Способ привязки геометрии гидроразрыва к микросейсмическим событиям

Иллюстрации

Показать все

Группа изобретений относится к горному делу и может быть применена при гидроразрыве пластов. Предлагается способ выполнения гидроразрыва на буровой площадке в подземном пласте с сетью трещин и с естественной трещиноватостью. Приток в скважину интенсифицируется закачкой жидкости в сеть трещин. Способ заключается в отработке данных буровой площадки, включая параметры естественной трещины и получение результатов измерений микросейсмических событий; моделирование гидроразрывов сети трещин на основании данных буровой площадки и определении геометрии гидроразрывов; создании поля напряжений гидроразрывов при помощи геомеханической модели; определении параметров разрушения сдвига, включающих огибающие зоны разрушения и состояние напряжения вокруг системы трещин; определении местоположения разрушения сдвига в сети трещин из огибающих зон разрушения и состояния напряжения, а также в определении геометрии гидроразрыва посредством сравнения смоделированных гидроразрывов и местоположений разрушения сдвига с измеренными микросейсмическими событиями. Технический результат заключается в повышении эффективности гидроразрыва пластов. 3 н. и 17 з.п. ф-лы, 4 табл., 44 ил.

Реферат

Уровень техники

[0001] Настоящее описание относится в целом к способам и системам для выполнения операций на буровой площадке. Данное описание относится, в частности, к способам и системам для выполнения операции гидроразрыва, таким как исследование подземных пластов и определение характеристик сетей гидроразрывов в подземном пласте.

[0002] С целью повышения добычи углеводородов из нефтегазовых скважин возможно применение гидроразрыва подземных пластов, окружающих такие скважины. Гидроразрыв пласта может использоваться для создания трещин в подземных пластах для обеспечения притока нефти и газа в скважину. Пласт разрывается посредством закачки специально подготовленной текучей (называемой как «текучая среда гидроразрыва» или «состав для гидроразрыва») под высоким давлением и при высоком расходе в пласт через один или несколько стволов скважины. Трещины гидроразрыва пласта могут уходить от ствола скважины на сотни футов в двух противоположных направлениях соответственно естественным напряжениям в пределах пласта. При определенных обстоятельствах, они могут образовывать сложную сеть трещин. Сложные сети трещин могут включать в себя искусственно образованные трещины гидроразрыва и естественные трещины, которые могут пересекаться или нет, вдоль множественных азимутов, во многих плоскостях и направлениях, и во многих областях.

[0003] Существующие способы и системы мониторинга трещин гидроразрыва пласта могут определять координаты возникновения и величину трещин. Некоторые способы и системы микросейсмического мониторинга могут обрабатывать данные о местоположении сейсмических волн посредством отображения времени вступления сейсмической волны и информации о поляризации в трехмерном пространстве путем использования смоделированного времени вступления и/или лучей траектории. Данные способы и системы могут использоваться для прогнозирования распространения трещин гидроразрыва пласта с течением времени.

[0004] Схемы трещин гидроразрыва трещин гидроразрыва пласта, созданные посредством стимулирования трещин, могут быть сложными и образовывать сеть в соответствии с распределением соответствующих микросейсмических событий. Для представления созданных трещин гидроразрыва пласта разработаны сложные сети трещин гидроразрыва пласта. Примеры способов гидроразрыва пласта представлены в Патентах/Заявках на патент США №№ 6101447, 7363162, 7788074, 20080133186, 20100138196 и 20100250215.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] По меньшей мере согласно одному аспекту настоящее описание относится к способам выполнения гидроразрыва пласта на буровой площадке. Буровая площадка располагается около подземного пласта со стволом скважины и сетью трещин в нем. Сеть трещин имеет естественные трещины. Приток в скважину может интенсифицироваться закачкой нагнетаемой текучей среды с пропантом в сеть трещин. Способ заключается в получении данных буровой площадки, составляющих параметры естественных трещин и получении механической модели геологической среды подземного пласта и создании схемы развития трещин гидроразрыва по сети трещин с течением времени. Создание схемы включает в себя распространение трещин гидроразрыва от ствола скважины до сети трещин подземного пласта для получения сети трещин гидроразрыва, включая естественные трещины и трещины гидроразрыва пласта, определение параметров гидроразрыва после развития трещин, определение параметров транспорта для прохождения пропанта через сеть трещин гидроразрыва, и определение габаритных размеров трещин при гидроразрыве из определенных параметров гидроразрыва, определенных параметров транспорта и механической модели геологической среды. Способ также включает в себя выполнение затенения напряжения по трещинам после гидроразрыва для определения взаимного влияния напряжения между трещинами гидроразрыва и повторением генерирования на основании определенного взаимного влияния напряжения.

[0006] Если трещина после гидроразрыва пласта сталкивается с естественной трещиноватостью, то способ может также включать в себя определение схемы пересечения между трещинами гидроразрыва и встречающимися трещинами на основании определенного взаимного влияния напряжения, а повторение может включать в себя повторение генерирования на основании определенного взаимного влияния напряжения и схемы пересечения. Способ может также включать в себя интенсификацию притока в скважину посредством закачки нагнетаемой текучей среды с пропантом в сеть трещин.

[0007] Способ может также включать в себя, если трещина после гидроразрыва сталкивается с естественной трещиноватостью, определение схемы пересечения при возникшей естественной трещиноватости. В этом случае, повторение заключается в повторении генерирования на основании определенного взаимного влияния напряжения и схемы пересечения. Схема развития трещин может изменяться или не изменяться схемой пересечения. Давление гидроразрыва в сети трещин гидроразрыва пласта может быть большим, чем напряжение, воздействующее на появляющиеся трещины, а схема развития трещин может распространяться вдоль возникающей трещины. Схема развития трещин может продолжать распространяться вдоль возникшей трещины до окончания естественной трещиноватости. Схема развития трещин может изменять направление в конце естественной трещиноватости, и схема развития трещин может распространяться в направлении, перпендикулярном к минимальному напряжению в конце естественной трещиноватости. Схема развития трещин может распространяться перпендикулярно к местному основному напряжению согласно затенению напряжения.

[0008] Затенение напряжения может включать в себя выполнение разрывного смещения по каждому из гидравлических разрывов. Затенение напряжения может включать в себя выполнение затенения напряжения по множественным стволам скважины на буровой площадке и повторение генерирования с использованием затенения напряжения, выполняемого на множественных стволах скважины. Затенение напряжения может включать в себя выполнение затенения напряжения на нескольких этапах интенсификации притока в стволе скважины.

[0009] Способ может также включать в себя проверку схемы развития трещин. Проверка может включать в себя сравнение схемы развития трещин по меньшей мере с одной моделью стимулирования сети трещин.

[0010] Распространение может также включать в себя распространение трещин гидроразрыва пласта вдоль схемы развития трещин на основании параметров естественной трещиноватости, а также минимального и максимального напряжения на подземном пласте. Определение габаритных размеров трещины может включать в себя одно из оценочных сейсмических измерений, а также траекторные, акустические измерения, геологические измерения, и их сочетание. Данные по скважине могут включать в себя по меньшей мере одно из геологических, петрофизических, геомеханических измерений в скважинах, статистические данные и сочетание этих измерений. Параметры естественной трещины могут генерироваться одним из: исследование скважинным сканером;, оценка габаритных размеров трещин на основании измерений ствола скважины, получение микросейсмических картин, и их сочетанием.

[0011] Согласно другому аспекту описание относится к способу выполнения гидроразрыва на буровой площадке, располагающейся возле подземного пласта со стволом скважины и сетью трещин в нем, с сетью трещин, составляющей естественную трещину, и буровой площадки интенсифицируемой посредством закачки нагнетаемой текучей среды с пропантом в сеть трещин. Способ включает в себя получение данных буровой площадки, составляющих параметры естественной трещины и получение механической модели геологической среды подземного пласта, формирование схемы развития гидроразрыва для сети трещин с течением времени, выполнение интерпретации микросейсмичности на гидроразрывах пласта для определения взаимного влияния напряжения между гидроразрывами, и повторение генерирования на основании определенного взаимного влияния напряжения. Создание схемы включает в себя распространение гидроразрыва от ствола скважины до сети трещин подземного пласта для получения сети гидроразрыва, составляющую естественную трещину и гидроразрыв пласта, определение параметров гидроразрыва после развития трещин, определение параметров транспорта для прохождения пропанта через сеть трещин гидроразрыва, и определение габаритных размеров трещин при гидроразрыве из определенных параметров гидроразрыва, определенных параметров транспорта и механической модели геологической среды.

[0012] Согласно другому аспекту в патенте предлагается способ выполнения гидроразрыва на буровой площадке, расположенной около подземного пласта и со стволом скважины и сетью трещин. Сеть трещин включает в себя естественные трещины, а приток в скважину интенсифицируется посредством закачки нагнетаемой текучей среды с пропантом в сеть трещин. Способ заключается в отработке данных буровой площадки, составляющих параметры естественной трещины и получении измерений микросейсмических событий подземного пласта, моделирование гидроразрывов системы трещин на основании данных буровой площадки и, определении геометрии гидроразрывов, создании поля напряжений гидроразрывов при помощи геомеханической модели на основании данных буровой площадки, определении параметров разрушения сдвига, составляющего огибающие зоны разрушения и состояние напряжения вокруг системы трещин, определении местоположения разрушения сдвига в системе трещин из огибающих зон разрушения и состояния напряжения, а также привязки геометрии гидроразрыва посредством сравнения смоделированных трещин гидроразрыва и местоположений разрушения сдвига с измеренными микросейсмическими событиями. Способ может также заключаться в измерении данных буровой площадки и микросейсмических событий на буровой площадке, корректировке параметров естественной трещины на основании привязки, выполнения операций по интенсификации притока, представляющей собой интенсификацию притока на буровой площадке посредством закачки нагнетаемой текучей среды в сеть трещин, и/или корректировки операций по интенсификации притока на основании привязки.

[0013] В данном разделе о сущности изобретения представляется отбор концепций, подробное описание которых представляется далее. Раздел о сущности изобретения не предназначен для определения ключевых или основных характеристик заявленного предмета, и не предназначен для использования в качестве средства, ограничивающего применение заявленного предмета.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0014] Варианты реализации системы и способа для характеристики напряжений ствола скважины описаны с учетом следующих показателей. Аналогичные цифры используются во всех показателях для обозначения характеристик и компонентов.

[0015] Фиг. 1.1 - схематическое изображение объекта гидроразрыва пласта, с отображением операции гидроразрыва;

[0016] Фиг. 1.2 - схематическое изображение объекта гидроразрыва пласта с отображением микросейсмических событий на нем;

[0017] Фиг. 2 - схематическое изображение двухмерного разрыва;

[0018] Фиг. 3 - схематическое изображение эффекта затенения напряжения;

[0019] Фиг. 4 - схематическое изображение для сравнения двухмерного способа разрывных смещений (2D DDM) и способа Flac3D для двух параллельных прямых трещин;

[0020] Фиг. 5.1-5.3 - графики, отображающие способ 2D DDM и Flac3D расширенных трещин для напряжений в различных точках;

[0021] Фиг. 6.1-6.2 - графики, отображающие траектории распространения для двух изначально параллельных трещин в изотропных и анизотропных полях напряжения, соответственно;

[0022] Фиг. 7.1-7.2 - графики, отображающие траектории распространения для двух изначально перпендикулярных трещин в изотропных и анизотропных полях напряжения, соответственно;

[0023] Фиг. 8 - схематическое изображение поперечных параллельных трещин вдоль горизонтальной скважины;

[0024] Фиг. 9 - график, отображающий длину пяти параллельных трещин;

[0025] Фиг. 10 - схематическое представление геометрии модели нетрадиционного разрыва и ширины для параллельных трещин из Фигуры 9;

[0026] Фиг. 11.1-11.2 - схематические представления, отображающие геометрию трещин гидроразрыва в случае высокого перепада давления на перфорированной поверхности и в случае большого расстояния между параллельными трещинами, соответственно;

[0027] Фиг. 12 - график, отображающий микросейсмические данные;

[0028] Фиг. 13.1-13.4 - схематические представления, отображающие смоделированную сеть трещин, в сравнении с микросейсмическими измерениями для стадий 1-4, соответственно;

[0029] Фиг. 14.1-14.4 схематические представления, отображающие распределенную сеть трещин на различных стадиях;

[0030] Фиг. 15- блок-схема, отображающая способ выполнения гидроразрыва;

[0031] Фиг. 16.1-16.4 - схематические изображения, отображающие распространение трещин по стволу скважины в ходе гидроразрыва пласта;

[0032] Фиг. 17 - схематическое представление, отображающие напряжения, применяемые к гидравлическому разрыву;

[0033] Фиг. 18 - график, отображающий предельную прямую Мора-Кулона и круг Мора для среды горных пород;

[0034] Фиг. 19.1 и 19.2 - схематические представления, отображающие поперечную и горизонтальную проекцию, соответственно, напряжений, применяемых к гидравлическому разрыву;

[0035] Фиг. 20 - схематическая временная шкала, отображающая взаимодействие трещин гидроразрыва и естественных трещин с сейсмическими событиями;

[0036] Фиг. 21 - схематическое представление, отображающие развитие взаимодействия трещин гидроразрыва и естественных трещин;

[0037] Фиг. 22.1 и 22.2 - схематические представления, отображающие дискретную сеть трещин и сеть трещин со смоделированными гидравлическими разрывами пласта, соответственно;

[0038] Фиг. 23.1 и 23.2 - блок-схемы, отображающие способы выполнения гидроразрыва; и

[0039] Фиг. 24 - схематическое представление, отображающее плоскость трещин вдоль оси координат.

ПОДРОБНОЕ ОПИСАНИЕ

[0040] Представленное далее описание охватывает образцы устройств, способов, техники и последовательности инструкций, которые реализуют методику изобретения. Тем не менее, при этом описанные варианты могут реализовываться без данных конкретных деталей.

I. МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЯ ТРЕЩИНОВАТОСТИ

[0041] Для понимания подземных сетей трещин были разработаны модели. В моделях могут учитываться различные факторы и/или данные, но они не могут ограничиваться либо учетом количества перекачиваемой жидкости или механическими взаимодействиями между трещинами и нагнетаемой текучей средой и среди трещин. Модели с ограничениями могут предоставляться для обеспечения глубокого понимания задействованных механизмов, но могут быть сложными для математического предоставления и/или требовать ресурсов компьютерной обработки и времени с целью обеспечения точного моделирования распространения трещин после гидравлического разрыва. Модель с ограничениями может иметь конфигурацию для выполнения моделирования, учитывающего такие факторы, как взаимодействие между трещинами, с течением времени и при необходимых условиях.

[0042] Модель нетрадиционного разрыва (МНР) (или сложная модель) может использоваться для моделирования распространения сложной сети трещин в пласте с предварительно имеющимися естественными трещинами. Множественные ветви трещин могут распространяться одновременно и пересекаться друг с другом. Каждая открытая трещина может оказывать дополнительные напряжения на окружающие горные породы и смежные трещины, которые могут называться эффектом затенения напряжения. Затенение напряжения может привести к ограничению параметров трещин (например, ширины), что в свою очередь может привести, например, к большему риску выпадения пропанта. Затенение напряжения может также изменить траекторию распространения трещин и повлиять на схемы сетей трещин. Затенение напряжения может повлиять на моделирование взаимодействия трещин в сложной модели трещин.

[0043] Представлен способ для расчета затенения напряжения в сложной сети трещин гидроразрыва пласта. Способ может реализовываться на основании усиленного двухмерного способа разрывных смещений (2D DDM) с поправкой на определенную высоту трещины или трехмерного способа разрывных смещений (3D DDM). Рассчитываемое поле напряжения на основании способа 2D DDM можно сравнить с трехмерным численным моделированием (3D DDM или flac3D) ввиду определения приближенной поправки для проблемы трехмерной трещины. Данный расчет затенения напряжения может включаться в МНР. Результаты для наиболее простых случаев из двух трещин показывают, что трещины могут либо притягивать, либо исключать друг друга в зависимости, к примеру, от их изначального относительного положения, и могут сравниваться с независимой двухмерной неплоской моделью трещин гидроразрыва пласта.

[0044] Представлены дополнительные примеры как плоского, так и сложного распространения трещин из множественных кластеров перфорации, показывающие, что взаимодействие трещин может регулировать размеры трещин и диаграмму распространения. В пласте с небольшой анизотропией напряжения, взаимодействие трещин может приводить к резкому расхождению трещин, поскольку они могут иметь тенденцию к отталкиванию друг друга. Тем не менее, даже если анизотропия напряжения большая, а изменение направления трещины из-за взаимодействия трещин ограничено, затенение напряжения может оказывать сильное воздействие на ширину трещин, которая может влиять на распределение скорости закачки во множественные кластеры перфорации, и, соответственно, на общую геометрию сети трещин и размещение пропанта.

[0045] На фигурах 1.1 и 1.2 отображено распространение трещин гидроразрыва вокруг буровой площадки 100. На буровой площадке есть ствол 104 скважины, исходящий из устья 108 в позиции на поверхности скважины и до подземного пласта 102, указанного ниже. Сеть 106 трещин проходит около ствола 104 скважины. Насосная система 129 располагается по устью 108 скважины для подачи жидкости через насосно-компрессорные трубы 142.

[0046] Насосная система 129 отображается как управляемая полевым оператором 127 для фиксации данных по обслуживанию и эксплуатации и/или выполнения работ в соответствии с установленным графиком насосной эксплуатации. Насосная система 129 перекачивает жидкость из поверхности в ствол 104 скважины во время гидроразрыва пласта.

[0047] Насосная система 129 может включать в себя источник воды, такой как ряд емкостей 131 для воды, которые подают воду на гелевую гидратационную установку 133. Гелевая гидратационная установка 133 смешивает воду из резервуаров 131 с гелеобразующим веществом для получения геля. Затем гель направляется на смесительную установку 135, где он смешивается с пропантом из устройства 137 для переноса пропанта для получения жидкости гидроразрыва. Гелеобразующее вещество может использоваться для повышения вязкости жидкости гидроразрыва, и для обеспечения взвеси пропанта в жидкости гидроразрыва. Он также может выступать в качестве понизителя трения, чтобы обеспечить более высокие скорости нагнетания с меньшим фрикционным давлением.

[0048] Затем жидкость гидроразрыва перекачивается из смесительного устройства 135 в платформы для обработки 120 с плунжерными насосами, как показано сплошными линиями 143. Каждая платформа для обработки 120 принимает жидкость гидроразрыва при низком давлении и отправляет ее в общий коллектор 139 (который иногда называется ракетным тягачом или снарядом) при высоком давлении, как показано пунктирными линиями 141. Затем снаряд 139 направляет жидкость гидроразрыва из платформ 120 для обработки в ствол 104 скважины, как показано сплошной линией 115. Для подачи жидкости гидроразрыва с необходимой скоростью может использоваться одна и более платформ 120 для обработки.

[0049] Каждая платформа 120 для обработки может нормально функционировать при любой скорости подачи, достигающей максимального значения ее рабочей мощности. При эксплуатации платформ 120 для обработки на их рабочей мощности может учитываться возможность отказа одной платформы с увеличением скорости остальных для восполнения мощности отказавшего насоса. Для управления всей насосной системой 129 во время операций по гидроразрыву может использоваться автоматизированная система управления.

[0050] Для создания трещин могут использоваться различные жидкости, такие как традиционные жидкости для воздействия на пласт с пропантами. Для гидравлического разрыва пласта в скважинах со сланцевым газом могут также использоваться и другие жидкости, такие как вязкие гели, реагенты на водной основе (которые могут содержать понизитель трения (полимер). Такой реагент на водной основе может иметь форму легкоподвижной жидкости (например, почти с той же вязкостью, что и вода) и может использоваться для создания более сложных трещин, таких как множественные микросейсмические трещины, выявляемые в ходе мониторинга.

[0051] Как показано на фигурах 1.1 и 1.2, сеть трещин включает в себя трещины, расположенные в различных точках по стволу 104 скважины. Различные трещины могут быть естественными трещинами 144, присутствующими до закачки жидкостей, или трещинами 146 гидроразрыва пласта, образованными в пласте 102 в процессе закачки. На Фигуре 1.2 показана сеть 106трещин на основании микросейсмических событий 148, собранных при помощи традиционных средств.

[0052] Многоступенчатое моделирование может быть нормой для разработки нетрадиционной залежи. Тем не менее, препятствием при оптимизации вскрытия сланцевых залежей может оказаться недостаток моделей трещин гидроразрыва пласта, которые способны надлежащим образом смоделировать распространение сложных трещин, часто наблюдаемое в данных пластах. Разработана сложная модель сети трещин (или МНР) (см., например, Венг К., Крессе О, Ву Р. и Гу Х. Моделирование распространения гидроразрыва в пласте с естественной трещиноватостью (Weng, X., Kresse, О., Wu, R., and Gu, H, Modeling of Hydraulic Fracture Propagation in a Naturally Fractured Formation). Работа SPE 140253, представленная на Конференции и выставке по гидравлическому разрыву пласта SPE, Вудлендс, Техас, США, 24-26 января (2011 г.) (далее - «Венг 2011»); Кресс О., Коэн К., Венг К., Ву Р. и Гу Х. (Kresse, О., Cohen, С, Weng, X, Wu, R., and Gu, H 2011) (далее - «Крессе 2011»). Численное моделирование гидроразрыва в пластах с естественной трещиноватостью (Numerical Modeling of Hydraulic Fracturing in Naturally Fractured Formations). 45-й Симпозиум США по механика/геомеханике горных пород, Сан-Франциско, Калифорния, 26-29 июня, полное содержание которых представлено здесь).

[0053] Существующие модели могут использоваться для моделирования распространения трещин, деформации горных пород, и потока жидкости в сложной сети трещин, созданных во время обработки. Модель может также использоваться для решения полностью связанной задачи потока жидкости в сети трещин и упругой деформации трещин, которые могут иметь аналогичные допущения и определяющие уравнения в качестве традиционных псевдотрехмерных моделей трещин. Уравнения переноса могут решаться по каждому компоненту перекачиваемых жидкостей и пропантов.

[0054] Традиционные модели ударных трещин могут моделировать различные аспекты сети трещин. Представленная МНР может также включать в себя способность моделировать взаимодействие трещин гидроразрыва с существующими естественными трещинами, т.е. определять, распространяется трещина после гидроразрыва пласта или задерживается естественной трещиной, когда они пересекаются, и впоследствии распространяется вдоль естественной трещины. Разветвление трещин гидроразрыва пласта при пересечении с естественной трещиноватостью может привести к развитию сложной сети трещин.

[0055] Модель пересечения можно найти в работе Реншо и Полларда {см., например, Реншо С.Э. и Поллард Д.Д. 1995, Критерий, проверяемый опытным путем, для распространения по несвязанным поверхностям трения в хрупких, линейно-упругих материалах. Международный журнал по механике горных пород и горному делу 32, 237-249 (Renshaw, С Е. and Pollard, D. D. 1995, An Experimentally Verified Criterion for Propagation across Unbounded Frictional Interfaces in Brittle, Linear Elastic Materials. Int. J. Rock Mech. Min. Sei. & Geomech. Abstr., 32: 237-249 (1995)), полное содержание которой представлено здесь), где указывается критерий поверхности пересечения, который применяется к любому углу пересечения, и данную модель можно разработать (см., например, Гу Х. и Венг К. Критерий для поверхностей трения при пересечении трещин под неортогональными углами. 44-й Симпозиум США по горным породам, Солт-Лейк-Сити, Юта, 27-30 июня 2010 г. (далее «Гу и Венг 2010) (Gu, H. and Weng, X. Criterion for Fractures Crossing Frictional Interfaces at Non-orthogonal Angles. 44th US Rock symposium, Salt Lake City, Utah, June 27-30, 2010), полное содержание которой представлено здесь виде ссылки) и проверить на основании экспериментальных данных (см., например, Гу Х., Венг К., Ланд Дж. Мэк М., Гангули Ю. и Суарез-Ривера Р. 2011 г. Пересечение трещин гидроразрыва пласта с естественными трещинами под неортогональными углами. Критерий, его проверка и применение (Gu, H, Weng, X, Lund, J., Mack, M., Ganguly, U and Suarez-Rivera R. 2011. Hydraulic Fracture Crossing Natural Fracture at Non-Orthogonal Angles, A Criterion, Its Validation and Applications.) Работа SPE 139984, представленная на Конференции и выставке по гидравлическому разрыву пласта SPE, Вудлендс, Техас, США, 24-26 января (2011 г.) (далее - «Гу и др. 2011»), полное содержание которой представлено здесь), и реализовать в модели МНР.

[0056] Для надлежащего моделирования распространения множественных или сложных трещин, в модели трещин может учитываться взаимодействие между смежными ветвями трещин гидроразрыва пласта, которое часто называется эффектом «затенения напряжения». При раскрытии одиночной плоской трещины гидроразрыва пласта при конечной величине эффективного давления жидкости, она может создавать поле напряжения на окружающие горные породы, которое пропорционально эффективному давлению.

[0057] В предельном случае неограниченно длинной вертикальной трещины с постоянной определенной высотой может быть представлено аналитическое выражение поля напряжения по раскрытой трещине. См., например, Варпински Н.Ф. и Тойфель Л.В. Влияние геологической прерывистости на распространение трещин по гидроразрыву пласта. Журнал технологий нефтедобычи. Фев., 209-200 (1987 г.) (Warpinski, N.F. and Teufel, L. W., Influence of Geologic Discontinuities on Hydraulic Fracture Propagation, JPT, Feb., 209-220 (1987)) (далее - «Варпински и Тойфель») и Варпински Н.Р. и Бранаган П.Т. Образование трещин под воздействием измененного напряжения. Журнал технологий нефтедобычи. Сентябрь 1989 г. 990-997 (Warpinski, N.R., and Branagan, P.T., Altered-Stress Fracturing. SPE JPT, September, 1989, 990-997 (1989)), полное содержание которой представлено здесь виде ссылки. Эффективное давление (или точнее, давление, которое приводит к данному раскрытию трещины) может вызывать сжимающее напряжение в направлении, перпендикулярном к трещине в дополнение к минимальному напряжению в пласте, которое может быть равно эффективному давлению на поверхности трещины, но быстро уменьшается при удалении от трещины.

[0058] На расстоянии за пределами высоты одной трещины, напряжение, вызываемое выработкой, может составлять только малую часть эффективного давления. Таким образом, термин «затенение напряжения» может использоваться для описания данного увеличения напряжения в области, окружающей трещину. Если параллельно существующей раскрытой трещине образуется вторая трещина гидроразрыва, и если она приходится на «затенение напряжения» (т.е. расстояние к существующей трещине меньше, чем высота трещины), то вторая трещина может фактически столкнуться с напряжением, вызывающим смыкание трещины, которое больше, чем исходное напряжение в пласте. В результате, для распространения трещины может потребоваться более высокое давление, и/или же трещина может быть более узкой по сравнению с соответствующей одиночной трещиной.

[0059] Одно применение исследования затенения напряжения может включать в себя проектирование или оптимизацию расстояния между множественными трещинами, распространяющимися одновременно из горизонтального ствола скважины. В сланцевых пластах с ультранизкой проницаемостью, трещины могут располагаться близко друг к другу для эффективного дренирования коллектора. Тем не менее, эффект затенения напряжения может предотвращать распространение трещин в непосредственной близости к другим трещинам (см., например, Фишер М.К., Хайнце Дж.Р., Харрис Ц.Д., Дэвидсон Б.М., Райт К.А. и Данн К.П. Оптимизация технологий горизонтального вскрытия пласта в месторождении Барнетт при помощи микросейсмического картирования трещин. (Fisher, M.K., J.R. Heinze, CD. Harris, B.M. Davidson, C.A. Wright, and K.P. Dunn, Optimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping). Работа SPE 90051, представленная на Ежегодной технической конференции и выставке SPE, Хьюстон, 26-29 сентября 2004 года, полное содержание которой представлено здесь в виде ссылки).

[0060] Препятствия между параллельными трещинами исследовались ранее (см., например, Варпински и Тойфель; Бритт Л.К. и Смит М.Б. Заканчивание горизонтальной скважины, оптимизация интенсификации притока и снижение рисков (Warpinski and Teufel; Britt, L.K. and Smith, M.B., Horizontal Well Completion, Stimulation Optimization, and Risk Mitigation). Работа SPE 125526, представленная на Восточном региональном совещании SPE в 2009 году, 23-25 сентября; Ченг Й. 2009 г. Расчет способом граничных элементов распределения напряжения по множественным трещинам: последствия для расположения кластеров перфорации в горизонтальных скважинах с гидроразрывами. (Cheng, Y. 2009. Boundary Element Analysis of the Stress Distribution around Multiple Fractures: Implications for the Spacing of Perforation Clusters of Hydraulically Fractured Horizontal Wells). Работа SPE 125769, представленная на Восточном региональном совещании SPE в Чарлстоне в 2009 году, 23-25 сентября; Мейер Б.Р. и Базан Л.В. Дискретная модель сети трещин для трещин, образуемых после гидроразрыва пласта: теория, параметрическое и целевое исследование ( Meyer, B.R. and Bazan, L. W., A Discrete Fracture Network Model for Hydraulically Induced Fractures: Theory, Parametric and Case Studies). Работа SPE 140514, представленная на Конференции и выставке по гидравлическому разрыву пласта SPE, Вудлендс, Техас, США, 24-26 января 2011 г.; Руссель Н.П. и Шарма М.М. Оптимизация расстояния между трещинами и определение последовательности с образованием трещин в горизонтальной скважине, SPEPE, май 2011 г., стр. 173-184. (Roussel, N.P. and Sharma, M.M, Optimizing Fracture Spacing and Sequencing in Horizontal-Well Fracturing, SPEPE, May, 2011, pp. 173-184), полное содержание которой представлено здесь в виде ссылки). Исследования могут охватывать параллельные трещины при статических условиях.

[0061] Эффект затенения напряжения может быть таким, что трещины, находящиеся посреди области множественных параллельных трещин, могут иметь меньшую ширину из-за повышенного напряжения сжатия из-за соседних трещин (см., например, Германович Л.Н. и Астахов Д. Закрытие трещин в трещинах растяжения и механическое взаимодействие параллельных трещин. Журнал Геофизических исследований, 109, B02208, идентификатор 10.1029/2002 JB002131 (2004) (Germanovich, L.N., and Astakhov D., Fracture Closure in Extension and Mechanical Interaction of Parallel Joints. J. Geophys. Res., 109, B02208, doi: 10.1029/2002 JB002131 (2004)); Олсон Дж.Е. Моделирование распространения множественных трещин: применение гидроразрыва в сланцевых пластах и плотных песках. (Olson, J.E., Multi-Fracture Propagation Modeling: Applications to Hydraulic Fracturing in Shales and Tight Sands). 42-й Симпозиум США по механике горных пород и 2-й Симпозиум США-Канада по механике горных пород, Сан-Франциско, Калифорния, 29 июня - 2 июля 2008 г., полное содержание которой представлено здесь). При одновременном распространении множественных факторов, распределение расхода жидкости на трещины может представлять собой динамический процесс, на который может влиять эффективное давление трещин. Эффективное давление может в значительной мере зависеть от ширины трещин, и соответственно, эффект затенения напряжения на распределение расхода жидкости и габаритные размеры трещин предусматривает дальнейшее исследование.

[0062] Динамика одновременного распространяющихся множественных трещин может также зависеть от относительного положения первоначальных трещин. Если трещины параллельные, например, в случае множественных трещин, которые взаимно перпендикулярны к горизонтальному стволу скважины, трещины могут отталкивать друг друга, приводя к отклонению трещин в стороны. Тем не менее, если множественные трещины располагаются по шахматной схеме, например для трещин, начинающихся в горизонтальном стволе скважины, который не перпендикулярен к плоскости трещины, то взаимодействие между смежными трещинами может быть таким, что их концы притягиваются друг к другу и даже соединяются (см., например, Олсон Дж.Э. Анализ механики разрушения трещин и жил. Докторская диссертация, Стэнфордский университет, Сан-Франциско, Калифорния (1990 г.) (Olson, J. E. Fracture Mechanics Analysis of Joints and Veins. PhD dissertation, Stanford University, San Francisco, California (1990)); Ю Ч.Х., Миэр М.Э., Чанг.К.К. и Джан К.Ц. О перфорации и гидроразрыве искривленных обсаженных стволов скважин. (Yew, C.H., Mear, M.E., Chang, C.C., and Zhang, X.C On Perforating and Fracturing of Deviated Cased Wellbores). Работа SPE 26514, представленная на 68-й Ежегодной технической конференции и выставке SPE, Хьюстона, Техас, 3-6 октября 1993 г.; Венг К. Возникновение и распространение трещин от искривленных стволов скважин. (Weng, X., Fracture Initiation and Propagation from Deviated Wellbores). Работа SPE 26597, представленная на 68-й Ежегодной технической конференции и выставке SPE, Хьюстон, Техас, 3-6 октября 1993 г., полное содержание которых включено здесь в качестве ссылки).

[0063] Когда трещина после гидроразрыва пласта пересекается со вторичной трещиной, ориентированной в другом направлении, она может оказывать дополнительное напряжение на вторичную трещину, вызывающее смыкание трещины, и которое пропорционально эффективному давлению. Данное напряжение можно вывести и учитывать при расчете давления раскрытия трещины в анализе утечек в пласте трещиноватых пород, зависящих от давления (см., например, Нольте К. Анализ давления гидроразрыва в реальных условиях. Журнал технологий нефтедобычи. февраль 1991 г., с. 210-218 (Nolte, K., Fracturing Pressure Analysis for nonideal behavior. JPT, Feb. 1991, 210-218 (работа SPE 20704) (1991)) (далее - «Нольте 1991»), полное содержание которой включено здесь в качестве ссылки).

[0064] В более сложных трещинах может присутствовать сочетание пересечения различных трещин, как отмечалось выше. Чтобы надлежащим образом учесть данные пересечения и обеспечить расчетную эффективность для включения модель сети сложных трещин, можно создать надлежащую структуру моделирования. Способ, основанный на усовершенствованном двухмерном способе разрывных смещений (2D DDM), может использоваться для расчета индуцированных напряжений на данную трещину и горной породе от остальной сети сложных трещин (см., например, Олсон Дж.Э. Прогноз серии трещин. - Влияние докритического роста трещин и зоны возникновения вершины трещины на расстояние между трещинами в горной породе. Появление, распространение и ограничение распространения разломов и прочих трещин. под ред. Дж.В. Косгроув и Т. Энгельдер, журнал «Geological Soc. Special Publications», Лондон, 231, с. 73-87 (2004 г.) (Olson, J.E., Predicting Fracture Swarms - The Influence of Sub critical Crack Growth and the Crack-Tip Process Zone on Joints Spacing in Rock. In The Initiation, Propagation and Arrest of Joints and Other Fractures, ed. J.W.Cosgrove and T.Engelder, Geological Soc. Special Publications, London, 231, 73-87 (2004) (далее - «Олсон 2004»), полное содержание данной работы включено здесь в качестве ссылки). Изменение направления распространения трещин можно также смоделировать на основании измененного направления местного напряжения перед распространяющейся вершиной трещины из-за эффекта затенения напряжения. Имеются результаты моделирования на основании модели МНР, которая включает в себя моделирование взаимодействия трещин.

Описание модели МНР

[0065] Для моделирования распространения сети сложных трещин, которая состоит из многих пересекающихся трещин можно использовать уравнения, определяющие основополагающие физические параметры процесса образования трещин. К основным определяющим уравнениям могут относиться, к примеру, уравнения, определяющие поток жидкости в сети трещин, уравнение, определяющее деформацию трещин, и критерии распространения/взаимодействия трещин.

[0066] Уравнение неразрывности предусматривает, что поток жидкости распространяется вдоль сети трещин со следующим сохранением массы:

где q - это местная скорость потока внутри трещины гидроразрыва по длине, w - это средняя ширина или отверстие в сечении трещины в точках s=s(x, y), Hfl - это высота подъема жидкости в трещине, и qL - это объемный расход утечки через стенку трещины г