Узел сети, беспроводной терминал и осуществляемые на них способы

Иллюстрации

Показать все

Изобретение относится к беспроводной связи и может быть использовано для подавления помехового сигнала из принятого сигнала. Способ осуществляется на узле сети для помощи первому беспроводному терминалу в подавлении помехового сигнала из принятого сигнала в сети беспроводной связи. Первый беспроводной терминал находится в первой зоне покрытия первой базовой станции. Помеховый сигнал исходит от второй базовой станции и предназначен для второго беспроводного терминала, находящегося во второй зоне покрытия второй базовой станции в сети беспроводной связи. Узел сети предоставляет первому беспроводному терминалу конфигурационную информацию, относящуюся к общему каналу управления, связанному со второй базовой станцией. Узел сети дополнительно помогает первому беспроводному терминалу в подавлении помехового сигнала путем предоставления информации первому беспроводному терминалу об одном или более из: планирования помехового сигнала и идентификатора второго беспроводного терминала. Информация предоставляется посредством заказа, относящегося к упомянутому общему каналу управления. Технический результат - повышение производительности сети беспроводной связи, поскольку подавление помехи происходит с использованием принятой конфигурационной информации и принятого заказа. 4 н. и 30 з.п. ф-лы, 13 ил.

Реферат

Область техники, к которой относится изобретение

Описанное здесь изобретение в целом относится к сетям беспроводной связи. Рассмотренные здесь варианты осуществления относятся к узлу сети, беспроводному терминалу и осуществляемым на них способам для подавления помехового сигнала из принятого сигнала в беспроводных системах с использованием заказов, относящихся к общим каналам управления, например заказам общего HS-SCCH.

Уровень техники

Беспроводные терминалы способны осуществлять беспроводную связь в системе радиосвязи, иногда также именуемой сетью радиосвязи, системой мобильной связи, сетью беспроводной связи, системой беспроводной связи, системой сотовой радиосвязи или сотовой системой. Связь может осуществляться по радиоканалу, например, между двумя беспроводными терминалами, между беспроводным терминалом и обычным телефоном и/или между беспроводным терминалом и сервером через сеть радиодоступа (RAN) и, возможно, одну или более базовых сетей, содержащих в сети беспроводной связи.

Беспроводной терминал, иногда именуемый пользовательским терминалом или пользовательским оборудованием (UE), представляет собой мобильный терминал, посредством которого абонент может осуществлять доступ к услугам, предоставляемым базовой сетью оператора.

Система сотовой радиосвязи покрывает географическую область, которая делится на сотовые участки, где каждый сотовый участок обслуживается узлом сети, например базовой станцией. В проекте долгосрочного развития систем связи (LTE) в рамках проекта партнерства третьего поколения (3GPP), базовые станции могут именоваться eNodeB или eNB. Сота представляет собой географическую область, где радиопокрытие обеспечивается базовой станцией на участке базовой станции.

Одна базовая станция, расположенная на участке базовой станции, может обслуживать одну или несколько сот. Дополнительно, каждая базовая станция может поддерживать одну или несколько технологий связи. Базовые станции осуществляют связь по радиоинтерфейсу, работающему на радиочастотах, с экземплярами пользовательского оборудования в пределах дальности связи базовых станций.

Базовые станции могут относиться к разным классам, например базовым станциям макроуровня, eNodeB макроуровня, домашним eNodeB или базовым станциям пикоуровня, в зависимости от мощности передачи и, таким образом, также размера соты.

В течение нескольких последних лет операторы беспроводной связи предоставляли услуги широкополосной мобильной связи на основе широкополосного множественного доступа с кодовым разделением/высокоскоростного пакетного доступа (WCDMA/HSPA). Требования конечного пользователя к производительности также возросли, благодаря появлению новых устройств, предназначенных для приложений обработки данных. Большое распространение мобильной широкополосной связи привело к необходимости обработки больших объемов трафика в сетях HSPA, которые получили значительное развитие. Таким образом, методы, позволяющие операторам более эффективно управлять своими спектральными ресурсами, приобрели особую важность.

Повысить производительность нисходящей линии связи можно за счет обеспечения поддержки таких методов, как 4-канальная система множественных входов и множественных выходов (MIMO), многопотоковой связи, развертывания множественных несущих и т.д. Повышение спектральной эффективности отдельной линии связи достигает теоретических пределов. В результате технология нового поколения ставит своей задачей повышение спектральной эффективности в расчете на единицу площади. Поэтому дополнительные признаки высокоскоростного пакетного доступа нисходящей линии связи (HSDPA) должны обеспечивать пользователям однородное пользовательское восприятие в любом месте соты за счет изменения топологии традиционных сетей. В настоящее время 3GPP работает над этим аспектом, предполагая использовать разнородные сети.

Однородная сеть - это сеть базовых станций, например узлов B, размещенных определенным образом, и совокупность беспроводных терминалов. В однородной сети все базовые станции имеют аналогичные уровни мощности передачи, диаграммы направленности антенны, уровни собственных шумов приемника и аналогичные возможности магистрального соединения с сетью передачи данных. Кроме того, все базовые станции предоставляют беспроводным терминалам в сети неограниченный доступ и обслуживают примерно одинаковое количество беспроводных терминалов. Современные беспроводные системы, относящиеся к этой категории, включают в себя глобальную систему мобильной связи (GSM), WCDMA, HSDPA, LTE и широкополосный доступ в микроволновом диапазоне (WiMax).

В разнородной сети (HetNet), помимо запланированного или регулярного размещения базовых станций макроуровня, развертывается несколько пико-, и/или фемто-, и/или ретрансляционных базовых станций, как показано на фиг. 1a. Мощность передачи этих пико-, и/или фемто-, и/или ретрансляционных базовых станций, составляющая до 2 Вт, невелика по сравнению с мощностью базовых станций макроуровня, составляющей до 40 Вт. Эти маломощные узлы (LPN) обычно развертываются для устранения пробелов покрытия в однородной сети, где используются только базовые станции макроуровня. LPN позволяют повысить емкость в зонах беспроводного доступа. Благодаря своей низкой мощности передачи и малым физическим размерам, пико/фемто/ретрансляционные базовые станции могут обеспечивать гибкое выделение участков.

Разнородные сети могут делиться на две категории развертывания: межканальное развертывание и развертывание мягкой соты. Последнее также именуется развертывание совместно используемой или комбинированной соты. В межканальном развертывании LPN имеет идентификатор соты, отличный от идентификатора макроузла, т.е. LPN создают разные соты. В развертывании мягкой соты каждый LPN имеет такой же идентификатор соты, как у макроузла.

Фиг. 1b демонстрирует пример разнородной сети, где маломощные узлы создают разные соты, что является примером межканального развертывания. Имитации указывают, что значительное повышение пропускной способности системы, а также пропускной способности граничного пользователя соты можно реализовать посредством межканального развертывания. Одна причина повышения пропускной способности состоит в том, что межканальное развертывание предоставляет возможности выравнивания нагрузки. В сценарии напряженного трафика данных нагрузка в макросоте может совместно использоваться между макроузлом и маломощными узлами. Также пользователи с низким отношением сигнал-шум (SINR) могут обслуживаться стратегически расположенными LPN. Короче говоря, LPN могут обеспечивать ресурсы для обслуживания пользователей и, таким образом, увеличивать среднюю пропускную способность пользователей сети.

Однако поскольку каждый LPN создает другую соту, один недостаток межканального развертывания состоит в необходимости мягкого хэндовера, когда беспроводной терминал перемещается от одного LPN к макроузлу или к другому LPN. В результате для осуществления хэндовера необходима сигнализация более высокого уровня, например, над физическим уровнем.

Фиг. 1c демонстрирует разнородную сеть с развертыванием комбинированной соты. Как указано, LPN входят в состав макросоты в этом развертывании. Таким образом, развертывание комбинированной соты позволяет избегать частых операций мягкого хэндовера и, следовательно, избегать сигнализации более высокого уровня.

В развертывании комбинированной соты все узлы могут быть подключены к центральному узлу, например к макроузлу, по высокоскоростной линии передачи данных, как показано на фиг. 1d. На фигуре центральный управляющий узел в комбинированной соте может брать на себя ответственность за сбор рабочей статистической информации измерений сетевого окружения. Решение, какие узлы должны передавать на конкретный беспроводной терминал, может приниматься центральным управляющим узлом на основании информации, предоставляемой беспроводным терминалом. Кооперация различных узлов предписывается центральным управляющим узлом и реализуется централизованным образом.

Хотя введение LPN позволяет достичь значительного повышения средней пропускной способности сектора, структура помехи в разнородных сетях усложняется. Например, когда UE, например беспроводной терминал, подключен к LPN, мощность помехи макроузла может влиять на пропускную способность линии связи отдельного UE.

Сущность изобретения

Задачей рассмотренных здесь вариантов осуществления является обеспечение возможности повышения производительности сети беспроводной связи.

Согласно первому аспекту рассмотренных здесь вариантов осуществления задача решается посредством способа, осуществляемого на узле сети для помощи первому беспроводному терминалу в подавлении помехового сигнала из принятого сигнала в сети беспроводной связи. Первый беспроводной терминал находится в первой зоне покрытия первой базовой станции. Помеховый сигнал исходит от второй базовой станции. Дополнительно, помеховый сигнал предназначен для второго беспроводного терминала, находящегося во второй зоне покрытия второй базовой станции в сети беспроводной связи. Узел сети предоставляет первому беспроводному терминалу конфигурационную информацию, относящуюся к общему каналу управления. Общий канал управления связан со второй базовой станцией, от которой исходит помеховый сигнал. Узел сети дополнительно помогает первому беспроводному терминалу в подавлении помехового сигнала путем предоставления информации первому беспроводному терминалу об одном или более из: планирования помехового сигнала и идентификатора второго беспроводного терминала. Информация предоставляется посредством заказа, относящегося к упомянутому общему каналу управления.

Согласно второму аспекту рассмотренных здесь вариантов осуществления задача решается посредством узла сети, выполненного с возможностью помогать первому беспроводному терминалу в подавлении помехового сигнала из принятого сигнала в сети беспроводной связи. Первый беспроводной терминал выполнен с возможностью находиться в первой зоне покрытия первой базовой станции. Помеховый сигнал исходит от второй базовой станции. Дополнительно, помеховый сигнал предназначен для второго беспроводного терминала, выполненного с возможностью находиться во второй зоне покрытия второй базовой станции в сети беспроводной связи. Узел сети содержит менеджер конфигурации, выполненный с возможностью предоставления первому беспроводному терминалу конфигурационной информации. Конфигурационная информация относится к общему каналу управления, связанному со второй базовой станцией, от которой исходит помеховый сигнал. Узел сети дополнительно содержит планировщик, выполненный с возможностью предоставления информации первому беспроводному терминалу об одном или более из: планирования помехового сигнала и идентификатора второго беспроводного терминала. Информация предоставляется посредством заказа, относящегося к упомянутому общему каналу управления.

Согласно третьему аспекту рассмотренных здесь вариантов осуществления задача решается посредством способа, осуществляемого на первом беспроводном терминале для подавления помехового сигнала из принятого сигнала в сети беспроводной связи. Первый беспроводной терминал находится в первой зоне покрытия первой базовой станции. Помеховый сигнал исходит от второй базовой станции и предназначен для второго беспроводного терминала. Второй беспроводной терминал находится во второй зоне покрытия второй базовой станции в сети беспроводной связи. Первый беспроводной терминал принимает от узла сети конфигурационную информацию. Конфигурационная информация относится к общему каналу управления, связанному со второй базовой станцией, от которой исходит помеховый сигнал. Первый беспроводной терминал использует принятую конфигурационную информацию для приема информации об одном или более из: планирования помехового сигнала и идентификатора второго беспроводного терминала посредством заказа, относящегося к упомянутому общему каналу управления. Первый беспроводной терминал использует принятую конфигурационную информацию и информацию в заказе, относящемся к упомянутому общему каналу управления, для подавления помехового сигнала из принятого сигнала.

Согласно четвертому аспекту рассмотренных здесь вариантов осуществления задача решается посредством первого беспроводного терминала, выполненного с возможностью подавления помехового сигнала из принятого сигнала в сети беспроводной связи. Первый беспроводной терминал выполнен с возможностью находиться в первой зоне покрытия первой базовой станции. Помеховый сигнал исходит от второй базовой станции. Помеховый сигнал предназначен для второго беспроводного терминала, выполненного с возможностью находиться во второй зоне покрытия второй базовой станции в сети беспроводной связи. Первый беспроводной терминал содержит менеджер конфигурации, выполненный с возможностью приема конфигурационной информации, относящейся к общему каналу управления, связанному со второй базовой станцией, от которой исходит помеховый сигнал. Первый беспроводной терминал дополнительно содержит подавитель помехи, выполненный с возможностью приема информации об одном или более из: планирования помехового сигнала и идентификатора второго беспроводного терминала, посредством заказа, относящегося к упомянутому общему каналу управления. Для приема заказа, относящегося к упомянутому общему каналу управления, подавитель помехи использует принятую конфигурационную информацию.

Подавитель помехи дополнительно выполнен с возможностью подавления помехового сигнала из принятого сигнала с использованием принятой конфигурационной информации и принятого заказа.

Таким образом, рассмотренные здесь варианты осуществления позволяют первому беспроводному терминалу реконструировать и подавлять помеховый сигнал с использованием конфигурационной информации и информации об одном или более из: планирования помехового сигнала и идентификатора второго беспроводного терминала. Это позволяет избежать потери производительности вследствие помехи от второй базовой станции.

Одно значительное преимущество использования заказа, относящегося к упомянутому общему каналу управления, для переноса информации об одном или более из: планирования помехового сигнала и идентификатора второго беспроводного терминала в сети беспроводной связи состоит в возможности значительного повышения пропускной способности линии связи для беспроводных терминалов, например, в помехоограничительных сценариях, например, когда отношение сигнал-шум первого беспроводного терминала снижается вследствие помехи от второй базовой станции.

Краткое описание чертежей

Примеры рассмотренных здесь вариантов осуществления более подробно описаны со ссылкой на прилагаемые чертежи, в которых:

фиг. 1a - упрощенная блок-схема, демонстрирующая типичную разнородную сеть, соответствующую уровню техники.

Фиг. 1b - упрощенная блок-схема, демонстрирующая разнородную сеть с межканальным развертыванием, соответствующим уровню техники.

Фиг. 1c - упрощенная блок-схема, демонстрирующая разнородную сеть с развертыванием комбинированной соты, соответствующим уровню техники.

Фиг. 1d - упрощенная блок-схема, демонстрирующая детали соединения разнородной сети с межканальным развертыванием, соответствующим уровню техники.

Фиг. 2 - упрощенная блок-схема, демонстрирующая разнородную сеть с зонами увеличения дальности соты.

Фиг. 3 является примером графика производительности линии связи, демонстрирующего снижение производительности, когда беспроводной терминал находится в зоне увеличения дальности соты соответствующий уровню техники.

Фиг. 4 является примером графика производительности линии связи, демонстрирующего снижение производительности с помощью сети и без него.

Фиг. 5 - упрощенная блок-схема, демонстрирующая варианты осуществления сети беспроводной связи.

Фиг. 6 - упрощенная блок-схема операций, демонстрирующая варианты осуществления способа, осуществляемого на узле сети.

Фиг. 7a и 7b - упрощенные блок-схемы, демонстрирующие варианты осуществления узла сети.

Фиг. 8 - блок-схема операций, изображающая варианты осуществления способа на базовой станции.

Фиг. 9a и 9b - упрощенные блок-схемы, демонстрирующие варианты осуществления первой базовой станции.

Фиг. 10-11 - упрощенные блок-схемы, демонстрирующие дополнительные варианты осуществления способа, осуществляемого на узле сети.

Фиг. 12 - упрощенная блок-схема, демонстрирующая дополнительные варианты осуществления способа на беспроводном терминале.

Фиг. 13 - упрощенная блок-схема, демонстрирующая дополнительные варианты осуществления способа, осуществляемого на узле сети.

Подробное описание

В порядке развития рассмотренных здесь вариантов осуществления сначала выявим и рассмотрим проблему.

Хотя введение LPN позволяет достичь значительного повышения средней пропускной способности сектора, структура помехи в разнородных сетях усложняется. Например, когда UE, например беспроводной терминал, подключен к LPN, мощность помехи макроузла может влиять на пропускную способность линии связи отдельного UE.

На Фиг. 2 показан иллюстративный сценарий, где макроузел может влиять на производительность линии связи UE. Сценарий, представленный на фигуре, применяется как в межканальном развертывании, так и в развертывании комбинированной соты. Следовательно, будет использоваться обобщенный термин “зона покрытия”. На фигуре проиллюстрированы две зоны покрытия LPN, обслуживаемые двумя LPN в зоне покрытия макроуровня. Серая часть зоны покрытия LPN является зоной увеличения дальности. UE в этой зоне, которые подключены к LPN, могут подвергаться помехам со стороны передач макроузла, поскольку мощность, принятая от макроузла, может принимать мощность, принятую от LPN в зоне увеличения дальности.

На Фиг. 3 показан график производительности линии связи, когда UE, подключенный к LPN, испытывает сильную помеху от макроузла. Вертикальная ось представляет производительность линии связи в отношении пропускной способности линии связи в мегабитах в секунду (Мбит/с). Горизонтальная ось представляет меру отношения сигнал-шум на UE. Ior представляет мощность желаемого сигнала. No представляет мощность шума за исключением мощности помехи макроузла. Помеха, обусловленная узлами, отличными от макроузлов, моделируется на этой фигуре как белый шум. Относительная мощность макроузла представлена Ioc, который изменяется от 0 дБ до 20 дБ. Каждая относительная мощность макроузла представлена отдельной меткой. Из фиг. 3 следует, что помеха со стороны макросоты может приводить к значительному снижению производительности. Потеря производительности может составлять порядка 100% при высоких геометриях.

Как указано выше, наличие LPN означает, что структура помехи в разнородных сетях усложняется. Одним способом снижения помех является подавление помеховых сигналов из принятого сигнала, а остаток является полезным сигналом.

Фиг. 4 демонстрирует производительность линии связи, когда сеть беспроводной связи предоставляет информацию планирования источников помехи для UE. Вертикальная ось представляет производительность линии связи в отношении пропускной способности линии связи в мегабитах в секунду (Мбит/с). Горизонтальная ось представляет меру отношения сигнал-шум на UE. Ior представляет мощность желаемого сигнала. No представляет мощность шума за исключением мощности помехи макроузла. Помеха, обусловленная узлами, отличными от макроузлов, моделируется на этой фигуре как белый шум. Относительная мощность макроузла представлена Ioc, который равен 20 дБ на этой фигуре. Наблюдается, что можно добиться значительного повышения производительности, если UE обладает информацией о помеховых сигналах, представленных треугольниками на этой фигуре. Пропускная способность линии связи с помощью сети представлена прямоугольниками. В имитации помеховый сигнал был реконструирован на приемнике UE и помеха была удалена из выходного сигнала детектора.

Из Фиг. 4 следует, что с помощью сети беспроводной связи можно ослаблять помеху на приемнике, например UE, посредством подавления помехи, например на приемнике с последовательным подавлением помехи. Помощь сети беспроводной связи может предоставляться макроузлом и/или любым одним или более из LPN. В порядке примера, сеть беспроводной связи может предоставлять информацию планирования помеховой линии связи.

Неопубликованная внутренняя опорная реализация состоит в отправке заказа выделенного высокоскоростного совместно используемого канала управления (HS-SCCH), который переносит информацию либо об информации планирования помеховой линии связи, либо об идентификаторе UE, который запланирован на помеховой линии связи. Однако макроузел и LPN требует обмена информацией планирования на динамической основе при использовании заказа выделенного канала управления, т.е. каждый раз, когда какой-либо UE запланирован на любом из узлов. Однако это может быть не во всех сценариях, например, с ограниченный поддержкой магистрали.

Рассмотренные здесь варианты осуществления заданы как узел сети, первый беспроводной терминал и осуществляемые на них способы, которые можно осуществлять на практике в описанных ниже вариантах осуществления. Дополнительно, терминологии из 3GPP используются ниже только для облегчения объяснения и примера применения. Беспроводные системы, например WCDMA, WiMax, UMB, GSM, WiFi и пр., могут пользоваться преимуществом описанной здесь технологии.

На Фиг. 5 показана сеть 500 беспроводной связи, в которой можно реализовать рассмотренные здесь варианты осуществления. Сетью 500 беспроводной связи может быть, например, LTE или любой другой сотовой сетью 3GPP с использованием общих каналов управления. Дополнительно, сеть 500 беспроводной связи может быть разнородной сетью. Сеть 500 беспроводной связи можно дополнительно реализовать с межканальным развертыванием или с развертыванием комбинированной соты.

Сеть 500 беспроводной связи содержит один или более узлов 511, 512 сети. Один или более узлов 511, 512 сети может быть, например, узлом базовой сети (CN), или контроллером радиосети (RNC), или базовой станцией, например первой базовой станцией 511 или второй базовой станцией 512, которые также содержатся в сети 500 беспроводной связи.

Первая базовая станция 511 и вторая базовая станция 512 могут быть, например, базовыми радиостанциями (RBS), которые иногда могут именоваться, например, "eNodeB", "nodeB" или базовая приемопередающая станция (BTS). Базовые станции могут относиться к разным классам, например макро-NodeB, домашние NodeB или базовые станции пикоуровня. В этом примере, вторая базовая станция 512 может, например, работать в качестве макроузла, имеющего более высокую мощность передачи, чем первая базовая станция 511, которая, например, может действовать как LPN или базовая станция пикоуровня.

Сеть 100 беспроводной связи дополнительно содержит первый беспроводной терминал 521 и второй беспроводной терминал 522, соответственно находящийся в одной из одной или более первых зон 531 покрытия первой базовой станции 511 и одной или более вторых зон 532 покрытия второй базовой станции 512.

Первые и вторые беспроводные терминалы 521, 522 могут быть, например, такими устройствами связи, как мобильные телефоны, сотовые телефоны, портативные компьютеры или планшетные компьютеры, иногда именуемые пластинами скольжения, с возможностями беспроводной связи. Беспроводные терминалы могут быть портативными, карманными, ручными, компьютеризированными или автомобильными мобильными устройствами.

Первый беспроводной терминал 521 может быть подключен к первой базовой станции 511 посредством радиосвязи. Второй беспроводной терминал 522 может быть подключен ко второй базовой станции 512 посредством радиосвязи.

Первый и вторая зоны 531, 532 покрытия могут, по меньшей мере, частично перекрываться или соседствовать друг с другом. В межканальном развертывании первая зона 531 покрытия может задавать первую соту 541 и вторая зона 532 покрытия может задавать вторую соту 542, причем соты 541, 542 являются разными сотам. В развертывании комбинированной соты первая зона 531 покрытия и вторая зона 532 покрытия могут задавать комбинированную соту 543.

Естественно, в сети 500 беспроводной связи может существовать больше базовых станций, зон покрытия и сот, причем базовые станции, зоны покрытия и соты не показаны на фиг. 5. В порядке примера, разнородная сеть 500 беспроводной связи может содержать один или более узлов радиосвязи макроуровня, которые могут содержать вторую базовую станцию 512. Разнородная сеть 500 беспроводной связи может дополнительно содержать один или более маломощных узлов, которые могут содержать первую базовую станцию 511. Каждый узел радиосвязи макроуровня может предоставлять услуги в соответствующей зоне покрытия, например в одной или более вторых зон 532 покрытия, например в соответствующей макросоте, например второй соте 542. Соответствующая макросота соответствует соответствующему узлу радиосвязи макроуровня. Соответствующая макросота допускает идентификацию, например, по идентификатору соты. Каждый маломощный узел может предоставлять услуги в соответствующей зоне покрытия, например в соответствующей маломощной зоне покрытия, например в одной или более первых зон 531 покрытия, соответствующих соответствующему маломощному узлу. Каждая маломощная зона покрытия может частично или полностью перекрываться соответствующей макросотой.

Рассмотренные здесь варианты осуществления снижают остроту проблемы потери производительности вследствие помеховых сигналов, исходящих от других базовых станций помимо подключенной базовой станции 512.

Согласно рассмотренным здесь вариантам осуществления информация планирования может переноситься на множественные UE, например на некоторые или все UE в макросоте, без использования выделенный заказов высокоскоростного совместно используемого канала управления (HS-SCCH). Вместо этого для переноса необходимой информации предлагается использовать заказ, относящийся к общему каналу управления. Заказ, относящийся к общему каналу управления, в этом контексте можно рассматривать как заказ, который может отслеживаться множественными UE, например первыми и вторыми беспроводными терминалами 521, 522. Заказ, относящийся к общему каналу управления, далее будет именоваться заказом общего канала управления.

Примером неопубликованной внутренней опорной реализации заказа общего канала управления является заказ общего HS-SCCH, который позволяет адресовать единичный заказ HS-SCCH множественным UE, например первому и второму беспроводным терминалам 521, 522. Это дает возможность отправлять команды управления на многие UE, не отправляя столько же выделенных заказов HS-SCCH. В нижеследующих описаниях для облегчения объяснения будет использоваться заказы HS-SCCH. Однако принципы легко применимы к другим заказам общего канала управления.

Для решения этих и других проблем здесь описаны один или более способов, устройств и/или систем, в которых можно реализовать один или более методов подавления помех. Некоторые или все аспекты раскрытого изобретения можно применять в разнородной сети беспроводной связи, например в сети 500 беспроводной связи.

Однако способы не ограничивают использование случаем, когда LPN, например первая базовая станция 511, развернуты в макросоте, например второй соте 542. Например, способы могут применяться к базовой станции 511 и беспроводному терминалу 521, причем беспроводной терминал 521 подключен к упомянутой базовой станции 511 и беспроводной терминал 521 принимает помеху от базовых станций, которые не находятся в той же зоне покрытия макроуровня, например второй зоне 532 покрытия. Помеховые базовые станции, которые не находятся в той же зоне покрытия макроуровня, могут быть, например, соседними макроузлами или LPN соседней макросоты.

Действия на узле 511, 512 сети для помощи первому беспроводному терминалу 521 в подавлении помехового сигнала 552, исходящего от второй базовой станции 512 и предназначенного для второго беспроводного терминала 522, будут описаны ниже со ссылкой на фиг. 6. Как упомянуто выше, первый беспроводной терминал 521 может находиться в первой зоне 531 покрытия первой базовой станции 511. Второй беспроводной терминал 522 может находиться во второй зоне 532 покрытия второй базовой станции 512.

Действия не обязательно осуществлять в указанном ниже порядке, но можно производить в любом пригодном порядке. Дополнительно, действия можно объединить.

Действие 601

Сигнал, который первый беспроводной терминал 121 принимает от первой базовой станции 511, искажаться помеховым сигналом 552 от второй базовой станции 512. Потеря производительности вследствие упомянутой помехи может быть очень высокой, например, если первая базовая станция 511 является LPN и вторая базовая станция 512 является макроузлом. Один подход к ослаблению упомянутой помехи предусматривает получение информации о помеховом сигнале 552, реконструкцию помехового сигнала 552 на первом беспроводном терминале 521 и вычитание помехового сигнала 552 из принятого сигнала. Чтобы узел 511, 512 сети предоставлял первому беспроводному терминалу 521 информацию о помеховом сигнале, узел 511, 512 сети может предоставлять такую информацию по общему каналу управления, связанному с порождающей помеху второй базовой станцией 512. Благодаря использованию общего канала управления, информация о помеховом сигнале 552 может переноситься на множественные беспроводные терминалы, например множественные первые беспроводные терминалы 521. Это дает возможность отправлять команды управления на многие беспроводные терминалы с помощью только одного информационного сообщения. Чтобы первый беспроводной терминал мог принимать информацию о помеховом сигнале по общему каналу управления, связанному с порождающей помеху второй базовой станцией 512, узел 511, 512 сети предоставляет первому беспроводному терминалу 521 конфигурационную информацию, относящуюся к общему каналу управления, связанному со второй базовой станцией 512.

В межканальном развертывании, где первая и вторая зоны 531, 532 покрытия соответствуют двум разным сотам, а именно первой соте 541 и второй соте 542, конфигурационная информация может предоставляться через вторую базовую станцию 512.

В развертывании комбинированной соты, где первая и вторая зоны 531, 532 покрытия соответствуют одной и той же комбинированной соте 543, конфигурационная информация может предоставляться через первую базовую станцию 512, поскольку конфигурационная информация одинакова для всех зон покрытия, содержащихся в зоне покрытия макроуровня.

Конфигурационная информация может содержать общий идентификатор беспроводных терминалов, причем общий идентификатор связан со второй зоной 562 покрытия.

Используя общий идентификатор, связанный со второй зоной 532 покрытия, узел 511, 512 сети может отправлять одну и ту же информацию о помеховом сигнале 552 на несколько беспроводных терминалов, содержащих, например, первый беспроводной терминал 521. Благодаря использованию предоставленной конфигурационной информации, первый беспроводной терминал 521 способен отслеживать общие каналы управления второй базовой станции 512 на предмет информации о помеховом сигнале 552.

В некоторых вариантах осуществления общим идентификатором является общий H-временный идентификатор радиосети (H-RNTI).

В некоторых вариантах осуществления конфигурационная информация может предоставляться во время установки соты для первого беспроводного терминала 521.

Конфигурационная информация также может содержать второй общий идентификатор беспроводных терминалов, причем второй общий идентификатор связан с первой зоной 561 покрытия. Это может иметь место, например, при использовании межканального развертывания.

Конфигурационная информация может предоставляться посредством сигнализации более высокого уровня, например сигнализации управления радиоресурсами (RRC).

В некоторых вариантах осуществления, соответствующих межканальному развертыванию, общий идентификатор и второй общий идентификатор отличаются, т.е. для первой и второй базовых станций 511, 512 используются разные заказы общего канала управления.

В некоторых вариантах осуществления, соответствующих межканальному развертыванию, первая сота 541 является макросотой и вторая зона 532 покрытия содержит множественные вторые зоны 532 покрытия, содержащиеся в первой соте 541. В этом случае общий идентификатор содержит множественные общие идентификаторы, связанные с множественными вторыми зонами 532 покрытия.

В некоторых дополнительных вариантах осуществления, соответствующих межканальному развертыванию, первая сота 541 является сотой LPN и общий идентификатор содержит, по меньшей мере, общий идентификатор, связанный с макросотой, например второй сотой 542.

Действие 602

Узел 511, 512 сети помогает первому беспроводному терминалу 521 в подавлении помехового сигнала 552 путем предоставления информации первому беспроводному терминалу 521 об одном или более из: планирования помехового сигнала 552 и идентификатора второго беспроводного терминала 522. Информация предоставляется посредством заказа общего канала управления, связанного со второй базовой станцией 512.

При использовании межканального развертывания заказ общего канала управления может предоставляться через вторую базовую станцию 512. В развертывании комбинированной соты заказ общего канала управления может быть общим для первой и второй базовых станций 511, 512. Затем заказ общего канала управления может предоставляться через первую базовую станцию 511.

Заказ общего канала управления может быть заказом высокоскоростного совместно используемого канала управления (HS-SCCH).

Узел 511, 512 сети может помогать первому беспроводному терминалу 521 в подавлении помехового сигнала 552 путем предоставления информации, когда первый беспроводной терминал 521 запланирован.

Дополнительно, заказ общего канала управления, например заказ общего HS-SCCH, можно скремблировать зависящим от соты скремблирующим кодом нисходящей линии связи таким же образом, как в существующих спецификациях 3GPP. Это означает, что заказы общего канала управления, например заказы HS-SCCH, из конкретной соты, например второй соты 542, будут влиять только на беспроводные терминалы, которые отслеживают общие каналы управления, т.е. коды канализации общего канала управления, в этой конкретной соте, например второй соте 542. В существующих спецификациях 3GPP беспроводные терминалы, например первый беспроводной терминал 521, может отслеживать количество общих каналов управления, например количество HS-SCCH, в обслуживающей соте, например первой соте 541, которая может быть сотой высокоскоростного совместно используемого канала нисходящей линии связи (HS-DSCH). Первый беспроводной терминал 521 может дополнительно отслеживать количество общих каналов управления в любых активированных вторичных обслуживающих сотах, которые могут быть сотами HS-DSCH, и вплоть до одного общего канала управления, например высокоскоростного совместно используемого канала управления (HS-SCCH), в необслуживающей соте для инициирования изменения улучшенной обслуживающей соты.

Для заказов, выделенных для конкретного беспроводного терминала, например беспроводного терминала 521, заказ квитируется конкретным беспроводным терминалом посредством кодового слова "квитирование" (ACK) в поле "гибридный автоматический запрос повторения передачи" (HARQ)-ACK на высокоскоростном выделенном физическом общем канале управления (HS-DPCCH). Конкретный беспроводной терминал никогда не отправляет "отрицательное квитирование" (NACK) в ответ на заказ общего канала управления, например заказ HS-SCCH. Если конкретный беспроводной терминал не квитирует заказ, базовая станция, например узел сети 512, может по своему выбору повторно передавать заказ, возможно, с более высокой мощностью передачи, пока от конкретного беспроводного терминала не буде