Вычисление линий нагрузки флюидом, проверка на вогнутость и итерации относительно коэффициента затухания для диаграммы скважинного насоса

Иллюстрации

Показать все

Изобретение относится к области скважинных насосных установок. Насосная установка имеет скважинный насос, расположенный в буровой скважине, и имеет двигатель на поверхности. Колонна насосных штанг, в рабочем состоянии перемещаемая двигателем, возвратно-поступательно перемещает скважинный насос в буровой скважине. Скважинную диаграмму, показывающую нагрузку на скважинный насос и положение его, образуют при использовании наземных измерений и модели волнового уравнения, имеющей коэффициент затухания при ходе вверх и коэффициент затухания при ходе вниз. Из скважинной диаграммы определяют действительные линии нагрузки флюидом при ходе вверх и ходе вниз скважинного насоса, а расчетные линии нагрузки флюидом при ходе вверх и ходе вниз вычисляют на основании значений нагрузки, распределенных по скважинной диаграмме. Позволяет передавать данные на удаленное место с большой достоверностью. 5 н. и 21 з.п. ф-лы, 33 ил.

Реферат

Перекрестная ссылка на родственные заявки

[0001] По этой заявке испрашивается преимущество приоритета заявки №61/552812 на патент США под названием «Modified Everitt-Jennings with dual iteration on the damping factors and adaptation to deviated wells by including Coulombs friction», поданной 28 октября 2011 года, заявки №61/598438 под названием «Modified Everitt-Jennings with dual iteration on the damping factors», поданной 14 февраля 2012 года, заявки №61/605325 под названием «Implementing Coulombs friction for the calculation of downhole cards in deviated wells», поданной 1 марта 2012 года, и заявки №61/706489 под названием «Iterating on damping when solving the wave equation and computation on fluid load lines and concavity testing», поданной 27 сентября 2012 года, каждая из которых полностью включена в эту заявку путем ссылки.

Предпосылки создания изобретения

А. Штанговая насосная система

[0002] Насосные системы с возвратно-поступательным движением, такие как штанговые насосные системы, извлекают флюиды из скважины, и в них используется скважинный насос, соединенный с приводным источником на поверхности. Колонна насосных штанг соединяет наземный приводной источник со скважинным насосом в скважине. При работе источник возбуждения циклически поднимает и опускает штанги скважинного насоса и при каждом ходе скважинный насос поднимает скважинные флюиды к поверхности.

[0003] На фиг. 1 показана для примера штанговая насосная система 10, используемая для добычи флюида из скважины. Скважинный насос 14 имеет цилиндр 16 с всасывающим клапаном 24, расположенным внизу. Всасывающий клапан 24 позволяет флюиду входить из буровой скважины, но не позволяет выходить флюиду. Внутри цилиндра 16 насоса плунжер 20 имеет нагнетательный клапан 22, расположенный наверху. Нагнетательный клапан 22 позволяет флюиду перемещаться снизу от плунжера 20 вверх в насосно-компрессорную колонну 18, но не позволяет флюиду возвращаться из насосно-компрессорной колонны 18 в цилиндр 16 насоса ниже плунжера 20. Приводной источник (например, станок-качалка 11) на поверхности соединен колонной 12 насосных штанг с плунжером 20 и перемещает плунжер 20 вверх и вниз циклически при движениях вверх и движениях вниз.

[0004] Во время хода вверх нагнетательный клапан 22 закрывается, и любой флюид выше плунжера 20 в насосно-компрессорной колонне 18 поднимается к поверхности. Тем временем всасывающий клапан 24 открывается и позволяет флюиду входить в цилиндр 16 насоса из буровой скважины. Наивысшую точку движения плунжера обычно называют «верхней точкой хода» (TOS), тогда как самую низкую точку движения плунжера обычно называют «нижней точкой хода» (BOS).

[0005] В верхней точке хода всасывающий клапан 24 закрывается и удерживает флюид, который вошел в цилиндр 16 насоса. В дополнение к этому в верхней точке хода масса флюида в насосно-компрессорной колонне 18 поддерживается нагнетательным клапаном 22 в плунжере 20 и, следовательно, также и колонной 12 насосных штанг, что вызывает растяжение колонны 12 насосных штанг.

[0006] Во время хода вниз нагнетательный клапан 22 сначала остается закрытым до тех пор, пока плунжер 20 не достигает поверхности флюида в цилиндре 16. Ниже нагнетательного клапана 22 создается давление, достаточное для выравнивания давления. При возрастании давления в цилиндре 16 насоса снижается нагрузка на колонну 12 насосных штанг, так что напряжение колонны 12 насосных штанг уменьшается.

[0007] Этот процесс происходит в течение ограниченного времени, когда плунжер 20 покоится на флюиде, а станок-качалка 11 на поверхности обеспечивает движение вниз верхней части колонны 12 насосных штанг. Положение плунжера 20 насоса в этот момент времени известно как «точка перехода», поскольку нагрузка столбом флюида в насосно-компрессорной колонне 18 переходит от нагнетательного клапана 22 к всасывающему клапану 24. Это приводит к быстрому снижению нагрузки на колонну 12 насосных штанг во время перехода.

[0008] После выравнивания давления нагнетательный клапан 22 открывается, и плунжер 20 продолжает движение вниз до самого нижнего положения (то есть до нижней точки хода). Движение плунжера 20 от точки перехода к нижней точке хода известно как «ход флюида» и является мерой количества флюида, поднимаемого насосом 14 при каждом ходе. Иначе говоря, часть хода плунжера насоса ниже точки перехода можно интерпретировать как процент хода плунжера насоса, при котором удерживается флюид, и этот процент соответствует наполняемости насоса. Поэтому точку перехода можно вычислить при использовании подсчета наполняемости насоса.

[0009] Если в буровой скважине находится достаточное количество флюида, цилиндр 16 насоса может полностью заполняться флюидом в продолжение хода вверх. Все же при некоторых условиях насос 14 может не полностью заполняться флюидом при ходе вверх, вследствие чего может оставаться пустое пространство между флюидом и плунжером 20, когда он продолжает подниматься. Работа насосной системы 10 с только частично заполняемым цилиндром 16 является неэффективной и, следовательно, нежелательной. В этом случае о скважине говорят, что она «откачана», а это состояние известно как «удары плунжера о дно цилиндра», при которых могут повреждаться различные компоненты насосной системы. В случае откачанной скважины наиболее вероятно, что точка перехода будет наблюдаться после верхней точки хода плунжера 20.

[0010] Обычно датчики для измерения условий возле скважинного насоса 14, который может быть расположен под землей на глубине нескольких тысяч футов, отсутствуют. Вместо них используют численные способы для вычисления положения плунжера 20 насоса и нагрузки, действующей на плунжер 20, на основании измерений положения колонны 12 насосных штанг и нагрузки на нее около станка-качалки 11, расположенного на поверхности. Эти измерения обычно выполняют в верхней части полированного штока 28, который является частью колонны 12 насосных штанг, проходящей через сальниковую коробку 13 в устье скважины. Контроллер 26 насоса используют для мониторинга насосной системы 10 и управления ею.

[0011] Для эффективного управления насосной системой 10 с возвратно-поступательным движением и исключения дорогого технического обслуживания контроллер 26 штангового насоса может собирать системные данные и соответственно корректировать рабочие параметры системы 10. Обычно контроллер 26 штангового насоса собирает такие системные данные, как нагрузка и перемещение колонны насосных штанг, путем измерения этих свойств на поверхности. Хотя этими измеряемыми на поверхности данными предоставляется полезная диагностическая информация, они не дают точного представления относительно некоторых свойств, наблюдаемых в скважине возле насоса. Поскольку эти скважинные свойства невозможно без труда измерять непосредственно, их обычно вычисляют на основании измеряемых на поверхности свойств.

[0012] В способах определения рабочих характеристик скважинного насоса 20 используют форму графического представления скважинных данных для вычисления различных деталей. Например, в патенте США №5252031 (Gibbs) под названием «Monitoring and pump-off control with downhole pump cards» изложен способ мониторинга снабженной штанговым насосом скважины для обнаружения различных проблем, связанных с насосом, с использованием измерений, выполняемых на поверхности, для образования диаграммы скважинного насоса. В таком случае представленную графически диаграмму скважинного насоса можно использовать для обнаружения различных проблем, связанных с насосом, и управления насосной установкой. Другие способы определения рабочих характеристик раскрыты в публикациях №2011/0091332 и №2011/0091335 заявок на патенты США, которые полностью включены в эту заявку путем ссылки.

В. Способ Эверитта-Дженнингса

[0013] В способах определения рабочих характеристик штанговой насосной системы 10, показанной выше, при анализе с помощью программного обеспечения вычисляют скважинные данные (то есть диаграмму насоса) с использованием данных о положении и нагрузке, измеряемых на поверхности. В наиболее точных и популярных из этих способов вычисляют скважинную диаграмму на основании наземных данных путем решения одномерного уравнения затухающей волны, в котором используют положение поверхности и нагрузку, регистрируемые на поверхности.

[0014] Существуют различные алгоритмы для решения волнового уравнения. Снайдер решил волновое уравнение, используя способ характеристик. См. Snyder W.E., «A method for computing down-hole forces and displacements in oil wells pumped with sucker rods», Paper 851-37-K, 1963. Гиббс использовал разделение переменных и ряд Фурье, и его способ может быть назван «способом Гиббса». См. Gibbs S.G. et al., «Computer diagnosis of down-hole conditions in sucker rod pumping wells», JPT (Jan. 1966) 91-98; Trans., AIME, 237; Gibbs S.G., «A review of methods for design and analysis of rod pumping installations», SPE 9980, 1982; и патент США №3343409.

[0015] В 1969 году Кнапп применил конечные разности для решения волнового уравнения. См. Knapp R.M., «A dynamic investigation of sucker-rod-pumping», MS thesis, U. of Kansas, Topeka (Jan. 1969). Этот же способ использовали Эверитт и Дженнингс. См. Everitt T.A. and Jennings J.W., «An improved finite-difference calculation of downhole dynamometer cards for sucker-rod pumps», SPE 18189, 1992; и Pons-Ehimeakhe V., «Modified Everitt-Jennings algorithm with dual iteration on the damping factors», 2012 Southwestern Petroleum Short Course. Кроме того, способ Эверитта-Дженнингса был реализован и модифицирован компанией Weatherford International. См. Ehimeakhe V., «Comparative study of downhole cards using modified Everitt-Jennings method and Gibbs method», Southwestern Petroleum Short Course 2010.

[0016] Для решения одномерного волнового уравнения в способе Эверитта-Дженнингса используются конечные разности. Колонну насосных штанг разделяют на М конечно-разностных узлов длиной Li (фут), плотностью ρi (фунт·м/фут3) площадью Ai (дюйм2). Если мы допустим, что u=u(x,t) представляет собой перемещение положения x в момент t времени в штанговой насосной системе, то сконденсированное одномерное волновое уравнение будет выражаться как:

v 2 ∂ 2 u ∂ x 2   =   ∂ 2 u ∂ t 2   +   D ∂ u ∂ t ,     (1)

[0017] где скорость акустической волны имеет вид v   =   144 E g ρ , и D представляет собой коэффициент затухания.

[0018] Первую и вторую производные по времени заменяют разностями вперед первого порядка точности и центральными разностями второго порядка точности. Вторую производную по положению заменяют несколько перегруппированной центральной разностью второго порядка точности.

[0019] В способе коэффициент D затухания выбирается автоматически при использовании итерации относительно истинного хода (NS) и коэффициента D затухания. Коэффициент D затухания можно вычислить в соответствии с уравнением:

D   =   ( 550 ) ( 144 g ) 2 π ( H P R   −   H H ) τ 2 ( ∑ ρ i A i L i ) S 2 ,     (2)

[0020] где HPR - мощность полированного штока (в лошадиных силах), S - истинный ход (в дюймах),τ - период одного хода (в секундах), а гидравлическую мощность HHYD - (в лошадиных силах) получают согласно

HHYD=(7,36·10-6)QγFl,     (3)

где Q - производительность насоса (в баррелях в сутки), γ - удельная плотность флюида и Fl - уровень флюида (в футах). Производительность насоса имеет вид:

Q=(0,1166)(SPM)Sd2,     (4)

где SPM - число качаний насосной установки в ходах в минуту, а d является диаметром плунжера.

[0021] Дополнительные подробности относительно получения коэффициента D затухания из уравнения (2) и алгоритма исходной итерации относительно истинного хода и коэффициента затухания приведены в Everitt T.A. и Jennings J.W., «An improved finite-difference calculation of downhole dynamometer cards for sucker- rod pumps», SPE 18189, 1992.

[0022] В модифицированном способе Эверитта-Дженнингса также используются конечные разности для решения волнового уравнения. Как и ранее, колонну насосных штанг разбивают на М конечно-разностных элементов, а положение и нагрузку (включая напряжение) вычисляют на каждом шаге вниз по буровой скважине. Затем, как показано на фиг. 2, итерацию выполняют относительно истинного хода и коэффициента затухания, при этом для каждого хода коэффициент затухания выбирается автоматически.

[0023] Сначала волновое уравнение решают, чтобы вычислить скважинную диаграмму с использованием наземных измерений, а начальный коэффициент D затухания полагают равным 0,5 (блок 42). Начальный истинный ход S0 определяют из вычисленной диаграммы, а уровень флюида в скважине вычисляют (блок 44). На этой стадии новый коэффициент D затухания вычисляют из уравнения (2) (блок 46) и т. д., и скважинную диаграмму опять вычисляют с учетом нового коэффициента D затухания (блок 48). На основании пересчитанной скважинной диаграммы определяют новый истинный ход S (блок 50).

[0024] Затем на этой стадии проверяют, находится ли вновь определенный истинный ход S вблизи начального или предшествующего истинного хода в пределах некоторого допуска Є (решение 52). Если не находится, то необходима еще одна итерация, и в процессе 40 возвращаются к вычислению коэффициента D затухания (блок 46). Если вновь определенный истинный ход приближается к ранее определенному истинному ходу («да» при принятии решения 52), то итерацию для определения истинного хода можно прекратить и продолжить процесс 40 для выполнения итерации относительно коэффициента D затухания с использованием сходящегося истинного хода S (блок 54). Затем скважинные данные вычисляют с использованием вновь вычисленного коэффициента D затухания (блок 56) и после этого вычисляют мощность HPump насоса в лошадиных силах (блок 58).

[0025] На этой стадии выполняют проверку, чтобы выяснить, находится ли мощность HPump насоса близко к гидравлической мощности Hhyd в пределах некоторого допуска (решение 60). Если да, то процесс 40 заканчивают, поскольку диаграмма скважинного насоса со сходящимися истинным ходом и коэффициентом D затухания успешно вычислена (блок 62). Если мощность HPump насоса и гидравлическая мощность Hhyd не находятся достаточно близко друг к другу («нет» при принятии решения 60), то в ходе процесса 40 корректируют текущий коэффициент D затухания в соответствии с отношением мощности HPump насоса к гидравлической мощности Hhyd (блок 64). Процесс 40 вычисления диаграммы насоса с этим скорректированным коэффициентом D затухания повторяют до тех пор, пока для насоса значения мощности HPump насоса и гидравлической мощности Hhyd не приблизятся друг к другу в пределах заданного допуска (блоки с 56 по 64).

[0026] Преимущество автоматической итерации относительно истинного хода и коэффициента затухания, изложенной выше, заключается в том, что коэффициент D затухания корректируется автоматически без вмешательства человека. Поэтому пользователи, управляющие группами скважин от средних до больших, могут не тратить время на ручную коррекцию коэффициента D затухания, которая может требоваться в других способах.

С. Скважинная карта и затухание

[0027] На фиг. 3А показан пример наземных данных 50, полученных на поверхности скважины. Нагрузка (по оси y), измеряемая на поверхности динамометрической системой, изображена на графике в зависимости от положения (по оси x). С использованием способов, рассмотренных ранее, измеряемые наземные данные 50 могут быть математически преобразованы в скважинные данные или диаграмму 60 насоса, которая на этой фигуре показана в идеальном варианте.

[0028] Диаграмма 60 насоса имеет линию 64 (F0up) нагрузки флюидом при ходе вверх и линию (F0down) нагрузки флюидом при ходе вниз. Высоту 63 диаграммы 60 насоса называют ходом F0 флюида, где F0 является линией 62 (F0up) нагрузки флюидом при ходе вверх за вычетом линии 64 (F0down) нагрузки флюидом при ходе вниз.

[0029] Ход (PS) насоса или ход в скважине называют мерой экстремального перемещения штанги, происходящего на месте нахождения насоса. Поэтому «ходом насоса» называют максимальное перемещение за вычетом минимального перемещения, и оно соответствует горизонтальному расстоянию или ширине диаграммы 60 скважинного насоса.

[0030] Кроме того, истинный ход 68 (NS) называют мерой участка хода (PS) насоса, во время которого нагрузка флюидом поддерживается всасывающим клапаном насоса. В случае диаграммы 60' откачанной скважины, показанной на фиг. 3В, истинный ход 68 (NS) измерен относительно точки 66 перехода, которая представляет собой сдвиг хода насоса, когда нагрузка передается от нагнетательного клапана насоса к всасывающему клапану. (Точку перехода можно вычислить при использовании подсчета наполняемости насоса.) Точка 66 перехода возникает вследствие того, что давление в цилиндре насоса превышает давление на плунжер. Участок хода ниже точки 66 перехода (с меньшим перемещением) представляет собой истинный ход NS и интерпретируется как участок хода насоса (PS), на котором фактически имеется жидкость.

[0031] Данные о перемещении и нагрузке можно использовать для определения одной или нескольких характеристик работы скважинного насоса, таких как минимальный ход насоса, максимальный ход насоса и точка перехода на ходе вниз. В свою очередь, площадью А диаграммы 60 или 60' насоса дается мощность скважинного насоса (20).

[0032] С использованием волнового уравнения, приведенного ранее, диаграмму 60 скважинного насоса вычисляют по наземным данным 50. При вычислении в волновом уравнении необходимо использовать коэффициент D затухания для добавления или исключения энергии из расчета. Если, как показано на фиг. 3С, выполнять вычисление со сверхкритическим затуханием, то скважинная диаграмма 60А будет вычислена со схематически показанной формой. В противоположность этому, если выполнять вычисление с докритическим затуханием, то скважинная диаграмма 60В будет вычислена с формой, схематически показанной на фиг. 3D.

[0033] При анализе наземных данных 50 и вычислении скважинной диаграммы 60 линии 62 и 64 нагрузки флюидом представляют максимальную и минимальную нагрузки, прикладываемые к колонне (12) насосных штанг насосом (20) в зависимости от текущего уровня флюида. Когда можно выполнять замеры газа, линии 62 и 64 нагрузки флюидом можно легко вычислять при использовании давления на приеме насоса и давления на выпуске насоса. Однако при отсутствии этих замеров линии 62 и 64 нагрузки флюидом следует вычислять другими способами.

[0034] В общем случае линии 62 и 64 нагрузки флюидом могут быть проведены на графическом представлении скважинной диаграммы 60, поскольку линии 62 и 64 нагрузки флюидом обычно можно идентифицировать визуально. Однако когда дело касается большой группы скважин, любой вид визуального определения линий 62 и 64 нагрузки флюидом является в значительной степени непрактичным. Поэтому, поскольку линиями 62 и 64 нагрузки флюидами определяется нагрузка флюидами, используемая при вычислении объемной производительности насоса (20), а также уровней флюида в скважине, возможность определения линий 62 и 64 нагрузки флюидом на основании измеряемых и вычисляемых данных может быть очень полезной при эксплуатации и диагностировании штанговых насосных систем.

Краткое изложение раскрытия

[0035] Насосная установка имеет скважинный насос, расположенный в буровой скважине, и имеет двигатель на поверхности буровой скважины, а скважинный насос возвратно-поступательно перемещается в буровой скважине колонной насосных штанг, в рабочем состоянии перемещаемой двигателем. Диаграмму, показывающую нагрузку на скважинный насос и положение его, образуют при использовании наземных измерений и модели волнового уравнения, имеющей коэффициент затухания или два коэффициента затухания. Действительные линии нагрузки флюидом определяют из скважинной диаграммы для хода вверх и хода вниз скважинного насоса, а расчетные линии нагрузки флюидом определяют на основании распределения нагрузки в скважинных данных. Действительные линии нагрузки флюидом сравнивают с расчетными линиями нагрузки флюидом, так что по меньшей мере один параметр насосной установки может быть модифицирован на основании сравнения. Например, затухание из модели волнового уравнения можно корректировать, чтобы можно было образовать другую диаграмму скважинного насоса.

[0036] Насосная установка имеет скважинный насос, расположенный в буровой скважине, и имеет двигатель на поверхности, а колонна насосных штанг, в рабочем состоянии перемещаемая двигателем, возвратно-поступательно перемещает скважинный насос в буровой скважине. Скважинные данные, показывающие нагрузку на скважинный насос и положение его, образуют при использовании наземных измерений и модели волнового уравнения, имеющей коэффициент затухания. Действительные линии нагрузки флюидом определяют из скважинных данных для ходов вверх и ходов вниз скважинного насоса, а расчетные линии нагрузки флюидом для ходов определяют на основании значений нагрузки, распределенных по скважинным данным. Действительные линии нагрузки флюидом сравнивают с расчетными линиями нагрузки флюидом, чтобы определить, являются ли скважинные данные со сверхкритическим или докритическим затуханием. Затем коэффициент затухания из модели волнового уравнения может быть скорректирован, вследствие чего могут быть образованы новые скважинные данные с надлежащим затуханием.

[0037] Насосная установка имеет скважинный насос, расположенный в буровой скважине, и имеет двигатель на поверхности, а колонна насосных штанг, в рабочем состоянии перемещаемая двигателем, возвратно-поступательно перемещает скважинный насос в буровой скважине. Скважинные данные, показывающие нагрузку на скважинный насос и положение его, образуют при использовании наземных измерений и модели волнового уравнения, имеющей коэффициент затухания при ходе вверх и коэффициент затухания при ходе вниз. Действительные линии нагрузки флюидом определяют из скважинной диаграммы для ходов вверх и ходов вниз скважинного насоса, а расчетные линии нагрузки флюидом для ходов определяют на основании значений нагрузки, распределенных в скважинных данных. Действительные линии нагрузки флюидом сравнивают с расчетными линиями нагрузки флюидом, чтобы определить, являются ли скважинные данные со сверхкритическим или докритическим затуханием. Затем по меньшей мере один из коэффициентов затухания при ходе вверх или ходе вниз из модели волнового уравнения корректируют, чтобы можно было образовать новые скважинные данные с надлежащим затуханием.

Краткое описание чертежей

На чертежах:

[0038] фиг. 1 - вид насосной штанговой системы;

[0039] фиг. 2 - иллюстрация итерации относительно истинного хода и коэффициента затухания в модифицированном алгоритме Эверитта-Дженнингса для вычисления диаграммы насоса согласно предшествующему уровню техники;

[0040] фиг. 3А - иллюстрация корреляции между наземными данными, получаемыми на поверхности скважины, и скважинными данными для насоса;

[0041] фиг. 3В - иллюстрация истинного хода в диаграмме откачанной скважины;

[0042] фиг. 3С - скважинная диаграмма со сверхкритическим затуханием;

[0043] фиг. 3D - скважинная диаграмма с докритическим затуханием;

[0044] фиг. 4 - блок-схема последовательности действий при определении линий нагрузки флюидом и определении вогнутости линий нагрузки флюидом согласно настоящему раскрытию;

[0045] фиг. 5А - линии нагрузки флюидом, определенные для скважинной диаграммы со сверхкритическим затуханием;

[0046] фиг. 5В - линии нагрузки флюидом, определенные для скважинной диаграммы с докритическим затуханием;

[0047] фиг. 6А - блок-схема последовательности действий при вычислении скважинной диаграммы путем итерирования относительно одинарного коэффициента затухания согласно одному способу настоящего раскрытия;

[0048] фиг. 6В - блок-схема последовательности действий при определении вариации затухания для итерации относительно одинарного коэффициента затухания из фиг. 6А;

[0049] фиг. 7А - блок-схема последовательности действий при вычислении скважинной диаграммы путем итерирования относительно сдвоенных коэффициентов затухания согласно другому способу настоящего раскрытия;

[0050] фиг. 7В - блок-схема последовательности действий при определении вариации затухания для итерации относительно сдвоенных коэффициентов затухания из фиг. 7А;

[0051] фиг. 8А-8J - приведенные для сравнения результаты итерирования относительно одинарных и сдвоенных коэффициентов затухания с использованием ряда примеров данных;

[0052] фиг. 9А - контроллер насоса согласно настоящему раскрытию для штанговой насосной системы;

[0053] фиг. 9В - структурная схема контроллера насоса для управления штанговой насосной системой и диагностирования ее согласно настоящему раскрытию; и

[0054] фиг. 10А-10Н - линии нагрузки флюидом, определенные из ряда примеров скважинных диаграмм.

Подробное описание раскрытия

А. Вычисление линий нагрузки флюидом и проверка на вогнутость

[0055] Как отмечалось выше, скважинные данные для штанговой насосной системы измеряют на скважинном насосе или вычисляют на основании наземных измеренных данных при использовании волнового уравнения. Знание скважинных условий важно для диагностирования совершающей возвратно-поступательное перемещение системы и контроля эффективности ее. Например, скважинные данные могут помогать при диагностировании скважинных условий, вычислении объемной производительности насоса и вычислении эффективности насосной системы.

[0056] Идеями настоящего раскрытия обеспечивается способ определения действительных линий нагрузки флюидом, а также расчетных (репрезентативных) линий нагрузки флюидом для диаграмм скважинного насоса. Действительные линии нагрузки флюидом представляют собой линии, показанные на фиг. 3A-3D, тогда как расчетные линии нагрузки флюидом зависят от распределения нагрузки по диаграмме насоса. При использовании этих двух линий проверкой на вогнутость можно определить, какой является скважинная карта, полученной при докритическом затухании или при сверхкритическом затухании.

[0057] Обратимся к фиг. 4, на которой представлен процесс 100 определения линий нагрузки флюидом (например, 60А и 60В; фиг. 5А-5В) для диаграммы скважинного насоса и определения вогнутости линий нагрузки флюидом. В свою очередь, эти определения можно использовать для решения различных задач, раскрытых в этой заявке.

[0058] Процесс 100 начинают с вычисления (блок 102) скважинной диаграммы (например, 60А и 60В; фиг. 5А-5В) с использованием имеющихся способов или способов, раскрытых в этой заявке, что более предпочтительно. Затем на основании скважинной диаграммы определяют (блок 104) действительные линии нагрузки флюидом при ходе вверх и ходе вниз.

[0059] Для иллюстрации на фиг. 5А и 5В показаны представления скважинных диаграмм, одной диаграммы 60А, полученной при сверхкритическом затухании, и другой диаграммы 60В, полученной при докритическом затухании. Для задач настоящего раскрытия действительные линии 72 и 74 нагрузки флюидом представляют собой линии нагрузки, которые обычно выбираются пользователем. Эти линии 72 и 74 нагрузки флюидом соответствуют значениям нагрузки флюидом, в которых совсем не учитывается трение при ходе вверх или при ходе вниз, и соответствуют давлению на приеме насоса и давлению на выпуске насоса соответственно. Действительная линия 72 нагрузки флюидом при ходе вверх обозначена как F0upactual, а действительная линия 74 нагрузки флюидом при ходе вниз обозначена как F0downactual.

[0060] Нахождение действительных линий 72 и 74 нагрузки флюидом при ходе вверх и ходе вниз включает в себя расположение правых углов графического представления скважинной диаграммы 60А или 60В. Хотя это можно делать визуально, но, как раскрыто в этой заявке, это делается математически при обработке контроллером насоса или другим обрабатывающим устройством. Например, линия 72 нагрузки флюидом при ходе вверх соответствует верхней точке хода, которая располагается в соответствии с нахождением нуля первой производной положения насоса в скважине (то есть в соответствии с нахождением момента, когда скорость перемещения насоса равна нулю).

[0061] Действительная линия 74 нагрузки флюидом при ходе вниз соответствует нижнему правому углу. Нахождение нижнего правого угла соответствует нахождению вогнутой вверх точки после точки перехода, которая представляет собой точку, в которой нагрузка флюидом передается от всасывающего клапана к нагнетательному клапану в скважинном насосе. Поэтому вогнутую вверх точку можно найти путем нахождения абсолютного минимума второй производной положения скважинного насоса (то есть путем нахождения минимального ускорения после точки перехода). На фиг. 5А-5В показаны идеализированные скважинные диаграммы, но на дополнительных фигурах, раскрытых в этой заявке, показаны действительные линии нагрузки флюидом, вычисленные для типовых данных.

[0062] При наличии действительных линий 72 и 74 нагрузки флюидом, определенных (блок 104) в ходе процесса 100 из фиг. 4, затем согласно процессу 100 определяют (блок 106) расчетные (репрезентативные) линии нагрузки флюидом. Расчетные линии нагрузки флюидом, которые в этой заявке также могут называться репрезентативными линиями нагрузки флюидом, представляют значения нагрузки, соответствующие распределению нагрузок при ходе вверх и ходе вниз в скважинных данных.

[0063] Определение расчетных линий нагрузки флюидом может быть сделано статистически, хотя можно использовать другие математические методы. Как показано на фиг. 5А-5В, нагрузки 82 при ходе вверх распределены вдоль линий 62 нагрузок флюидом при ходе вверх на скважинных диаграммах 60А-В, а нагрузки 84 при ходе вниз аналогичным образом распределены вдоль линий 64 нагрузки флюидом при ходе вниз на скважинных диаграммах 60А-В.

[0064] Нагрузки 82 и 84 при ходе вверх и ходе вниз статистически упорядочены в соответствии с диапазонами нагрузок для получения функций плотности вероятностей. Максимумы функций вероятностей дают набор диапазонов нагрузок, в которых находится большая часть нагрузок при ходе вверх и ходе вниз соответственно. Иначе говоря, максимум функции плотности вероятностей для нагрузок при ходе вверх именуется расчетной линией (F0upcalc) нагрузки флюидом при ходе вверх, тогда как максимум функции плотности вероятностей для нагрузок при ходе вниз именуется расчетной линией (F0downcalc) нагрузки флюидом при ходе вниз.

[0065] Например, нагрузки 82 и 84 при ходе вверх и ходе вниз статистически упорядочены, так что нагрузки 82 и 84 сгруппированы в диапазоны нагрузок, такие как от 0 до 100, от 101 до 200, от 201 до 300 и т. д., хотя могут использоваться любые сегменты или диапазоны. При таком разбиении диапазон нагрузок с наибольшими значениями 82 нагрузки до верхней точки хода при ходе вверх соответствует расчетной линии 73 (F0upcalc) нагрузки флюидом при ходе вверх. Точно так же диапазон нагрузок с наибольшими значениями 84 нагрузки после точки перехода при ходе вниз соответствует расчетной линии 75 (F0downcalc) нагрузки флюидом при ходе вниз.

[0066] Таким образом, эти линии 73 и 75 нагрузки по смыслу представляют медианные значения нагрузок 72 при ходе вверх и нагрузок 74 при ходе вниз соответственно. Хотя в этой заявке описан статистический анализ значений нагрузки в диапазонах для нахождения расчетных линий 73 и 74 нагрузки флюидом, можно использовать любой другой численный метод, такой как метод наилучшей эмпирической кривой или линейной интерполяции. Однако применительно к контроллеру насоса или другому обрабатывающему устройству, как в этой заявке, предпочтительно использовать робастные и не требующие значительной вычислительной мощности способы.

[0067] При известности действительных и расчетных линий нагрузки флюидом, 72 и 73, а также 74 и 75, параметры, связанные с вычислением диаграммы 60А-В скважинного насоса и связанные с диагностированием насосной системы (10) и управлением ею, можно изменять. Это можно осуществлять любым из ряда способов, раскрытых в этой заявке, в том числе коррекцией коэффициента затухания, периодической остановкой насосной системы 10, чтобы дать возможность большему количеству флюида войти в буровую скважину, или управлением скоростью работы насосной системы 10, чтобы насос не выкачивал больше флюида, чем входит в буровую скважину.

[0068] В частности, при использовании действительных и расчетных линий нагрузки флюидом, 72 и 73, а также 74 и 75, согласно процессу 100 из фиг. 4 можно также определить вогнутость диаграммной линии 62 нагрузки при ходе вверх (блок 108) и вогнутость диаграммной линии 64 при ходе вниз (блок 110). При известности вогнутости линий 62 и 64 нагрузки параметры, связанные с вычислением скважинной диаграммы 60А-В и связанные с диагностированием насосной системы 10 и управлением ею, можно изменять для решения любой из различных задач, раскрытых в этой заявке.

[0069] Например, действительные и расчетные линии нагрузки флюидом, 72 и 73, а также 74 и 75, могут указывать на скважинную диаграмму, полученную при сверхкритическом затухании (например, 60А) или при докритическом затухании (например, 60В). Как упоминалось выше, действительные линии 72 и 74 нагрузки флюидом представляют собой теоретические значения, в соответствии с которыми должны находиться линии нагрузки флюидом из диаграммы 60А-В. Поэтому местом нахождения расчетных линий 73 и 75 нагрузки флюидом относительно действительных линий 72 и 74 нагрузки флюидом дается указание на степень затухания в волновом уравнении, используемом для вычисления скважинной диаграммы. В идеальном случае соответствующие действительные линии 72 и 74 нагрузки флюидом и расчетные линии 73 и 75 нагрузки флюидом являются одинаковыми, поскольку это означает, что мощность насоса (то есть площадь диаграммы скважинного насоса) равна гидравлической мощности (то есть поднимаемому флюиду).

[0070] Путем сравнения действительных и расчетных линий нагрузки флюидом, 72 и 73, а также 74 и 75, можно определять вогнутость значений нагрузки в скважинных данных 60А-В, так что затухание, используемое в волновом уравнении, можно соответственно корректировать или, как должно быть понятно специалисту в данной области техники, можно решать некоторые другие задачи.

[0071] Как показано на фиг. 5А, когда расчетная линия 73 (F0upcalc) нагрузки флюидом при ходе вверх имеет меньшее значение, чем действительная линия 72 (F0upactual) нагрузки флюидом при ходе вверх, скважинные данные можно определить как данные при сверхкритическом затухании. Точно так же, когда на фиг. 5А расчетная линия 75 (F0downcalc) нагрузки флюидом при ходе вниз имеет большее значение, чем действительная линия 74 (F0downactual) нагрузки флюидом при ходе вниз, скважинные данные можно определить как данные при сверхкритическом затухании. Допуск, который может зависеть от конкретной реализации, можно использовать при сравнении значений линий нагрузки флюидом. Кроме того, в зависимости от используемой обработки оба условия, расчетная линия 73 нагрузки флюидом при ходе вверх имеет меньшее значение, чем действительная линия 72 нагрузки флюидом при ходе вверх, и расчетная линия 75 нагрузки флюидом при ходе вниз имеет большее значение, чем действительная линия 74 нагрузки флюидом при ходе вниз, должны быть справедливыми, чтобы скважинные данные можно было определить как данные при сверхкритическом затухании.

[0072] В противоположность этому, как показано на фиг. 5В, когда расчетная линия 73 (F0upcalc) нагрузки флюидом при ходе вверх имеет большее значение, чем действител