Композиции этанола

Иллюстрации

Показать все

Настоящее изобретение относится к вариантам композиции этанола для смешения с топливом. В одном из вариантов предлагаемая композиции включает по меньшей мере, 92 масс. % этанола; от 95 частей на миллион (ч./млн) по массе до 1000 ч./млн по массе изопропанола; и н-пропанол, где массовое соотношение изопропанола к н-пропанолу составляет по меньшей мере 0,5:1. В другом из предложенных вариантов композиция включает вышеуказанные компоненты и ее получают посредством гидрирования уксусной кислоты в присутствии катализатора для образования неочищенного этанольного продукта, содержащего этанол, изопропанол, и одну или более примесей и отделения по меньшей мере части неочищенного этанольного продукта для удаления одной или более примесей и извлечения композиции этанола. 11 н. и 6 з.п. ф-лы, 3 ил., 11 табл., 4 пр.

Реферат

ПРИОРИТЕТНОЕ ТРЕБОВАНИЕ

Настоящая заявка испрашивает приоритет предварительной заявки США №61/300815, поданной 2 февраля 2010 года; предварительной заявки США №61/332696, предварительной заявки США №61/332699 и предварительной заявки США №61/332728, каждая поданная 7 мая 2010 года; предварительной заявки США №61/346344, поданной 19 мая 2010 года, и предварительной заявки США №12/852290, поданной 6 августа 2010 года, полное содержание и существо которых введены в настоящий документ посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение, в целом, относится к способам получения и/или очистки этанола и, в частности, к композициям этанола, полученным по данным способам.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Этанол для промышленного применения обычно получают из нефтехимического сырья, такого как нефть, природный газ или уголь, из промежуточного сырья, такого как сингаз, или из крахмалистых материалов или целлюлозных материалов, таких как кукуруза или сахарный тростник. Традиционные методы получения этанола из нефтехимических типов сырья, а также из целлюлозных материалов включают гидратацию этилена в присутствии кислотного катализатора, гомологизацию, прямой синтез спирта и синтез Фишера-Тропша. Нестабильность цен на нефтехимическое сырье влияет на колебания цен на этанол, полученный традиционным путем, обуславливая потребность в альтернативных источниках для производства этанола в еще большей степени, когда растут цены на исходное сырье. Крахмалистые материалы, а также целлюлозный материал конвертируют в этанол путем ферментации. Однако ферментация обычно используется для производства потребительского этанола для топлив или потребления. Кроме того, ферментация крахмалистых или целлюлозных материалов конкурирует с пищевыми источниками и ограничивает количество этанола, которое может быть получено для промышленного применения.

В результате вышеперечисленных процессов образуются традиционные композиции этанола, которые содержат примеси, подлежащие удалению.

Например, патент США №5488185 предусматривает использование нефтехимического сырья и относится к потоку этена, который содержит этан в качестве примеси, или потоку пропена, который содержит пропан в качестве примеси, который гидратируют парами воды в присутствии катализатора гидратации с получением этанола или изопропанола, соответственно. После удаления спирта поток газообразного продукта подвергают абсорбционной обработке, в результате чего получают обогащенный этеном поток или обогащенный пропеном поток. Обогащенный этеном продукт или обогащенный пропеном поток направляют на рециркуляцию в реактор гидратации.

Патенты США №5185481 и 5284983 относятся к традиционным методам ферментации для получения этанола. Полученные композиции этанола включают примеси, такие как метанол, ацетальдегид, н-пропанол, н-бутанол, этилацетат, 3-метилбутанол, простой диэтиловый эфир, ацетон, вторичный бутанол и кротональдегид. В данных ссылках также раскрыты методы разделения при обработке неочищенного водного раствора этанола экстрагирующим растворителем, включающим диоксид углерода в жидком состоянии или диоксид углерода в надкритическом состоянии.

Патенты США №№5445716; 5800681 и 5415741 относятся к способам разделения смесей этанола и изопропанола. Этанол трудно отделить от изопропанола обычной перегонкой или ректификацией, так как они имеют близкие температуры кипения. Этанол можно легко отделить от изопропанола экстракционной перегонкой. Эффективными экстрагирующими агентами являются дипентен, анизол и этилбензол. Смеси данных веществ включают значительное количество изопропанола, например, по меньшей мере, 21,5 масс.% изопропанола.

Кроме того, патент США №5858031 относится к способу увеличения видимости пламени, образующегося во время свободного горения топливной композиции на основе водного спирта в воздухе. Топливо включает между приблизительно 10% и 30% по объему воды и между приблизительно 70% и 90% по объему смеси спиртов, включающей этанол и изопропанол, этанол составляет между приблизительно 24% и 83% по объему топливной композиции. Способ включает использование количества изопропанола в интервале между приблизительно 7% и 60% по объему топливной композиции, в которой объемное отношение изопропанола к этанолу в топливе не превышает 2:1.

Хотя традиционными способами можно получить и/или очистить композиции этанола, данные способы основаны на нефтехимическом сырье или ферментационных методах с получением композиций этанола. Кроме того, в образующихся композициях этанола, которые содержат изопропанол, изопропанол содержится в больших количествах.

Поэтому, существует потребность в способе получения этанола, который не основан на применении нефтехимического сырья и который не предусматривает применения ферментационных методов.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

В одном из вариантов осуществления изобретение относится к композиции этанола. Композиция этанола включает этанол и изопропанол. Предпочтительно композиция этанола включает, по меньшей мере, 92 масс.% этанола и от 95 частей на миллион (ч./млн) по массе до 1000 ч./млн по массе изопропанола. Композиция этанола имеет высокую степень чистоты и может дополнительно включать менее 1 масс.% одного или более органических примесей. Данные органические примеси могут включать, например, ацетальдегид, уксусную кислоту, диэтилацеталь, этилацетат, н-пропанол, бутанол, 2-бутанол, изобутанол и их смеси. Например, композиция этанола может включать менее 10 ч./млн по массе диэтилацеталя и/или менее 300 ч./млн по массе C4-C5-спиртов. В других вариантах осуществления изобретения композиция этанола по существу не содержит бензола, метанола и/или С5-спиртов.

В другом варианте осуществления изобретение относится к композиции этанола, включающей, по меньшей мере, 95 масс.% этанола и, по меньшей мере, 95 ч./млн по массе изопропанола. В другом варианте осуществления изобретения изопропанол содержится в количестве менее 1000 ч./млн по массе. Предпочтительно композиция этанола дополнительно включает ацетальдегид, и количество ацетальдегида в композиции этанола составляет меньше, чем количество изопропанола. Как один из примеров, ацетальдегид может содержаться в количестве меньше 10 ч./млн по массе. В другом варианте осуществления изобретения композиция этанола дополнительно включает н-пропанол. Предпочтительно массовое отношение изопропанола к н-пропанолу лежит в интервале от 1:1 до 1:2. Изопропанол может содержаться в количестве меньше 1000 ч./млн по массе и/или н-пропанол может содержаться в количестве меньше 270 ч./млн по массе.

В другом варианте осуществления изобретение относится к композиции этанола, включающей, по меньшей мере, 92 масс.% этанола и, по меньшей мере, два других спирта, которые необязательно содержатся в количестве меньше 1 масс.%. По меньшей мере, два других спирта могут быть выбраны из группы, состоящей из н-пропанола, изопропанола, бутанола, 2-бутанола и изобутанола. В другом варианте осуществления изобретения, по меньшей мере, одним из двух других спиртов является изопропанол, и композиция этанола включает, по меньшей мере, 95 ч./млн по массе изопропанола. Композиция этанола может включать изопропанол в количестве менее 1000 ч./млн по массе. Предпочтительно композиция этанола по существу не содержит метанол.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Далее изобретение рассмотрено подробно со ссылкой на прилагаемые чертежи, где одинаковыми цифрами обозначены одинаковые детали.

На фиг.1 представлена схема системы гидрирования в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.2 представлена схема реакционной зоны в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.3 представлен график содержания изопропанола для нескольких композиций этанола.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способу извлечения конечной композиции этанола, полученной в процессе гидрирования. Процесс гидрирования включает гидрирование уксусной кислоты в присутствии катализатора. В результате процесса гидрирования образуется неочищенный товарный этанол, который отличается от неочищенной композиции этанола, полученной другими способами получения этанола. Например, в результате процессов ферментации образуются неочищенные композиции этанола, имеющие низкое содержание этанола. Неочищенные композиции этанола, полученные из нефтехимического сырья, образуют неочищенные композиции этанола, включающие другие спирты, особенно метанол, н-пропанол и высшие спирты. Неочищенный товарный этанол, полученный гидрированием уксусной кислоты, предпочтительно разделяют с удалением примесей и извлечением конечной композиции этанола.

Композиция этанола по изобретению, в одном из вариантов осуществления изобретения, включает основную часть этанола и незначительную часть изопропанола. Композиция этанола представляет собой главным образом этанол и содержит от 92 масс.% до 96 масс.% этанола, например, от 93 масс.% до 96 масс.%, или от 95 масс.% до 96 масс.%. Предпочтительно, композиция этанола включает, по меньшей мере, 92 масс.% этанола, например, по меньшей мере, 93 масс.%, или, по меньшей мере, 95 масс.%. Более высокие количества этанола, например, безводный этанол, могут быть возможны при дополнительном удалении воды из композиции этанола. Изопропанол может содержаться в количествах, лежащих в интервале от 95 ч./млн по массе до 1000 ч./млн по массе, например, от 110 ч./млн по массе до 800 ч./млн по массе, или от 110 ч./млн по массе до 400 ч./млн по массе. С точки зрения нижних пределов, в одном из вариантов осуществления изобретения композиция этанола включает, по меньшей мере, 95 ч./млн по массе изопропанола, например, по меньшей мере, 110 ч./млн по массе или, по меньшей мере, 150 ч./млн по массе. С точки зрения верхних пределов, композиция этанола включает менее 1000 ч./млн по массе изопропанола, например, менее 800 ч./млн по массе или менее 400 ч./млн по массе. В отличие от этого, на фиг.3 представлены уровни содержания изопропанола в 176 обычных композициях этанола. Данные композиции этанола были получены из различных источников и различными методами, такими как ферментация сахарного тростника, ферментация черной патоки и синтез Фишера-Тропша. Как показано на фиг.3, каждая из данных обычных композиций этанола имеет очень низкую концентрацию изопропанола, и ни одна не включает изопропанол в количестве больше 94 ч./млн по массе.

В одном из вариантов осуществления изобретения, композиция этанола дополнительно включает воду, например, в количестве меньше 8 масс.% воды, меньше 5 масс.% или меньше 2 масс.%. В другом варианте осуществления изобретения массовое отношение изопропанола к воде в композиции этанола лежит в интервале от 1:80 до 1:800, например, от 1:100 до 1:500. В одном из вариантов осуществления изобретения композиция этанола по существу не включает никакого другого детектируемого соединения, такого как метанол, бензол и/или высшие спирты, например C4+-спирты. В некоторых вариантах осуществления изобретения композиция этанола может включать незначительные количества других примесей, таких как те, что описаны ниже в таблице 7.

В другом варианте осуществления изобретение относится к композиции этанола, включающей этанол и, по меньшей мере, два других спирта. По меньшей мере, два других спирта могут быть выбраны из группы, состоящей из н-пропанола, изопропанола, бутанола, 2-бутанола и изобутанола. Предпочтительно, по меньшей мере, одним из двух других спиртов является изопропанол. В данных вариантах осуществления изобретения изопропанол содержится в количестве, по меньшей мере, 95 ч./млн по массе изопропанола, например, по меньшей мере, 110 ч./млн по массе или, по меньшей мере, 150 ч./млн по массе. В предпочтительных вариантах осуществления изобретения, когда массовые проценты, по меньшей мере, двух других спиртов складываются вместе, по меньшей мере, два других спирта, совокупно, содержатся в количестве менее 1 масс.%.

Не желая быть связанными какой-либо теорией, авторы изобретения полагают, что изопропанол образуется в ходе гидрирования уксусной кислоты. Например, изопропанол может образоваться при гидрировании ацетона. Ацетон может образоваться в результате кетонизации уксусной кислоты. Полагают, что н-пропанол, если содержится в композиции этанола, образуется из примесей в исходной уксусной кислоте. Композиции этанола по настоящему изобретению предпочтительно включают н-пропанол в количестве меньше 0,5 масс.% н-пропанола, например, меньше 0,1 масс.% или меньше 0,05 масс.%. Необязательно, композиции этанола по настоящему изобретению могут предпочтительно содержать меньше н-пропанола, чем изопропанола. Композиции этанола, образованные способом по настоящему изобретению, включают более высокое количество образованного in situ изопропанола, чем обычные композиции этанола. Предпочтительно в композициях этанола по изобретению количество н-пропанола меньше, чем количество изопропанола, например, меньше 10% количества изопропанола или меньше 50% количества изопропанола. Кроме того, в одном из вариантов осуществления изобретения массовое отношение изопропанола к н-пропанолу в композиции этанола по изобретению может лежать в интервале от 0,1:1 до 10:1, например, от 0,5:1 до 10:1, от 1:1 до 5:1, или от 1:1 до 2:1. С точки зрения пределов, массовое отношение изопропанола к н-пропанолу может составлять, по меньшей мере, 0,5:1, например, по меньшей мере, 1:1, по меньшей мере, 1,5:1, по меньшей мере, 2:1, по меньшей мере, 5:1 или, по меньшей мере, 10:1. В традиционных процессах получения этанола изопропанол обычно не содержится в количествах, указанных выше. Таким образом, массовое отношение изопропанола или н-пропанола больше благоприятствует н-пропанолу, например, больше чем 10:1.

В одном из вариантов осуществления настоящего изобретения изопропанол предпочтительно не добавляют к конечной композиции этанола после разделения и извлечения этанола. Изопропанол, образовавшийся в ходе гидрирования уксусной кислоты, может быть захвачен этанолом в процессе разделения.

Кроме того, в традиционных реакциях гидрирования часто образуются повышенные количества ацетальдегида по сравнению с изопропанолом. Композиции этанола по изобретению включают низкие количества ацетальдегида, а также другие ацетальные соединения. Предпочтительно в композициях этанола по изобретению количество ацетальдегида меньше, чем количество изопропанола. Например, количество ацетальдегида может быть меньше 50% от количества изопропанола, например, меньше 10% от количества изопропанола или меньше 5% от количества изопропанола. Кроме того, массовое отношение изопропанола к ацетальдегиду в композиции этанола по изобретению может лежать в интервале от 1:100 до 1:1000, например, от 1:100 до 1:500.

В одном из вариантов осуществления настоящего изобретения композиция этанола по настоящему изобретению включает незначительные количества органических примесей. Данные органические примеси могут включать ацетальдегид, уксусную кислоту, диэтилацеталь, этилацетат, н-пропанол, метанол, бутанол, 2-бутанол, изобутанол, изоамиловый спирт, амиловый спирт, бензол и/или их смеси. Преимущественно, в одном из вариантов осуществления изобретения композиция этанола включает менее 1 масс.% органических примесей, например, менее 0,75 масс.% или меньше 0,5 масс.%. В зависимости от количества данных органических примесей, примеси могут иметь отрицательное влияние на композицию этанола. Например, другие спирты в неочищенной композиции этанола могут этерифицироваться уксусной кислотой с образованием других сложных эфиров. Кроме того, было установлено, что изобутанол, изоамиловый спирт и 2-метил-1-бутанол («активный амиловый спирт») сказываются на остаточном запахе композиций этанола и этилацетата.

В предпочтительных вариантах осуществления изобретения композиция этанола по существу не содержит метанол и может включать менее 10 ч./млн по массе метанола, например, менее 1 ч./млн по массе. Кроме того, в предпочтительных вариантах осуществления изобретения композиция этанола по существу не содержит C5-спиртов и может включать менее 10 ч./млн по массе C5-спиртов, например, менее 1 ч./млн по массе.

Известно, что бензол, диоксаны и цианиды представляют собой токсичные соединения в композициях этанола. Обычно, цианиды образуются при ферментативных методах, в которых используют в качестве сырья маниоку. Композиции этанола по изобретению включают низкие количества данных компонентов. Предпочтительно композиция этанола не содержит детектируемого количества бензола, диоксанов и цианидов.

Возвращаясь к производству неочищенной композиции этанола, следует отметить, что обычно гидрирование уксусной кислоты сопровождается образованием этанола и воды, как показано следующей реакцией:

В ходе гидрирования уксусной кислоты помимо воды и этанола могут образоваться другие соединения, как рассмотрено ниже в таблице 1.

Подходящие катализаторы гидрирования включают катализаторы, включающие первый металл и необязательно один или более второй металл, третий металл или дополнительные металлы, необязательно на носителе катализатора. Первый и необязательно второй и третий металлы могут быть выбраны из групп IB, IIB, IIIB, IVB, VB, VIB, VIIB, VIII переходных металлов, лантаноидных металлов, актинидного металла или металла, выбранного из любой из групп IIIA, IVA, VA и VIA. Предпочтительные комбинации металлов для некоторых типичных каталитических композиций включают следующие: платина/олово, платина/рутений, платина/рений, палладий/рутений, палладий/рений, кобальт/палладий, кобальт/платина, кобальт/хром, кобальт/рутений, серебро/палладий, медь/палладий, никель/палладий, золото/палладий, рутений/рений и рутений/железо. Типичные катализаторы дополнительно рассмотрены в патентах США №№7608744 и 7863489 и публикации США №2010/0197485, содержание которых введено в настоящий документ в порядке ссылки.

В одном типичном варианте осуществления изобретения катализатор включает первый металл, выбранный из группы, состоящей из меди, железа, кобальта, никеля, рутения, родия, палладия, осмия, иридия, платины, титана, цинка, хрома, рения, молибдена и вольфрама. Предпочтительно первый металл выбран из группы, состоящей из платины, палладия, кобальта, никеля и рутения. Более предпочтительно, первый металл выбран из платины и палладия. Когда первый металл включает платину, то предпочтительно, чтобы катализатор включал платину в количестве менее 5 масс.%, например, менее 3 масс.% или менее 1 масс.%, из-за высокого спроса на платину.

Как указано выше, катализатор необязательно дополнительно включает второй металл, который обычно будет действовать как промотор. Второй металл, если он присутствует, предпочтительно выбран из группы, состоящей из меди, молибдена, олова, хрома, железа, кобальта, ванадия, вольфрама, палладия, платины, лантана, церия, марганца, рутения, рения, золота и никеля. Более предпочтительно второй металл выбран из группы, состоящей из меди, олова, кобальта, рения и никеля. Более предпочтительно второй металл выбран из олова и рения.

Если катализатор включает два или более металлов, например, первый металл и второй металл, первый металл необязательно содержится в катализаторе в количестве от 0,1 до 10 масс.%, например, от 0,1 до 5 масс.% или от 0,1 до 3 масс.%. Второй металл предпочтительно содержится в количестве от 0,1 и 20 масс.%, например, от 0,1 до 10 масс.% или от 0,1 до 5 масс.%. Для катализаторов, включающих два или более металлов, два или более металлов могут быть сплавлены друг с другом или могут включать раствор или смесь не сплавленных металлов.

Предпочтительные отношения металлов могут меняться в зависимости от использованных в катализаторе металлов. В некоторых типичных вариантах осуществления изобретения молярное отношение первого металла ко второму металлу составляет от 10:1 до 1:10, например, от 4:1 до 1:4, от 2:1 до 1:2, от 1,5:1 до 1:1,5 или от 1,1:1 до 1:1,1.

Катализатор также может включать третий металл, выбранный из любого из металлов, перечисленных выше в связи с первым и вторым металлом, поскольку третий металл отличается от первого и второго металлов. В предпочтительных аспектах третий металл выбран из группы, состоящей из кобальта, палладия, рутения, меди, цинка, платины, олова и рения. Более предпочтительно третий металл выбран из кобальта, палладия и рутения. Когда присутствует, общая масса третьего металла предпочтительно составляет от 0,05 и 4 масс.%, например, от 0,1 до 3 масс.% или от 0,1 до 2 масс.%.

Помимо одного или более металлов типичные катализаторы дополнительно включают носитель или модифицированный носитель, где носитель включает материал носителя и модификатор носителя, который регулирует кислотность материала носителя. Общая масса носителя или модифицированного носителя в расчете на общую массу катализатора предпочтительно составляет от 75 масс.% до 99,9 масс.%, например, от 78 масс.% до 97 масс.%, или от 80 масс.% до 95 масс.%. В предпочтительных вариантах осуществления изобретения, которые предусматривают использование модифицированного носителя, модификатор носителя содержится в количестве от 0,1 масс.% до 50 масс.%, например, от 0,2 масс.% до 25 масс.%, от 0,5 масс.% до 15 масс.%, или от 1 масс.% до 8 масс.%, в расчете на общую массу катализатора.

Подходящие материалы носителя могут включать, например, носители на основе твердого оксида металла или носители на керамической основе. Предпочтительные носители включают носители на основе кремнийсодержащих соединений, такие как диоксид кремния, диоксид кремния/оксид алюминия, силикат группы IIA, такой как метасиликат кальция, прокаленный диоксид кремния, диоксид кремния высокой чистоты и их смеси. Другие носители могут включать, но не ограничиваться ими, оксид железа, оксид алюминия, диоксид титана, диоксид циркония, оксид магния, углерод, графит, графитизированный углерод с высокой удельной поверхностью, активированные углероды и их смеси.

В производстве этанола носитель катализатора может быть модифицирован модификатором носителя. Предпочтительно модификатор носителя представляет основной модификатор, который имеет низкую летучесть или нелетуч. Данные основные модификаторы могут быть выбраны из группы, например, состоящей из (i) оксидов щелочноземельных металлов, (ii) оксидов щелочных металлов, (iii) метасиликатов щелочноземельных металлов, (iv) метасиликатов щелочных металлов, (v) оксидов металлов группы IIB, (vi) метасиликатов металлов группы IIB, (vii) оксидов металлов группы IIIB, (viii) метасиликатов металлов группы IIIB и их смесей. Помимо оксидов и метасиликатов, другие типы модификаторов, включая нитраты, нитриты, ацетаты и лактаты, могут быть использованы. Предпочтительно модификатор носителя выбран из группы, состоящей из оксидов и метасиликатов любого из таких металлов, как натрий, калий, магний, кальций, скандий, иттрий и цинк, а также смесей любых из вышеперечисленных металлов. Предпочтительно, модификатором носителя является силикат кальция и более предпочтительно метасиликат кальция (CaSiO3). Если модификатор носителя включает метасиликат кальция, то предпочтительно, чтобы, по меньшей мере, часть метасиликата кальция была в кристаллической форме.

Предпочтительным материалом носителя на основе диоксида кремния является SS61138 носитель катализатор из диоксида кремния с высокой удельной поверхностью (HSA) от Saint-Gobain NorPro. Диоксид кремния The Saint-Gobain NorPro SS61138 содержит приблизительно 95 масс.% диоксида кремния с высокой удельной поверхностью; удельная поверхность приблизительно 250 м2/г; средний диаметр пор приблизительно 12 нм; средний объем пор приблизительно 1,0 см3/г, измеренный методом ртутной порозиметрии, и плотность паковки приблизительно 0,352 г/см3 (22 фунт/фут3).

Предпочтительным материалом носителя диоксид кремния/оксид алюминия является сферический диоксид кремния KA-160 (Sud Chemie), имеющий номинальный диаметр приблизительно 5 мм, плотность приблизительно 0,562 г/мл и абсорбционную способность приблизительно 0,583 г H2O/г носителя, удельную поверхность приблизительно от 160 до 175 м2/г и объем пор приблизительно 0,68 мл/г.

Как будет понятно специалистам в данной области, материалы носителя выбраны так, что каталитическая система является активной подходящим образом, селективной и устойчивой в условиях процесса, использованных для получения этанола.

Металлы катализаторов могут быть диспергированы по массе носителя, нанесены в виде покрытия на наружную поверхность (типа яичной скорлупы) или декорированы на поверхности носителя.

Каталитические композиции, подходящие для использования в настоящем изобретении, предпочтительно образованы импрегнированием модифицированного носителя металлом, хотя также могут быть использованы другие процессы, такие как химическое отложение из паров. Данные методы импрегнирования рассмотрены в патентах США №№7608744 и 7863489 и патентной публикации США №2010/0197485, содержание которых введено в настоящий документ в порядке ссылки.

Некоторые варианты осуществления процесса гидрирования уксусной кислоты с образованием этанола согласно одному из вариантов осуществления изобретения могут включать различные конфигурации, предусматривающие использование реактора с неподвижным слоем или реактора с псевдоожиженным слоем, как поймет любой специалист в данной области. Во многих вариантах осуществления настоящего изобретения может быть применен «адиабатический» реактор, то есть, остается незначительная потребность или никакой для внутренних слесарных работ в реакционной зоне, связанных с подводом или отводом тепла. В других вариантах осуществления изобретения может быть использован радиальный поточный реактор или реакторы или ряд реакторов с или без теплообмена, резкого охлаждения или введения дополнительного исходного материала. В альтернативном случае, могут быть использована рубашка и трубчатый реактор, снабженный средой теплопереноса. Во многих случаях реакционная зона может быть размещена в одной емкости или в ряде емкостей с теплообменниками между ними.

В предпочтительных вариантах осуществления изобретения катализатор использован в реакторе с неподвижным слоем, например, в форме трубы, где реагенты, обычно в паровой форме, проходят над или через катализатор. Могут быть использованы другие реакторы, такие как реакторы с жидким или кипящим слоем. В некоторых случаях катализаторы гидрирования могут быть использованы в сочетании с инертным материалом для регулирования перепада давления в потоке реагента по каталитическому слою и времени контакта реагирующих соединений с частицами катализатора.

Реакцию гидрирования можно проводить либо в жидкой фазе, либо в паровой фазе. Предпочтительно реакцию проводить в паровой фазе в следующих условиях. Температура реакции может лежать в интервале от 125°C до 350°C, например, от 200°C до 325°C, от 225°C до 300°C, или от 250°C до 300°C. Давление может лежать в интервале от 10 кПа до 3000 кПа (приблизительно от 1,5 до 435 фунт/кв.дюйм), например, от 50 кПа до 2300 кПа, или от 100 кПа до 1500 кПа. Реагенты могут быть поданы в реактор при часовой объемной скорости газа (GHSV) больше 500 час-1, например, больше 1000 час-1, больше 2500 час-1 или даже больше 5000 час-1. С точки зрения интервалов, GHSV может лежать в интервале от 50 час-1 до 50000 час-1, например, от 500 час-1 до 30000 час-1, от 1000 час-1 до 10000 час-1, или от 1000 час-1 до 6500 час-1.

Гидрирование необязательно проводят при давлении, просто достаточном для преодоления перепада давления по слою катализатора при выбранной GHSV, хотя не существует никаких препятствий для использования более высоких давлений, и понятно, что значительный перепад давления по слою реактора может возникнуть при высоких объемных скоростях, например, 5000 час-1 или 6500 час-1.

Хотя в реакции расходуется два моля водорода на моль уксусной кислоты с получением одного моля этанола, действительное молярное отношение водорода к уксусной кислоте в потоке сырья может меняться от приблизительно 100:1 до 1:100, например, от 50:1 до 1:50, от 20:1 до 1:2 или от 12:1 до 1:1. Наиболее предпочтительно, молярное отношение водорода к уксусной кислоте составляет больше 2:1, например, больше 4:1 или больше 8:1.

Время контакта или пребывания также может меняться в широких пределах, в зависимости от таких переменных, как количество уксусной кислоты, катализатор, реактор, температура и давление. Обычные времена контакта лежат в пределах от долей секунды до более чем несколько часов, когда используется каталитическая система, отличная от неподвижного слоя, с предпочтительными временами контакта, по меньшей мере, для реакций в паровой фазе, от 0,1 до 100 секунд, например, от 0,3 до 80 секунд или от 0,4 до 30 секунд.

Исходные материалы, уксусная кислота и водород, использованные в связи с осуществлением способа по настоящему изобретению, могут быть получены из любого подходящего источника, включая природный газ, нефть, уголь, биомассу и т.п. Например, уксусная кислота может быть получена по реакции карбонилирования метанола, окисления ацетальдегида, окисления этилена, окислительной ферментации и анаэробной ферментации. Поскольку происходит колебание цен на нефть и природный газ, становясь более или менее высокими, методы получения уксусной кислоты и промежуточных соединений, таких как метанол и оксид углерода, из альтернативных углеродистых источников представляют все возрастающий интерес. В частности, когда нефть является относительно дорогой по сравнению с природным газом, может оказаться преимущественным получать уксусную кислоту из синтез-газа («сингаза»), образующегося из любого доступного источника углерода. Патент США №6232352, существо которого введено в настоящий документ в порядке ссылки, например, предлагает способ переоборудования завода по производству метанола на производство уксусной кислоты. При переоборудовании завода по производству метанола значительно снижаются или значительно сокращаются большие капитальные затраты, связанные с образованием СО для нового завода по производству уксусной кислоты. Весь или часть сингаза отводят из зоны синтеза метанола и направляют на сепарационную установку для извлечения СО и водорода, которые затем используют для получения уксусной кислоты. Помимо уксусной кислоты, данный процесс также может быть использован для получения водорода, который может быть использован при осуществлении настоящего изобретения.

Процессы карбонилирования метанола, пригодные для получения уксусной кислоты, рассмотрены в патентах США №№7208624, 7115772, 7005541, 6657078, 6627770, 6143930, 5599976, 5144068, 5026908, 5001259 и 4994608, существо которых введено в настоящий документ в порядке ссылки. Необязательно получение этанола может быть объединено с данными процессами карбонилирования метанола.

Патент США №RE 35377, также введенный в настоящий документ в порядке ссылки, обеспечивает способ получения метанола конверсией углеродистых материалов, таких как нефть, уголь, природный газ и материалы биомассы. Способ включает гидрогазификацию твердых и/или жидких углеродистых материалов с получением технологического газа, который представляет собой пиролизный поток, обработанный дополнительным природным газом с получением синтез-газа. Сингаз конвертируют в метанол, который может быть карбонилирован уксусной кислотой. Способ также обеспечивает получение водорода, который может быть использован в данном изобретении, как отмечено выше. Патент США №5821111, который предлагает способ конверсии отработанной биомассы газификацией в синтез-газ, а также патент США №6685754, содержание которого введено в настоящий документ в порядке ссылки.

В одном необязательном варианте осуществления изобретения уксусная кислота, подаваемая в реакцию гидрирования, может также включать другие карбоновые кислоты и ангидриды, а также ацетальдегид и ацетон. Предпочтительно подходящий исходный поток уксусной кислоты включает одно или несколько соединений, выбранных из группы, состоящей из уксусной кислоты, уксусного ангидрида, ацетальдегида и их смесей. Данные другие соединения могут быть также гидрированы в способе по настоящему изобретению. В некоторых вариантах осуществления изобретения настоящие карбоновые кислоты, такие как пропановая кислота и ее ангидрид могут быть преимущественными при получении пропанола.

В альтернативном варианте, уксусная кислота в паровой форме может быть выведена прямо как неочищенный продукт из емкости мгновенного испарения установки карбонилирования метанола класса, описанного в патенте США №6657078, содержание которого введено в настоящий документ в порядке ссылки. Неочищенный парообразный продукт, например, может быть направлен прямо в реакционные зоны синтеза этанола по настоящему изобретению без необходимости конденсации уксусной кислоты и легких фракций или удаления воды, что экономит общие технологические расходы.

Уксусная кислота может быть выпарена при температуре реакции, после чего выпаренная уксусная кислота может быть направлена вместе с водородом в неразбавленном состоянии или разбавленном относительно инертным газом-носителем, таким как азот, аргон, гелий, диоксид углерода и т.п. Для реакций, протекающих в паровой фазе, температура должна контролироваться в системе, так чтобы она не падала ниже точки росы уксусной кислоты. В одном из вариантов осуществления изобретения уксусная кислота может быть выпарена при температуре кипения уксусной кислоты при парциальном давлении, а затем выпаренная уксусная кислота может быть дополнительно нагрета до температуры на входе в реактор. В другом варианте осуществления изобретения уксусную кислоту переводят в паровое состояние путем пропускания водорода, циркуляционного газа, другого подходящего газа или их смесей через уксусную кислоту при температуре ниже температуры кипения уксусной кислоты, увлажняя, таким образом, газ-носитель парами уксусной кислоты, с последующим нагреванием смешанных паров до температуры на входе в реактор. Предпочтительно уксусную кислоту переводят в пар путем пропускания водорода и/или циркуляционного газа через уксусную кислоту при температуре 125°С или ниже, с последующим нагреванием объединенного газового потока до температуры на входе в реактор.

В частности, гидрирование уксусной кислоты может достичь благоприятной конверсии уксусной кислоты и благоприятной селективности и производительности по этанолу. Для целей настоящего изобретения термин «конверсия» относится к количеству уксусной кислоты в сырье, которое превратилось в соединение, отличное от уксусной кислоты. Конверсия выражается в мольных процентах в расчете на уксусную кислоту в сырье. Конверсия может составлять, по меньшей мере, 10%, например, по меньшей мере, 20%, по меньшей мере, 40%, по меньшей мере, 50%, по меньшей мере, 60%, по меньшей мере, 70% или, по меньшей мере, 80%. Хотя катализаторы, которые имеют высокие конверсии, являются желательными, как, по меньшей мере, 80% или, по меньшей мере, 90%, в некоторых вариантах осуществления изобретения низкие конверсии могут быть допустимыми при высокой селективности к этанолу. Безусловно, хорошо понятно, что во многих случаях можно компенсировать конверсию соответствующими циркуляционными потоками или использованием реакторов больших размеров, но более трудно компенсировать низкую селективность.

Селективность выражается в мольных процентах в расчете на конвертированную уксусную кислоту. Следует понимать, что каждое соединение, образовавшееся из уксусной кислоты, имеет независимую селективность, и что селективность не зависит от конверсии. Например, если 50 моль.% конвертированной уксусной кислоты превратилось в этанол, мы считаем селективность к этанолу 50%. Предпочтительно селективность катализатора к этоксилатам составляет, по меньшей мере, 60%, например, по меньшей мере 70% или, по меньшей мере, 80%. Как использовано в настоящем документе, термин «этоксилаты» относится, в частности, к таким соединениям, как этанол, ацетальдегид и этилацетат. Предпочтительно, селективность к этанолу составляет, по меньшей мере, 80%, например, по меньшей мере, 85% и