый слой 35 брекера имеет наибольшую ширину, а второй слой 32 брекера имеет наименьшую ширину из множества слоев брекера 30. Соответственно, множество слоев брекера 30 включают в себя самый короткий слой брекера, имеющий наименьшую длину в направлении twd по ширине протектора (т.е. второй слой 32 брекера).

Второй слой 32 брекера, являясь самым коротким, имеет конец 30е в направлении twd по ширине протектора.

В данном варианте осуществления изобретения каждый из углов наклона кордов брекера первого слоя 31 брекера и второго слоя 32 брекера к корду каркаса в проекции на поверхность протектора составляет 70-85°, включительно. Каждый из углов наклона корда брекера третьего слоя 33 брекера и четвертого слоя 34 брекера к корду каркаса составляет 50-75°, включительно. Каждый из углов наклона кордов брекера пятого слоя 35 брекера и шестого слоя 36 брекера к корду каркаса составляют 50-70°, включительно.

Множество слоев брекера 30 включает в себя внутреннюю группу 30А поперечно направленных слоев брекера, промежуточную группу 30В поперечно направленных слоев брекера и наружную группу 30С поперечно направленных слоев брекера.

Внутренняя группа 30А поперечно направленных слоев брекера состоит из пары слоев брекера 30 и расположена снаружи каркасного слоя 20 в радиальном направлении trd шины. Внутренняя группа 30А поперечно направленных слоев брекера включает в себя первый слой 31 брекера и второй слой 32 брекера. Промежуточная группа 30В поперечно направленных слоев брекера состоит из пары слоев брекера 30 и расположена снаружи внутренней группы 30А поперечно направленных слоев брекера в радиальном направлении trd шины. Промежуточная группа 30В поперечно направленных слоев брекера включает в себя третий слой 33 брекера и четвертый слой 34 брекера. Наружная группа 30С поперечно направленных слоев брекера состоит из пары слоев брекера 30 и расположена снаружи промежуточной группы 30В поперечно направленных слоев брекера в радиальном направлении trd шины. Наружная группа 30С поперечно направленных слоев брекера включает в себя пятый слой 35 брекера и шестой слой 36 брекера.

Ширина внутренней группы 30А поперечно направленных слоев брекера составляет 25-70%, включительно, ширины поверхности 5а протектора в направлении twd по ширине протектора. Ширина промежуточной группы 30В поперечно направленных слоев брекера составляет 55-90%, включительно, ширины поверхности 5а протектора в направлении twd по ширине протектора. Ширина наружной группы 30С поперечно направленных слоев брекера составляет 60-110%, включительно, ширины поверхности 5 а протектора в направлении twd по ширине протектора.

Угол наклона корда брекера внутренней группы 30А поперечно направленных слоев брекера к корду каркаса в проекции на поверхность протектора составляет 70-85°, включительно. Угол наклона корда брекера промежуточной группы 30В поперечно направленных слоев брекера к корду каркаса в проекции на поверхность протектора составляет 50-75°, включительно. Угол наклона корда брекера наружной группы 30С поперечно направленных слоев брекера к корду каркаса в проекции на поверхность протектора составляет 50-70°, включительно.

Угол наклона корда брекера внутренней группы 30А поперечно направленных слоев брекера к корду каркаса в проекции на поверхность протектора является наибольшим. Угол наклона корда брекера промежуточной группы 30В поперечно направленных слоев брекера к корду каркаса равен или больше угла наклона корда брекера наружной группы 30С поперечно направленных слоев брекера.

Как показано на фиг. 1 и 2, протектор 5 имеет множество канавок (кольцевых канавок 50) и множество боковых канавок (канавок 60 грунтозацепов), проходящих в окружном направлении tcd шины. Протектор 5 также имеет множество протекторных блоков (кольцевых полос 70 с протекторными блоками), образованных множеством кольцевых канавок 50 и множеством канавок 60 грунтозацепов.

Множество кольцевых канавок 50 проходит в окружном направлении tcd шины. Множество кольцевых канавок 50 включает в себя кольцевые канавки 50А, 50В и 50С.

Кольцевая канавка 50А расположена в самом наружном положении в направлении twd по ширине протектора. Кольцевая канавка 50С расположена на центральной линии CL шины.

Кольцевая канавка 50В расположена между кольцевой канавкой 50А и кольцевой канавкой 50С в направлении twd по ширине протектора. В частности, кольцевая канавка 50В образована так, что длина DL от конца слоя 30е до центральной линии WL канавки, которая проходит по центру ширины кольцевой канавки 50В, в проекции на поверхность протектора шины в направлении twd по ширине протектора меньше или равна 200 мм.

Как описано ниже, дно 50В2 кольцевой канавки 50В имеет множество выступов 500. Таким образом, температура вокруг протектора 5 в кольцевой канавке 50В локально понижается. Поскольку длина DL от конца 30е брекера до центральной линии WL канавки в направлении twd по ширине протектора равна или меньше 200 мм, температура конца 30е брекера понижается. Такое снижение температуры замедляет износ резинового элемента вокруг конца 30е брекера, вызванный воздействием тепла и тем самым препятствует выделению тепла и отслаиванию второго слоя 32 брекера от конца 30е брекера в качестве исходной точки и окружающего резинового элемента. Поскольку предотвращается отслаивание второго слоя 32 брекера, который является самым коротким слоем и наиболее подвержен воздействию тепла протектора 5, срок службы шины 1 может быть увеличен.

Протектор тяжелонагруженных шин, установленных на грузовики, автобусы и строительные транспортные средства, имеет больший калибр резиновой смеси (толщину) и большой объем резины. Когда такая тяжелонагруженная шина подвергается неоднократному деформированию, температура протектора повышается. В такой тяжелонагруженной шине, в частности, расположенная снаружи протектора 5 по сравнению с расположенной рядом с центральной линией CL протектора 5 (в направлении twd по ширине протектора) вырабатывает больше тепла. Таким образом, благодаря наличию множества выступов 500 на дне 50В2 кольцевой канавки 50В, расположенной снаружи центральной линии CL, тепло может интенсивно рассеиваться от протектора 5.

Канавки 60 грунтозацепов проходят от кольцевой канавки 50В к боковине 9 протектора. Канавки 60 грунтозацепов имеют соответствующие выходы 60а в боковину 9 протектора. Соответственно, канавки 60 грунтозацепов выходят к торцу 5е протектора. Канавки 60 грунтозацепов сообщаются с кольцевой канавкой 50А и кольцевой канавкой 50В. Внутренние концы канавок 60 грунтозацепов в направлении twd по ширине протектора сообщаются с кольцевыми канавками 50В.

Ширина между обоими торцами (торцы 5е протектора) протектора 5 в направлении по ширине протектора обозначена TW. В данном варианте осуществления изобретения оба торца протектора обозначают оба торца в направлении twd по ширине протектора в области контакта, где шина находится в контакте с поверхностью дороги. Состояние, когда шина контактирует с поверхностью дороги, означает состояние, когда шина прикреплена к нормальному ободу и имеет нормальное внутреннее давление и нормальную нагрузку.

В проекции на поверхность протектора шины 1 канавки 60 грунтозацепов проходят с наклоном в направлении twd по ширине протектора. Угол наклона φ канавок 60 грунтозацепов в направлении twd по ширине протектора составляет 15-60°, включительно.

Как показано на фиг. 1, когда шина 1 вращается в направлении tr1 вращения, возникает воздушный поток (набегающий поток) в направлении, противоположном направлению tr1 вращения. Левые на фиг. 1 канавки 60 грунтозацепов движутся вперед в направлении tr1 вращения, поскольку они расположены снаружи в направлении twd по ширине протектора. Угол наклона φ канавок 60 грунтозацепов в направлении twd по ширине протектора составляет 15-60°, включительно. В связи с этим, когда шина 1 вращается в направлении tr1 вращения, воздушный поток, поступающий снаружи в канавки 60 грунтозацепов, может не соударяться с боковыми стенками канавок 60 грунтозацепов рядом с выходами 60а и оставаться там. Это может улучшить теплопроводность канавок 60 грунтозацепов и обеспечить точное направление воздушного потока в кольцевую канавку 50В,, следовательно, вызывая снижение температуры протектора 5.

С другой стороны, когда шина 1 вращается в направлении tr1 вращения с правой на фиг. 1 стороны протектора 5, воздушный поток (набегающий поток) движется в направлении, противоположном направлению tr1 вращения. Поскольку угол наклона φ канавок 60 грунтозацепов в направлении twd по ширине протектора составляет 15-60°, включительно, воздух в канавках 60 грунтозацепов может легко протекать вдоль них. В результате отвода воздуха на наружную сторону от канавок 60 грунтозацепов в направлении twd по ширине протектора, может увеличиваться скорость потока воздуха, протекающего в этих канавках. Это может улучшить теплопроводность канавок 60 грунтозацепов и снижение температуры протектора 5.

Воздух, протекающий в кольцевой канавке 50В, легче поступает в канавки 60 грунтозацепов. Воздух, проходящий через кольцевую канавку 50В, отводит тепловые потоки наружу по канавкам 60 грунтозацепов, способствуя рассеянию тепла от протектора.

Угол наклона φ в 60° и менее может обеспечивать жесткость упомянутых ниже протекторных блоков 100 и 200. Это может препятствовать деформации блоков 100 и 200 из-за вращения шины 1 и, соответственно, препятствовать увеличению выделения тепла протектором 5.

Несколько кольцевых полос 70 с протекторными блоками, проходящих в окружном направлении шины, включают в себя кольцевые полосы 70А, 70В и 70С.

Кольцевая полоса 70А расположена в самом наружном положении в направлении twd по ширине протектора. Кольцевая полоса 70В расположена между кольцевой полосой 70А и кольцевой полосой 70С в направлении twd по ширине протектора. Кольцевая полоса 70С расположенной в самом внутреннем положении в направлении twd по ширине протектора.

Кольцевая полоса 70А и кольцевая полоса 70В имеют канавки 60 грунтозацепов. Протектор 5 имеет протекторные блоки 100 и 200, определяемые канавками 60 грунтозацепов. Иными словами, кольцевая полоса 70А разделена канавками 60 грунтозацепов для образования протекторных блоков 100. Кольцевая полоса 70В разделена канавками 60 грунтозацепов, образуя протекторные блоки 200.

В данном варианте осуществления изобретения шина 1 представляет собой радиальную шину, имеющую, например, сплюснутость на 80% и менее, диаметр обода 57′′ и более, нагрузочную способность в 60 тонн и более и коэффициент нагрузки (k-фактор) 1,7 и более. Следует отметить, что шина 1 не ограничивается этими параметрами.

2. Общая схема конструкции средств подачи воздуха

Общая схема конструкции средств подачи воздуха согласно данному варианту осуществления изобретения будет описана со ссылками на фиг. 1-4. На фиг. 3 показан в перспективе в увеличенном масштабе протекторный блок 100. На фиг. 4 показана кольцевая полоса 70А с протекторными блоками в проекции на поверхность протектора.

В шине 1 боковые канавки (канавки 60 грунтозацепов) снабжены соответствующими средствами подачи воздуха. В этом варианте осуществления изобретения средства подачи воздуха образованы суженной поверхностью 100R.

Как показано на фиг. 1-4, протекторный блок 100 имеет поверхность 100S, которая входит в контакт с поверхностью дороги, боковую поверхность 101, образованную снаружи протекторного блока 100 в направлении twd по ширине протектора, боковую поверхность 102, образованную внутри протекторного блока 100 в направлении по ширине twd протектора, боковую поверхность 103 канавки, которая образует стенку канавки грунтозацепа 60, образованную на одной стороне протекторного блока 100 в окружном направлении tcd шины, и боковую поверхность 104 канавки, которая образует стенку канавки 60 грунтозацепа, образованную на другой стороне протекторного блока 100 в окружном направлении tcd шины. Протекторный блок 100 имеет суженную поверхность 100R, которая пересекает поверхность 100S, боковую поверхность 101 и боковую поверхность 103 канавки y угловой кромки 100А образованной поверхностью протектора, боковой поверхностью 101, и боковой поверхностью 103 канавки. Угловая кромка 100А образует вышеуказанный торец 5е протектора 5.

Боковая поверхность 101 образована в протекторном блоке 100 рядом с боковиной 9 протектора. Боковая поверхность 101 проходит в окружном направлении tcd шины. Боковая поверхность 101 соединена с боковыми поверхностями 103 и 104 канавки протекторного блока 100, которые образуют стенки канавок 60 грунтозацепов. Боковая поверхность 102 обращена к боковой поверхности 101 в направлении twd по ширине протектора. Боковая поверхность 102 образует стенку кольцевой канавки 50А, прилегающей к внутренней стороне протекторного блока 100 в направлении twd по ширине протектора.

Боковая поверхность 103 канавки проходит в направлении twd по ширине протектора. Боковая поверхность 103 канавки расположена с одной стороны протекторного блока 100 в окружном направлении tcd шины. Боковая поверхность 104 канавки проходит в направлении twd по ширине протектора. Боковая поверхность 104 канавки расположена на другой стороне протекторного блока 100 в окружном направлении tcd шины.

Каждая суженная поверхность 100R проходит в окружном направлении tcd шины на угловой кромке 100А, образованной поверхностью 100S протектора и боковой поверхностью 101. Суженная поверхность 100R наклонена внутрь в радиальном направлении trd шины в поперечном сечении протекторного блока 100 в окружном направлении tcd шины и в радиальном направлении trd шины, когда она приближается к одной стороне в окружном направлении tcd шины. Суженная поверхность 100R также наклонена внутрь в радиальном направлении trd шины, в поперечном сечении протекторного блока 100 в направлении twd по ширине протектора и в радиальном направлении trd шины, когда она приближается к наружной стороне в направлении twd по ширине протектора.

Иными словами, суженная поверхность 100R скошена у вершины поверхности 100S протектора, боковой поверхности 101 и боковой поверхности 103 канавки, т.е. суженная поверхность 100R образована так, что она имеет по меньшей мере одну сторону на каждой из поверхностей 100S протектора, боковой поверхности 101 и боковой поверхности 103 канавки.

Суженная поверхность 100R имеет одну сторону на боковой поверхности 101 и не имеет ни одной стороны на боковой поверхности 102, боковой поверхности 101 и боковой поверхности 102 протекторного блока 100 в направлении twd по ширине протектора. Иными словами, в протекторном блока 100 одна из боковых поверхностей 101 и 102 (боковая поверхность 102), которые противоположны друг другу в направлении twd по ширине протектора, не пересекает суженную поверхность 100R.

Кроме того, суженная поверхность 100R имеет одну сторону на боковой поверхности 103 канавки и не имеет ни одной стороны на боковой поверхности 104 канавки, боковой поверхности 103 канавки и боковой поверхности 104 канавки протекторного блока 100 в окружном направлении tcd шины. Иными словами, одна из боковых поверхностей канавки 103 и 104 (боковая поверхность 104 канавки), которые противоположны друг другу в протекторном блоке 100 в окружном направлении tcd шины, не пересекает суженную поверхность 100R.

Образование суженной поверхности 100R, как описано выше, облегчает протекание воздуха по этой поверхности во время вращения шины 1 и соударение с боковой поверхностью 104 канавки другого протекторного блока 100, смежного в окружном направлении tcd шины. Иными словами, воздух протекает по суженной поверхности 100R, легко попадает в канавку 60 грунтозацепов протекторного блока 100, смежного в окружном направлении tcd шины.

В данном варианте осуществления изобретения суженная поверхность 100R является плоской. Иными словами, суженная поверхность 100R линейно проходит по поперечному сечению в окружном направлении tcd шины и в радиальном направлении trd шины или по поперечному сечению в направлении twd по ширине протектора и в радиальном направлении trd шины.

Как показано на фиг. 3, если плоскость Sv проходит через вершину Р2 суженной поверхности 100R, пересекая поверхность 100S протектора и поверхность боковой стороны 101, вершину Р1 суженной поверхности 100R, пересекая поверхность 100S протектора и поверхность боковой поверхности 103 канавки, и вершину Р3 суженной поверхности 100R, пересекая боковую поверхности 101 и боковую поверхность 103 канавки, то она образует угол 92 между с поверхностью 100S протектора, составляющий 0° - 45°. В качестве альтернативы, угол θ1, образуемый плоскостью Sv и боковой поверхностью 101, больше 0° и меньше 45°. Иными словами, необходимо, чтобы только один из углов θ1 или θ2 составлял 0° - 45°. Более предпочтительно, угол θ1 (или угол θ2) составляет 10° - 30°. В данном варианте осуществления изобретения суженная поверхность 100R является плоской, т.е. является той же самой плоскостью, что и плоскость Sv.

Предпочтительно, чтобы суженная поверхность 100R была образована так, чтобы расстояние L2 между вершинами Р1 и Р3 в радиальном направлении trd шины было больше расстояния L1 между вершинами Р1 и Р2 в направлении twd по ширине протектора. Причина этого состоит в следующем: если расстояние L2 больше расстояния L1, даже в случае износа поверхности 100S протекторного блока 100 суженная поверхность 100R остается. Иными словами, действие суженной поверхности 100R может продолжаться. Более предпочтительно, расстояние L2 составляет 50 мм и более.

В шине 1 протекторный блок 100 имеет суженную поверхность 100R, которая пересекает поверхность 100S протектора, боковую поверхность 101 и боковую поверхность 103 канавки на угловой кромке 100А, образованной поверхностью 100S протектора и боковой поверхностью 101, расположенной снаружи в направлении twd по ширине протектора.

Таким образом, как показано на фиг. 4, когда шина 1 вращается в направлении tr1 вращения, воздушный поток (набегающий поток) AR, создаваемый вращением шины 1, течет по суженной поверхности 100R в направлении, противоположном направлению tr1 вращения. Воздушный поток AR, протекающий по суженной поверхности 100R, соударяется с боковой поверхностью 104 канавки протекторного блока 100, расположенной сзади в направлении tr1 вращения, и направляется в канавку 60 грунтозацепа. В результате образуется воздушный поток AR от боковой поверхности 101 протекторного блока 100 к канавке 60 грунтозацепа. Иными словами, воздух вокруг шины 1 поступает в канавку 60 грунтозацепа для увеличения скорости потока воздуха, протекающего в канавке 60 грунтозацепа. Это может улучшить теплопроводность канавок 60 грунтозацепов и снизить температуру протектора 5.

Когда шина 1 вращается в направлении tr2 вращения, воздушный поток (набегающий поток) AR, создаваемый в канавке 60 грунтозацепа за счет вращения шины 1, течет наружу по суженной поверхности 100R в направлении, противоположном направлению tr2 вращения. Это способствует отводу воздуха на наружную сторону в направлении twd по ширине протектора через канавку 60 грунтозацепа, увеличивая скорость потока воздуха, протекающего в канавке 60 грунтозацепа. Это может улучшить теплопроводность канавок 60 грунтозацепов и снизить температуру протектора 5.

3. Общая схема конструкции углубления 300

Общая схема конструкции углубления 300 согласно данному варианту осуществления изобретения будет описана со ссылками на фиг. 5. На фиг. 5(a) - 5(c) показано углубление 300 в увеличенном масштабе в различных видах в проекции на поверхность протектора.

Как показано на фиг. 5(a) - 5(c), кольцевая полоса 70С имеет углубления 300. Углубление 300 расположено в направлении канавки 60 грунтозацепа. Углубление 300 образовано в поверхности стенки канавки кольцевой полосы 70С напротив канавки 60 грунтозацепа.

В данном варианте осуществления изобретения углубление 300 является треугольным в проекции на поверхность протектора. В проекции на поверхность протектора одна поверхность 300а стенки углубления 300 проходит на продолжении линии одной поверхности стенки канавки 60 грунтозацепа, а другая поверхность 300b стенки углубления 300 пересекает линию, продолжающую другую поверхность канавки 60 грунтозацепа. В проекции на поверхность протектора пересечение поверхности стенки канавки кольцевой полосы 70С напротив канавки 60 грунтозацепа с линией, продолжающей одну поверхность стенки канавки грунтозацепа, обозначено пересечением «а», а пересечение поверхности стенки канавки кольцевой полосы 70С напротив канавки 60 грунтозацепа с линией, продолжающей другую поверхность стенки канавки 60 грунтозацепа, обозначено пересечением «b». В проекции на поверхность протектора конец А поверхности 300а стенки рядом с кольцевой канавкой 50В и пересечение «а» расположены в одном и том же месте, а конец В поверхности 300b стенки рядом с кольцевой канавкой 50В и пересечение «b» расположены в разных местах. Конец В не находится между пересечением «а» и пересечением «b». Соответственно, расстояние от конца А до конца В больше расстояния от пересечения «а» до пересечения «b». В проекции на поверхность протектора точка контакта между поверхностью 300а стенки и поверхностью 300b стенки является вершиной С.

В проекции поверхности протектора угол, который образует линия протяжения вдоль поверхности стенки канавки кольцевой полосы 70С напротив канавки 60 грунтозацепа с поверхностью 300а стенки, является углом α, угол, который образует линия протяжения вдоль поверхности стенки канавки кольцевой полосы 70С напротив канавки 60 грунтозацепа с поверхностью 300b стенки, является углом β. В данном варианте осуществления угол β меньше угла α. Предпочтительно, α соответствует условию 20≤α≤70, и β соответствует условию β≤45 градусов.

Углубление 300 образовано так, что его центр в направлении протяжения кольцевой канавки 50В смещен от направления протяжения канавки 60 грунтозацепа, и центральная линия поперечной канавки проходит через центр в направлении, перпендикулярном к направлению протяжения. Центр углубления 300 относится, по меньшей мере, к центру линии, соединяющей конец А с концом В, или к вершине С.

Как показано на фиг. 5(b), размер 300W углубления 300 в направлении twd по ширине протектора изменяется в окружном направлении tcd шины. Иными словами, размер 300W в окружном направлении tcd шины постепенно увеличивается от конца В к вершине С и постепенно уменьшается от вершины С к концу А.

Размер 300L углубления 300 в окружном направлении tcd шины постепенно уменьшается от стороны, выходящей в кольцевую канавку 50В, в обратном направлении. Иными словами, размер 300L имеет наибольшее расстояние между концом А и концом В и постепенно уменьшается к вершине С.

Как показано на фиг. 5(c), благодаря образованию углубления 300 воздушный поток AR, протекающий через канавку 60 грунтозацепа от наружной стороны к внутренней стороне в направлении twd по ширине протектора, соударяется с поверхностью 300b углубления 300. Как показано на фиг. 5(c), поскольку поверхность 300а стенки расположена над поверхностью 300b стенки, менее вероятно, что воздушный поток AR будет протекать над поверхностью 300b стенки. Таким образом, воздушный поток AR точно протекает по направляющей кольцевой канавки 50В.

Поскольку углубление 300 образовано для создания одностороннего воздушного потока AR в ок