Система навигации ближнего поля

Иллюстрации

Показать все

Изобретение относится к навигации и может использоваться в системах навигации ближнего поля. Технический результат состоит в повышении точности определения координат. Для этого система снабжена базовым сегментом (3), предусмотренным на базовой структуре (12), при этом базовый сегмент (3) содержит по меньшей мере четыре передатчика (30, 32, 34, 36), при этом каждый передатчик снабжен базовой антенной (31, 33, 35, 37), и при этом базовые антенны (31, 33, 35, 37) расположены на известных расстояниях относительно друг друга, пользовательским сегментом (4), расположенным на пользовательской структуре (20), при этом пользовательский сегмент (4) содержит по меньшей мере один приемник (40), по меньшей мере одну пользовательскую антенну (41, 42, 43), соединенную с приемником (40), и обрабатывающий модуль (44), соединенный с приемником (40), при этом приемник (40) и каждый из передатчиков (30, 32, 34, 36) образуют вместе модули измерения расстояния, и при этом обрабатывающий модуль (44) выполнен с возможностью расчета данных об относительном трехмерном положении пользовательской структуры (20) по отношению к базовой структуре (12) на основе данных о расстоянии, полученных от модулей измерения расстояния. 11 з.п. ф-лы,8 ил.

Реферат

Настоящее изобретение относится к системе навигации ближнего поля и, прежде всего, к концепции и методологии, которая делает возможным высокоточное трехмерное определение положения и определение пространственного положения относительно локально размещенных передатчиков посредством измерения расстояния, для рассмотрения в качестве установленной стационарно или мобильной навигационной системы.

Область техники, к которой относится изобретение

Изобретение относится к системе навигации ближнего поля и к концепции и способу, который делает возможной высокоточную трехмерную навигацию и определение пространственного положения относительно группы локально размещенных передатчиков посредством учета релевантной информации о расстоянии, позволяющему локальную навигацию движущихся транспортных средств (ТС) или объектов относительно неподвижной или движущейся группы передатчиков до приземления или же прибытия в конечное положение. Оно также включает концепцию того, как правильно сконструировать и осуществить изобретение в качестве локальной системы навигации. Кроме того, частью этого изобретения являются способ комбинации изобретения с глобальной навигационной спутниковой системой (ГНСС), расширяющей диапазон действия изобретенной навигации до глобального масштаба, и концепция интеграции наземных и пользовательских элементов в имеющееся стандартное оборудование. Наконец, в этом изобретении рассматриваются компактная и четкое наглядное представление для оператора объекта или водителя ТС, пилота, второго пилота, полетного офицера, или в случае с дистанционно управляемым (ДУ) объектом для наземного оператора, подходящая для навигационной информации по изобретению, и концепция и способ расширения области применения локальной системы навигации на мобильные задачи.

Предпосылки создания изобретения

Стандартные глобальные навигационные спутниковые системы (ГНСС), такие как GPS, GLONASS или будущая европейская система «Галилео», обеспечивают подходящую информацию о положении, позволяющую по всему миру определять положение, скорость и время с хорошей точностью в зависимости от имеющейся информации и служб ГНСС (служба гражданских сигналов, служба военных или общедоступных сигналов и т.д.). Сигналы ГНСС позволяют производить вычисление расстояния между приемником и передатчиком в рамках стандартной Спутниковой Радионавигационной Службы (СРНС), которая предусматривает трехмерную навигацию, если имеется по меньшей мере четыре расстояния до разных спутников, и если положение этих спутников известно априори.

Из-за различных влияний между источником сигнала и приемником вычисление расстояния может страдать от следующих влияний: неточное моделирование обнаружения спутника, задержки сигнала вследствие атмосферных влияний, локальные влияния на прием, такие как многолучевое распространение, и т.д., особенно на большом расстоянии между спутниками ГНСС на орбите и пользователями или же приемниками на земле, геометрическое расстояние оценивается только с точностью, которая ухудшена указанными факторами, привносимыми ошибкам. В зависимости от имеющихся сигналов от служб ГНСС и от локальной среды пользователя, расстояние может быть оценено с точностью от 1 до 3 метров, но из-за описанных выше проблем также вероятно возникновение ошибок более чем на 20-30 метров. Такая точность информации о расстоянии обычно предусматривает точность трехмерной локализации порядка 10 м в абсолютных земных инерциальных координатах.

Такая эффективность определения положения является достаточной для многих случаев применения или служб, таких как автомобильная навигация или даже авиационная маршрутная навигация, но не подходит для высокоточных задач, которые требуют точности до сантиметров, таких как ситуации при приземлении самолета или вертолета или критических маневров при стыковке (швартовке) и т.д.

Имеются способы регионально усовершенствовать ГНСС с помощью спутниковых систем с ответом на частоте запроса (SBAS), таких как WAAS (региональная система радиоопределения местонахождения со спутниковыми ответчиками на частоте запроса) или EGNOS (Европейская геостационарная дополнительная навигационная система), или локально с локальными системами радиоопределения местонахождения со спутниковыми ответчиками на частоте запроса (LAAS) посредством базовых станций и коррекционных данных или с учетом псевдолитов. Эти системы повышают точность спутниковой информации о расстоянии и, таким образом, эффективность определения положения пользователя, но эти концепции либо недостаточно точны (SBAS), либо очень сложны и дорогостоящи в монтаже и обслуживании (LAAS). Кроме того, эти сложные региональные или локальные основанные на сигнале ГНСС системы улучшают только абсолютную локализацию пользователя, и не могут использоваться или могут использоваться лишь посредством дополнительных и опять же очень сложных систем в средах или же для задач, когда цель (например, посадочная площадка для вертолета) движется и/или даже меняет свое пространственное положение.

Цель изобретения

Целью настоящего изобретения является предоставление локально ограниченной и подходящей информации о расстоянии от локально распределенных и временно зафиксированных относительно друг друга (по меньшей мере, зафиксированных на время выполнения задания) передатчиков, позволяющих осуществлять высокоточную относительную локализацию.

Данная цель достигнута посредством системы навигации ближнего поля с признаками пункта 1 формулы изобретения.

Краткое описание изобретения

Система навигации ближнего поля согласно изобретению оснащена базовым сегментом, предусмотренным на базовой структуре, при этом указанный базовый сегмент содержит по меньшей мере четыре передатчика, а каждый передатчик снабжен базовой антенной, и базовые антенны расположены относительно друг друга на известных расстояниях, пользовательским сегментом, предусмотренным на пользовательской структуре, при этом указанный пользовательский сегмент содержит по меньшей мере один приемник по меньшей мере одну пользовательскую антенну, соединенную с указанным приемником, и обрабатывающий модуль, соединенный с указанным приемником, при этом указанный приемник и каждый из указанных передатчиков вместе образуют модули измерения расстояния, и при этом обрабатывающий модуль выполнен с возможностью расчета данных об относительном трехмерном положении пользовательской структуры относительно базовой структуры на основе данных о расстоянии, полученных от указанного модуля измерения расстояния.

Недостаток обычных навигационных систем ГНСС устраняется путем использования локально размещенных передатчиков, которые предоставляют подходящую информацию для вычисления расстояния до приближающегося ТС или объекта. Это значительно уменьшает влияние ошибок благодаря намного меньшим расстояниям, позволяет определять местоположение пользователя относительно группы передатчиков, и таким образом поддерживает задачи с движущимися площадками. Эта изобретенная система навигации ближнего поля также позволяет осуществлять ориентацию пользователя относительно группы передатчиков, если сигналы принимаются более чем одной антенной, установленной у пользователя. Путем подачи на пользовательский сегмент информации о пространственном положении, например, с помощью инерциального блока, может быть определена ориентация и пространственное положение статической или даже движущейся размещенной группы передатчиков относительно друг друга для того, чтобы, наряду с относительным положением и скоростью, наглядно представить также и относительное пространственное положение между двумя движущимися объектами. Кроме того, локально используемые сигналы более не ограничены частотами ГНСС.

В предпочтительном варианте осуществления указанный пользовательский сегмент содержит по меньшей мере три приемника, при этом каждый приемник снабжен одной из указанных пользовательских антенн, и приемники соединены с указанным обрабатывающим модулем. Преимущество получения информации об ориентации пользователя усиливается, если каждая из пользовательских антенн соединена с собственным приемником. Выполнение одной антенны позволяет определять положение, с двумя антеннами может быть определено направление движения, а выполнение трех антенн позволяет определять пространственное положение.

Также является благоприятным, если передатчики являются радиолокационными передатчиками, если указанный по меньшей мере один приемник является радиолокационным приемником и/или если модули измерения расстояния являются основанными на радиолокации модулями измерения расстояния. Локальное размещение передатчиков позволяет использовать частотные диапазоны, отличные от тех, которые используются системой ГНСС. Следовательно, является благоприятным использовать радиолокационные частоты, которые позволяют легко и надежно измерять расстояние. Вместо радиолокационных частот в системе навигации ближнего поля согласно изобретению может быть также реализовано лидарное или лазерное измерение расстояния. Использование радиолокационных или лидарных частот, а также лазерной системы повышает точность измерения расстояния и/или минимизирует сложность наземного сегмента. Известные ГНСС-передатчики и псевдолиты (псевдоспутниковые навигационные системы) являются очень сложными, в то время как радиолокационные передатчики являются универсальными, быстро и легко монтируемыми благодаря малым размерам и легкости оборудования. Выбор частотного диапазона или же выбор передатчика может определяться соображениями стоимости и ограничения сложности, аспектами мобильности, точностью измерения расстояния и локальными характеристиками источника ошибок или потребностями выполняемых задач, например уровнем точности и достоверности.

В другом предпочтительном варианте осуществления по меньшей мере первый из указанных передатчиков снабжен модулем измерения расстояния между передатчиками, который выполнен с возможностью определения расстояния между антенной указанного первого передатчика и антенной по меньшей мере одного другого передатчика указанного базового сегмента, при этом указанный по меньшей мере один передатчик выполнен с возможностью передачи данных об определенном расстоянии на указанный приемник указанного пользовательского сегмента. Этот предпочтительный вариант осуществления позволяет осуществлять высокоточную самокалибровку базового сегмента. Прежде всего, если достаточное число передатчиков снабжено таким модулем измерения расстояния между передатчиками, возможно автоматически определять все расстояния между передатчиками базового сегмента и передавать эту информацию о расстоянии на обрабатывающий модуль пользовательского сегмента.

Предпочтительно, указанный модуль измерения расстояния между передатчиками указанного по меньшей мере одного передатчика является основанным на радиолокации модулем измерения расстояния. Конечно, для измерения расстояний между передатчиками также возможно использовать основанные на лидаре (лидарной технологии) модули измерения расстояния или основанные на лазере (лазерной технологии) модули измерения расстояния.

В еще одном предпочтительном варианте осуществления указанный базовый сегмент содержит блок управления измерением расстояния между передатчиками, который управляет модулем (модулями) измерения расстояния между передатчиками, и при этом указанный блок управления предпочтительно предусмотрен в одном из указанных передатчиков, который таким образом образует командный (задающий) передатчик, выполненный с возможностью передачи данных об определенном расстоянии между передатчиками на указанный пользовательский сегмент. Такое выполнение командного передатчика образует автономный базовый сегмент со способностью к самокалибровке.

Кроме того, предпочтительно, каждый из указанных передатчиков указанного базового сегмента снабжен модулем спутниковой навигации, при этом данные об абсолютном положении каждого передатчика, полученные от указанного модуля спутниковой навигации, передаются на указанный пользовательский сегмент. Эта дополнительная информация по спутниковой навигации для каждого из передатчиков позволяет, вместе с информацией по навигации ближнего поля, то есть информацией об измерении расстояния, осуществлять высокоточное приближение пользовательского сегмента к базовому сегменту.

Является благоприятным, если указанный один передатчик базового сегмента выполнен с возможностью передачи данных об определенном расстоянии между передатчиками вместе с радиолокационным сигналом на указанный пользовательский сегмент. Если система навигации ближнего поля не работает на радиолокационной частоте, а работает на лидарной частоте или с помощью лазерного оборудования для измерения расстояния, данные о расстоянии между передатчиками также могут передаваться на пользовательский сегмент вместе с лидарным сигналом или лазерным сигналом. В качестве альтернативы данные о расстоянии между передатчиками также могут передаваться на пользовательский сегмент по отдельному каналу связи, который может также работать в другом частотном диапазоне.

В благоприятном варианте осуществления системы навигации ближнего поля указанный базовый сегмент предусмотрен на земле или на мобильном транспортном средстве (ТС), предпочтительно на морском судне.

Также является благоприятным, если указанный пользовательский сегмент предусмотрен на мобильном ТС, предпочтительно на вертолете, на морском судне или на самолете, прежде всего, беспилотном летательном аппарате (БПЛА). Таким образом с помощью системы навигации ближнего поля согласно настоящему изобретению является возможным реализовать высокоточную автоматическую систему приближения для взлета и приближения движущегося объекта к другому объекту, который может, либо базироваться на земле, либо может также быть движущимся, например, приближение двух судов или приближение летательного аппарата (вертолета или БПЛА) к посадочной площадке на судне.

В еще одном предпочтительном варианте осуществления каждый передатчик базового сегмента питается от автономного источника энергии, например батареи. Это автономное питание энергией передатчиков базового сегмента является, прежде всего, благоприятным в сочетании со способностью базового сегмента к самокалибровке, обеспечивая тем самым поддержку выполнения мобильных заданий.

В еще одном предпочтительном варианте осуществления настоящего изобретения базовый сегмент и/или пользовательский сегмент снабжены/снабжен по меньшей мере одним дополнительным модулем определения положения, предпочтительно модулем альтиметра и/или модулем инерциальных измерений и/или модулем определения положения глобальной навигационной спутниковой системы, при этом обрабатывающий модуль выполнен также с возможностью использования данных, полученных от указанного дополнительного модуля определения положения для расчета данных об абсолютном и/или относительном трехмерном положении пользовательской структуры относительно базовой структуры.

За счет учета дополнительных модулей определения положения, таких как инерциальные датчики, также может быть выведено пространственное положение и ориентация обоих сегментов, пользовательского сегмента и наземного сегмента. Интеграция высокоточных датчиков или модулей альтиметра еще больше повысит точность системы навигации ближнего поля согласно изобретению, особенно если все базовые или пользовательские антенны ориентированы в одной плоскости относительно друг друга.

В сочетании со стандартными системами глобальной спутниковой навигации область применения изобретения может быть расширена до глобальных зон, позволяя осуществлять надлежащее и точное приближение в локальную зону системы навигации ближнего поля. В зависимости от требуемой точности это может быть также скомбинировано с информацией спутниковой системы с ответом на частоте запроса (SBAS) или даже с информацией наземной системы с ответом на частоте запроса (GBAS).

Для того чтобы ограничить влияние на стандартных пользователей, а также на наземные инфраструктуры, изобретение обеспечивает быстрое и легкое осуществление без необходимости в сложных усовершенствованиях существующего оборудования, то есть оно полностью совместимо с соответствующими существующими стандартами.

В связи со сложностью предоставляемой информации, получаемой с помощью изобретения, такой как местоположение и ориентация устройства относительно наземного сегмента, абсолютное местоположение и ориентация, относительные и абсолютные скорости, информация ГНСС и выведенные результаты определения местоположения или информация о высоте, предоставленная независимыми средствами, если они реализованы, такая информация визуализируется компактным и четким образом без обременения оператора слишком большим количеством информации.

Мобильность изобретения в автономной конфигурации с помощью подходящей батареи и учет быстрого режима самокалибровки обеспечена для поддержки мобильных заданий.

Эти цели достигаются способами и концепциями, обеспечивающими относительную высокоточную навигацию и определение пространственного положения посредством общей информации о расстоянии до известных неподвижных относительно друг друга наземных передатчиков, подходящего расширения концепции для обеспечения, наряду с высокоточной системой навигации ближнего поля, и возможности навигации в широком диапазоне, подходящей концепции конструирования и осуществления изобретения, подходящей концепции сочетания с ГНСС, способа легкой интеграции изобретения в стандартное оборудование с минимальным влиянием, надлежащим наглядным представлением предоставляемой изобретением информации и концепции мобильного использования изобретения.

Основной идеей изобретения является учет подходящей информации о расстоянии между группой наземных передатчиков и группой размещенных пользовательских антенн для обеспечения возможности локального высокоточного определения положения для любой среды, включая движущиеся базовые сегменты. Рассматриваемые передающие модули, требуемые сигналы и оборудование для вычисления расстояния могут быть выбраны в соответствии с потребностями выполняемой задачи, например радиолокационное оборудование для высокоточных, быстро и легко реализуемых сред, рассмотрение С-диапазона для более сложных сценариев, например заданий в среде с многолучевым распространением и т.п. Таким образом, изобретение не ограничено ни специальными средствами вычисления расстояния (ГНСС, радиолокационная установка и т.д.), ни специальными заданиями, такими как обычное авиационное применение для заданий по посадке вертолета, сценарии швартовки судов, отслеживание грузов и т.д. Метод является применимым для всех случаев применения, где один или два движущихся объекта требуют информации об относительном положении и пространственном положении относительно друг друга.

Посредством стандартных интерфейсов и обычно имеющихся дополнительных средств, таких как внутренние датчики или данные по высоте (обычно имеющиеся по меньшей мере для случаев авиационного применения изобретения) изобретение может быть легко интегрировано с точки зрения наземного сегмента, как и с точки зрения пользователя. Оно обеспечивает полную функциональность навигационной системы до приземления или же достижения предварительно определенного конечного положения. В сочетании с ГНСС (также обычно имеющейся в авиационных сценариях) судно или, в общем, объект с пользовательским сегментом может надлежащим образом направляться в должное расстояние до размещенных на земле передатчиков, откуда описываемая система навигации ближнего поля предоставляет релевантную навигационную информацию, такую как положение, скорость, пространственное положение, относительные или абсолютные.

Концепция наглядного представления всей имеющейся информации, предоставляемой изобретением, либо в сочетании с дополнительными средствами, включающими ГНСС, либо без таковых, надлежаще реализована простым, четким и компактным образом, и может быть отображена на любом стандартном оборудовании наглядного представления или мониторе, либо на борту приближающегося ТС или устройств, либо на земле для соответствующей навигации.

Возможность очень простой конструкции изобретения включает в себя независимый источник энергии для каждого модуля (например, батарею) и соответствующую функциональность по самокалибровке для определения относительного положения всех наземных передатчиков или в сочетании с ГНСС-приемником также абсолютного положения всех наземных передатчиков. Это обеспечивало бы возможность полностью мобильного и универсального использования изобретения, где могут быть быстро испускаться единицы передаваемой информации. За несколько минут зона может считаться полностью действующей системой навигации ближнего поля, обеспечивающей высокоточную информацию о расстоянии для пользовательского сегмента. Без необходимости в каком либо дополнительном усовершенствовании или модификации пользователя любой пользователь, уже оснащенный пользовательским сегментом согласно изобретению, может приблизиться к зоне и, например, посадить свое ТС или пришвартовать свое судно.

Краткое описание чертежей

Далее изобретение будет описано на примере со ссылкой на чертежи. Показано на:

Фиг.1: схематический вид первого примера применения системы навигации ближнего поля согласно изобретению,

Фиг.2: схематический вид примера, аналогичного примеру на фиг.1,

Фиг.3: схематический обзор концепции навигации ближнего поля согласно изобретению,

Фиг.4: пример архитектуры аппаратных средств изобретения,

Фиг.5: пример архитектуры программных средств для системы навигации ближнего поля согласно изобретению,

Фиг.6: пример визуального пользовательского интерфейса для управления системой навигации ближнего поля согласно изобретению,

Фиг.7: диаграмма, показывающая нефильтрованную точность положения системы навигации ближнего поля согласно изобретению по сравнению с системой определения положения на основе GPS,

Фиг.8: диаграмма, показывающая северную, восточную и нижнюю (в направлении опускания) ошибку относительного положения, определенного системой навигации ближнего поля согласно изобретению.

Детальное описание чертежей

Задания или сценарии, где высокоточная и мгновенная информация о местонахождении и ориентации между двумя движущимися объектами или движущимся и неподвижным объектом, например стыковочные маневры между двумя судами, или вертолетом, приближающимся к неподвижной площадке или движущейся полетной палубой, и т.п., не могут использовать стандартные решения ГНСС из-за ограниченной точности. В сочетании с локальными дополнительными элементами, такими как базовые станции, псевдолиты, GBAS и т.п., такие задания могли бы быть выполнимыми, но требуют сложной дополнительной инфраструктуры.

Изобретение предлагает новую концепцию системы навигации ближнего поля и способ устранения этого недостатка посредством локальной передачи подходящей информации о расстоянии, которая требует два сегмента: наземный сегмент и пользовательский сегмент. Посредством измерений расстояния по меньшей мере до четырех известных передатчиков, которые принимаются несколькими антеннами, которые соединены с одним приемником, местонахождение и пространственное положение ТС или устройства в пределах зоны обслуживания может быть точно вычислено, и устройство может соответственно направляться к предварительно определенной точке. В зависимости от выбранной технологии выведения расстояния это делает возможным даже мобильное применение системы навигации ближнего поля согласно изобретению.

На фиг.1 показан пример морского судна 1, имеющего палубу 10 для посадки вертолета. Палуба 10 для посадки вертолета определяет базовую структуру 12 системы навигации ближнего поля согласно изобретению.

Палуба 10 для посадки вертолета снабжена по меньшей мере четырьмя радиолокационными передатчиками 30, 32, 34, 36, каждый из которых снабжен радиолокационной антенной 31, 33, 35, 37. Эти базовые антенны 31, 33, 35, 37 расположены на известных расстояниях относительно друг друга. Предпочтительно, каждый из передатчиков и соответствующая антенна образуют передающий модуль ЗГ, 33', 35', 37'. Передатчики 30, 32, 34, 36 и соответствующие антенны 31, 33, 35, 37 определяют базовый сегмент 3 системы навигации ближнего поля согласно изобретению.

На фиг.1 также показан вертолет 2, зависший над посадочной площадкой 10. Вертолет 2 снабжен тремя радиолокационными антеннами 41, 42, 43, при этом каждая из них определяет пользовательскую антенну, которая соединена с радиолокационным приемником 40 вертолета 2. Пользовательские антенны 41, 42, 43 установлены на нижней стороне вертолета 2 и расположены относительно друг друга в разных положениях. Нижняя часть вертолета 2, на которой установлены антенны 41, 42, 43, определяет пользовательскую структуру 20. Кроме того, радиолучи пользовательских антенн 41, 42, 43 направлены в разных направлениях. Пользовательские антенны 41, 42, 43 и приемник 40 определяют пользовательский сегмент 4 системы навигации ближнего поля. Вертолет также снабжен обрабатывающим модулем 44, который соединен с приемником 40 и, предпочтительно, также соединен с компьютером 22 вертолета.

На фиг.2 схематически показана система навигации ближнего поля согласно настоящему изобретению сходная с системой, показанной на фиг.1. Базовый сегмент 3 снабжен четырьмя передатчиками 30, 32, 34, 36 и их базовыми антеннами 31, 33, 35, 37. Кроме того, модуль 30", 32", 34", 36" спутниковой навигации ассоциирован с каждым из указанных передатчиков 30, 32, 34, 36. Приемники 30", 32", 34", 36" этой глобальной системы спутниковой навигации позволяют измерять абсолютное положение для каждого из передающих модулей ЗГ, 33', 35', 37'.

Каждый из указанных передатчиков 30, 32, 34, 36 снабжен модулем 30', 32', 34', 36' измерения расстояния между передатчиками. Модули измерения расстояния между передатчиками позволяют осуществлять автоматическую калибровку базового сегмента 3, потому что расстояния между базовыми антеннами 31, 37, 33, 35 могут быть автоматически определены этими модулями 30', 32', 34', 36' измерения расстояния между передатчиками.

Пользовательский сегмент 4 содержит три пользовательских антенны 41, 42, 43, которые расположены в разных местах на расстоянии друг от друга, и которые направлены в несколько отличающихся направлениях, как показано и пояснено на примере на фиг.1. Однако, в качестве альтернативы, пример на фиг.2 показывает снабжение каждой пользовательской антенны 41, 42, 43 отдельным приемником 40, 40', 40". Конечно, пример на фиг.2 также может быть оснащен только одним приемником, как и пример на фиг.1.

Каждый из приемников 40, 40', 40" соединен с обрабатывающим модулем 44, который получает данные от каждого приемника, и в котором рассчитывается и таким образом определяется расстояние между базовым сегментом 3 и пользовательским сегментом 4 или, в общем, расстояние между базовой структурой 12 и пользовательской структурой 20. Обрабатывающим модулем также рассчитывается и относительное пространственное положение.

Кроме того, обрабатывающий модуль получает информацию от дополнительного модуля 46 определения положения, который может быть, например, модулем альтиметра или модулем определения положения глобальной системы спутниковой навигации. Обрабатывающий модуль 44 также соединен с компьютером 22 летательного аппарата. Соединение между обрабатывающим модулем 44 компьютером 22 летательного аппарата пользовательского сегмента 4, например, вертолета или БПЛА, позволяет автономно учитывать данные о расстоянии, полученные от системы навигации ближнего поля в системе автоматического пилотирования (автопилот).

Для описания концепций и методологий изобретения следующие разделы описывают и особо выделяют:

- стандартные глобальные, региональные и локальные навигационные системы и технический контекст,

- описание системы согласно изобретению и конструкции высокого уровня,

- архитектура, детальная конструкция и возможное осуществление,

- подходящий способ наглядного представления информации, предоставленной изобретением,

- концепция того, как изобретение могло бы быть как можно более универсальным и мобильным,

- достижимая типичная эффективность изобретения в подходящей основанной, на радиолокации конфигурации, и

- перечень обычных и возможных случаев использования и служб, которые могли бы использовать изобретение (но, не ограничиваясь таковыми).

Стандартные глобальные, региональные и локальные навигационные системы и контекст

В настоящее время уже существует или находятся на стадии окончательной разработки или размещения несколько ГНСС, например, GPS, ГЛОНАСС, Галилео или Компас. Кроме того, уже имеются другие системы для регионального усиления сигналов ГНСС путем предоставления соответствующих региональных коррекционных данных для соответствующей ГНСС (например, для поддержания ионосферного моделирования или для предоставления достоверной информации для конкретного спутника), например, WAAS, EGNOS или MSAS (многофункциональная система со спутниками ответчиками на частоте запроса), которая является системой ответа на частоте запроса космического базирования (SBAS). Такие системы обычно достигают точности около 1-5 м в зависимости от имеющихся сигналов, таких как одинарная частота (например, GPS L1 кодовый сигнал С/А), двойная частота для ошибки ионосферной задержки (например, будущая комбинация Галилео Е1-Е5) или включая параметры ионосферного моделирования систем EGNOS или WAAS. В зависимости от локальной геометрии (то есть количества видимых спутников с точки зрения пользователя), это обеспечивало бы точность определения местоположения лучше, чем 10 м.

Для того чтобы локально улучшить эффективность, системы с ответом на частоте запроса наземного базирования (GBAS) предоставляют от таких базовых станций локально информацию о коррекции ошибок ГНСС. Передатчики ГНСС на земле (так называемые псевдолиты) также улучшают локальную геометрию. Они могут быть размещены вокруг зоны обслуживания для улучшения разбавления точности и тем самым улучшения точности определения местоположения до уровня даже ниже 1-2 м. Однако эти системы являются довольно сложными с точки зрения монтажа, а также с точки зрения их эксплуатации. Кроме того, они требуют дополнительного канала связи между системой псевдолитов и мобильным пользователем, например, для приема коррекционных данных, если это не сделано посредством технологии псевдолитов или сообщений псевдолитов.

Ни эффективность с точностью определения местоположения ниже 10 м, ни таковая с точностью около или ниже 1-2 м не обеспечивали бы высокоточной навигации, которая требуется для различных критических в плане безопасности случаев применения, таких как швартовочные маневры или посадка вертолета. Это относится особенно к тем случаям, если обе платформы или оба сегмента (пользователь и земля) движутся. Ориентация, ни относительная, ни абсолютная не может быть получена вышеуказанными системами ГНСС, SBAS или GBAS без дополнительных датчиков.

Описание и конструкция новой системы локальной навигации

Общая идея изобретения основана на аналогичных принципах по сравнению с ГНСС, то есть приемник рассчитывает свое собственное положение в соответствующей системе координат путем измерения нескольких расстояний по меньшей мере до четырех передающих станций, положение которых известно, для разрешения своего неизвестного трехмерного местонахождения и тактового генератора приемника. В отличие от ГНСС, передающие станции изобретения установлены на любых фиксированных или движущихся координатах на земле, при этом относительное положение между передатчиками наземного сегмента должно быть фиксированным. Обычно, измерение расстояния производится по разным измерительным принципам, позволяя использовать намного менее сложные конструкции наземного сегмента и пользовательского сегмента, с намного лучшей точностью измерения расстояния (например, радиолокационная установка).

При установке одного приемопередатчика с одной антенной и одного приемника с одной антенной, является возможным определять расстояние между этими двумя точками с точностью лучше, чем 1 см (точность одномерного определения дальности, 1-сигма), если, например, рассматривается обычная радиолокационная технология или же частота. По меньшей мере с четырьмя передатчиками является возможным определять положение движущегося приемника относительно передающих станций. При оснащении приемника двумя пользовательскими антеннами является возможным также определять направление движения движущегося приемника относительно передающих станций. С тремя пользовательскими антеннами может быть получена полная навигационная информация, состоящая из относительного трехмерного положения и пространственного положения между приемником и передающими станциями. Всегда предполагается, что пространственное положение пользовательского сегмента поддерживается данными инерциального датчика.

Из-за намного менее точной эффективностью оценки расстояния по сигналу ГНСС, такое вычисление пространственного положения не может рассматриваться для стандартных концепций ГНСС.

Для того чтобы оптимизировать локальную геометрию в пределах зоны ближнего поля и обеспечить самое точное и надежное навигационное решение, должно быть размещено больше, чем четыре наземных передатчика. Измерительные кампании и аналитические анализы показали, что шесть передающих станций уже превосходят обычные потребности эффективности навигации, например, для наиболее требовательных случаев использования при посадке летательных аппаратов (например, для посадки БПЛА или вертолетов).

В зависимости от целевого применения, изобретение также способно охватить полный спектр, от одномерного измерения расстояния до трехмерного определения положения и пространственного положения. Кроме того, большие зоны на земле (например, посадочные полосы) могли бы быть освещены посредством использования нескольких передатчиков, размещенных в соответствии с потребностями сценария.

Следующее наглядное представление объясняет полноценную структуру, ведущую к трехмерной информации о положении и пространственном положении, с учетом радиочастотных сигналов для вычисления расстояния.

В следующих разделах система навигации ближнего поля согласно изобретению также называется «Высокоточной локальной навигационной системой» (ВТЛНС).

Каждая из передающих станций наземного базирования («наземные станции») испускает, например, радиочастотный сигнал в пределах зоны до 1 км с использованием малых полусферических передающих антенн. Легковесный, упрочненный принимающий модуль 40 («модуль измерения дальности») является обрабатывающим модулем 44 и принимает эти РЧ сигналы с помощью одной-трех антенн 41, 42, 43, рассчитывает расстояние от каждой наземной передающей станции до каждой воздушной антенны отправляет эту сырую информацию через последовательный интерфейс.

Одной из целей ВТЛНС согласно изобретению является то, чтобы быть как можно более модульной и универсальной. Поэтому чистое определение дальности отделено от расчета положения и гибридизации датчиков. В зависимости от потребностей конкретного применения и, в конечном итоге, от уже имеющегося оборудования на стороне пользователя, модуль измерения дальности может питаться как один ввод датчика в бортовой компьютер 22, где производится определение положения и, в конечном итоге, наглядное представление.

Имеющаяся информация обычно соединяется в рамках алгоритма сочетания различных датчиков, способного объединять данные от разных источников определени