Теплообмен с использованием маточного раствора в способе кристаллизации пара-ксилола

Иллюстрации

Показать все

Изобретение относится к способу осуществления теплообмена с использованием маточного раствора в способе кристаллизации пара-ксилола (PX). Способ включает подачу потока поступающего материала и потока маточного раствора в РХ кристаллизационную установку, содержащую первый теплообменник для осуществления теплообмена через стенку между потоком маточного раствора и потоком поступающего материала и кристаллизатор для кристаллизации РХ из потока поступающего материла, при этом поток маточного раствора охлаждается до температуры -50°С, предоставление второго теплообменника для охлаждения потока поступающего материала до его поступления в РХ кристаллизационную установку для охлаждения потока поступающего материала вторым низкотемпературным источником энергии от охлаждающего агента и предоставление третьего теплообменника для осуществления теплообмена через стенку между потоком маточного раствора и потоком поступающего материала до того, как поток поступающего материала входит во второй теплообменник. Изобретение обеспечивает повышение процесса низкотемпературной кристаллизации и оптимальное использование охлаждения с применением теплообмена с маточным раствором дня снижения расходов на охлаждение в процессе кристаллизации. 6 з.п. ф-лы, 2 ил.

Реферат

Настоящая заявка согласно 35 U.S.С. 119(e) притязает на преимущества предварительной заявки на патент США Регистрационный No. 61/454337, поданной 18 марта 2011 года, описание которой во всей полноте включено в настоящее изобретение посредством отсылки.

Область техники, к которой относится изобретение

Заявленное изобретение относится к способам осуществления теплообмена с использованием маточного раствора в способе кристаллизации пара-ксилола. В заявленном изобретении охлаждение с применением теплообмена с маточным раствором оптимально используется для снижения расходов на охлаждение в процессе кристаллизации.

Уровень техники

Изомеры ксилола, орто-ксилол (ОХ), мета-ксилол (MX) и пара- ксилол (РХ) и этилбензол (ЕВ), являются С8 ароматическими соединениями, получающимися в процессе риформинга или в других нефтехимических процессах. Обычно примерный состав продуктов в равновесной смеси ксилолов таков: около 40% MX, 20% РХ, 20% ОХ и 20% ЕВ. Эти значения могут колебаться в пределах ±10%. Очищенные индивидуальные ксилолы в больших масштабах применяются в качестве промышленных растворителей и интермедиатов в производстве многих продуктов. Наиболее важный изомер, РХ, применяется для получения терефталевой кислоты (TPА) и диметилтерефталата (DMT), которые используются для получения волокон, пленок и бутылок из полиэтилентерефталата (PET). Для этих целей требуется РХ высокой степени чистоты (>99.7%). За последние годы потребляемое количество РХ высокой степени частоты очень сильно выросло, что отвечает потребностям быстрорастущего рынка.

Многие физические свойства индивидуальных изомеров ксилола близки между собой, например, температуры кипения, что очень затрудняет получение изомеров ксилола высокой степени чистоты обычной перегонкой. В настоящее время имеется два промышленных метода разделения и получения РХ высокой степени чистоты: адсорбция и кристаллизация. Третий метод, комбинированный процесс адсорбции/кристаллизации, был успешно продемонстрирован при испытании в промышленных условиях в 1990-х годах.

До применения в промышленном масштабе процесса РХ адсорбции низкотемпературная фракционная кристаллизация была первым и единственным промышленным методом выделения РХ из смеси С8 ароматических веществ. Совокупность ксилолов является системой, чрезвычайно удобной для кристаллизации из расплава. Температуры плавления РХ, MX, ОХ и ЕВ равны 13.3°С, -47.9°С, -25.2°С и -95.0°С соответственно, и система не образует твердых растворов выше эвтектической точки. Следовательно, кристаллы представляют собой практически чистый РХ. Разработано несколько промышленных способов кристаллизации для выделения РХ из смеси изомеров. Обычно кристаллический РХ получают в одну или две стадии кристаллизации, с регенерацией РХ около 60-65% за проход. На практике в промышленности кристаллизацию РХ проводят при температуре чуть выше эвтектической точки, от около -50°С до около -70°С для исходной равновесной смеси ксилолов. Равновесие РХ в жидкой смеси С8 ароматических изомеров (маточный раствор) ограничивает эффективность процесса кристаллизации. Кристаллы твердого РХ обычно отделяют от маточного раствора фильтрованием или центрифугированием.

Для получения РХ из исходной равновесной смеси ксилолов маточный раствор отделяют от твердого РХ при низкой температуре. Следовательно, маточный раствор из процесса обладает значительной холодопроизводительностью вследствие его низкой температуры и высокой скорости тока. Настоящее изобретение относится к эффективному теплообмену с использованием маточного раствора в этом процессе низкотемпературной кристаллизации.

С учетом вышеуказанного способы теплообмена с использованием маточного раствора в этом процессе низкотемпературной кристаллизации для получения РХ могли бы дать значительные преимущества. Такие способы позволили бы проводить процессы кристаллизации с большей эффективностью.

Раскрытие изобретения

Согласно различным вариантам в изобретении раскрываются способы теплообмена с использованием маточного раствора в процессе кристаллизации пара-ксилола. Эти способы включают: 1) предоставление кристаллизатора или теплообменника для осуществления теплообмена с использованием низкотемпературного маточного раствора; 2) предоставление второго теплообменника для осуществления теплообмена с использованием маточного раствора с промежуточной температурой; 3) предоставление третьего теплообменника для осуществления теплообмена с использованием маточного раствора с более высокой температурой. Поток поступающего материала представляет собой среду по другую сторону теплообменников/кристаллизаторов, которая несет тепло, и поток поступающего материала охлаждается маточным раствором. В качестве возможного варианта можно иметь четвертый теплообменник для потока поступающего материала между первым кристаллизатором/теплообменником и вторым теплообменником, чтобы дополнительно оптимизировать теплообмен.

Выше в общих чертах представлены признаки настоящей заявки для того, чтобы легче было понять последующее подробное описание. Другие признаки и преимущества настоящей заявки будут описаны ниже, они составляют содержание Формулы изобретения.

Описание фигур

Для полного понимания настоящего изобретения, и его преимуществ, ниже приводится описание в сочетании с сопровождающими рисунками, которые описывают конкретные варианты изобретения, где:

на Фиг.1 показана типичная система теплообмена с использованием маточного раствора и

на Фиг.2 показана типичная система теплообмена с использованием маточного раствора с необязательным четвертым теплообменником между первым кристаллизатором и вторым теплообменником.

Осуществление изобретения

В нижеприведенном описании представлены некоторые данные, такие как конкретные количества и температура, с тем, чтобы обеспечить глубокое понимание настоящего изобретения, раскрываемого в данной заявке. Однако специалистам в данной области техники ясно, что настоящее изобретение можно применять на практике без таких конкретных данных (подробностей). Во многих случаях подробности, относящиеся к таким аспектам и т.п., не приводятся, поскольку такие подробности не являются необходимыми для полного понимания настоящего изобретения и находятся в компетенции среднего специалиста в релевантной области техники.

В процессе кристаллизации РХ основную энергию потребляют компрессоры холодильных установок, которые применяются для получения низкотемпературного хладагента для охлаждения до нужной температуры потоков поступающего материала. Желательно минимизировать холодопроизводительность за счет теплообмена между различными потоками в кристаллизационной установке перед их выпуском.

В процессе кристаллизации РХ с подачей исходной равновесной смеси ксилолов самая низкая температура ограничивается эвтектической точкой, которая находится от около -50°C до около -70°C. Маточный раствор перед выпуском находится при этой температуре перед выгрузкой. Поскольку исходная равновесная смесь ксилолов содержит только около 20% РХ, количество маточного раствора значительно. Следовательно, значительна полезная холодопроизводительность низкотемпературного маточного раствора. Оптимальный теплообмен с использованием маточного раствора повышает энергетическую эффективность процесса.

Один вариант изобретения относится к способу теплообмена с использованием маточного раствора в процессе кристаллизации РХ, причем этот способ включает подачу потока поступающего материала в РХ кристаллизационную установку; предоставление первого кристаллизатора или теплообменника для осуществления теплообмена с использованием низкотемпературного маточного раствора; предоставление второго теплообменника для осуществления теплообмена с использованием маточного раствора с промежуточной температурой; предоставление третьего теплообменника для осуществления теплообмена с использованием маточного раствора с более высокой температурой; при этом поток поступающего в РХ кристаллизационную установку материала охлаждается в процессе теплообмена с маточной жидкостью.

Кристаллизаторы или кристаллизационные установки включают вертикальный сосуд, кристаллизатор с очищаемой поверхностью и промывочные колонны. В кристаллизаторах образуется суспензия кристаллов пара-ксилола высокой степени чистоты в маточном растворе. Эта суспензия подается на промывочную колонну, где кристаллы отделяются от маточного раствора и образуют расплав конечного продукта.

Согласно некоторым вариантам изобретения температура низкотемпературного маточного раствора составляет от -50°С до -70°С. Согласно другим вариантам изобретения кристаллизатор представляет собой кристаллизатор с червячной передачей, кристаллизатор с очищаемой поверхностью или часть кристаллизатора на основном участке кристаллизации РХ. Согласно другому варианту изобретения кристаллизатор может представлять собой один кристаллизатор или несколько кристаллизаторов, работающих последовательно или параллельно. Согласно другим вариантам изобретения теплообменник может представлять собой кожухотрубный теплообменник или предпочтительно теплообменник типа ″труба в трубе″.

Другой вариант изобретения относится к способу осуществления теплообмена с использованием маточного раствора в способе кристаллизации РХ путем предоставления первого кристаллизатора или теплообменника для осуществления теплообмена с использованием низкотемпературного маточного раствора; предоставления второго теплообменника для осуществления теплообмена с использованием маточного раствора с промежуточной температурой; предоставления третьего теплообменника для осуществления теплообмена с использованием маточного раствора с более высокой температурой; и предоставления четвертого теплообменника для дополнительного снижения температуры потока поступающего материала; при этом поток поступающего в РХ кристаллизационную установку материала охлаждается в процессе теплообмена с маточной жидкостью. Согласно некоторым вариантам изобретения теплообменник можно применять для охлаждения потока поступающего материала.

В способе, проиллюстрированном на Фиг.1, теплообмен с маточной жидкостью сначала происходит в первом кристаллизаторе или теплообменнике 101. Кристаллизатор может представлять собой кристаллизатор с червячной передачей или кристаллизатор с очищаемой поверхностью или часть или доля кристаллизаторов на участке кристаллизации, показанном на Фиг.1. Также может иметься несколько кристаллизаторов, работающих последовательно или параллельно. Причиной применения кристаллизатора является то, что, когда температура падает ниже температуры замерзания РХ и происходит образование кристаллов РХ, необходимо непрерывно удалять кристаллы, чтобы предотвратить накопление твердого вещества, которое может вызвать засорение оборудования. В примере, проиллюстрированном на Фиг.1, в теплообменнике 101 маточный раствор нагревается от -63°С до -54°С, а поток исходного материала охлаждается с -35°С до -40°С. Маточный раствор из теплообменника 101 дополнительно нагревается во втором теплообменнике 102, охлаждая поток исходного материала. Для минимизации засорения оборудования теплообменник 102 может представлять собой кожухотрубный теплообменник или предпочтительно теплообменник типа ″труба в трубе″. Далее маточный раствор из теплообменника 102 нагревается примерно до 35°С в третьем теплообменнике 103, как проиллюстрировано в примере, перед выгрузкой из процесса кристаллизации РХ. Этот теплый поток готов для переработки в установках, расположенных ниже по потоку, таких как установка для изомеризации ксилолов. Поток исходного материала охлаждают в теплообменнике 103 от 40°С до -17°С, как проиллюстрировано в примере. Таким образом, происходит полный теплообмен с использованием маточного раствора.

Способ, проиллюстрированный на Фиг.2, аналогичен способу, проиллюстрированному на Фиг.1, за исключением того, что между первым кристаллизатором 101 и вторым теплообменником 102 вводится четвертый теплообменник 104. Четвертый теплообменник добавляется с целью утилизировать охлаждающий агент с более высокой температурой для более эффективного использования теплообмена с маточным раствором. Переход от низкотемпературного охлаждающего агента с более низкой температкрой к охлаждающему агенту с более высокой температурой означает падение общей мощности холодильной установки. Это иллюстрируется на примере охлаждающего агента (источника энергии) с более высокой температурой в четвертом теплообменнике 104 для охлаждения потока исходных материалов до температуры чуть выше точки замерзания; следовательно, процесс в первом кристаллизаторе 101 оптимизируется за счет отнятия тепла маточным раствором. Охлаждающий агент для теплообменника 104 может представлять собой охладитель, поступающий из холодильной установки, или другой подходящий агент.

Из вышеприведенного описания специалист в данной области техники может легко установить существенные признаки настоящей заявки и может, не отступая от ее сущности и объема, сделать различные изменения и модификации для того, чтобы приспособить настоящую заявку для различного применения и разных условий. Предполагается, что описанные выше варианты изобретения даны только в качестве иллюстрации и что их не следует рассматривать как ограничивающие объем изобретения, который определяется нижеприведенной Формулой изобретения.

1. Способ осуществления теплообмена с использованием маточного раствора в способе кристаллизации пара-ксилола (РХ), включающий:подачу потока поступающего материала и потока маточного раствора в РХ кристаллизационную установку;где РХ кристаллизационная установка содержит первый теплообменник для осуществления теплообмена через стенку между потоком маточного раствора и потоком поступающего материала и кристаллизатор для кристаллизации РХ из потока поступающего материла, при этом поток маточного раствора охлаждается до температуры -50°С;предоставление второго теплообменника, который охлаждает поток поступающего материала до его поступления в РХ кристаллизационную установку для охлаждения потока поступающего материала вторым низкотемпературным источником энергии от охлаждающего агента; ипредоставление третьего теплообменника для осуществления теплообмена через стенку между потоком маточного раствора и потоком поступающего материала до того, как поток поступающего материала входит во второй теплообменник.

2. Способ по п. 1, в котором температура указанного потока маточного раствора составляет от -50°С до -70°С.

3. Способ по п. 1, в котором указанный первый теплообменник представляет собой кристаллизатор с червячной передачей, кристаллизатор с очищаемой поверхностью или часть кристаллизатора на основном участке кристаллизации РХ.

4. Способ по п. 1, в котором указанный первый теплообменник включает множество кристаллизаторов, работающих последовательно.

5. Способ по п. 1, в котором указанный первый теплообменник включает множество кристаллизаторов, работающих параллельно.

6. Способ по п. 1, в котором указанный второй теплообменник представляет собой кожухотрубный теплообменник.

7. Способ по п. 1, в котором указанный второй теплообменник представляет собой теплообменник типа "труба в трубе".