Извлечение сжиженного природного газа из синтез-газа с использованием смешанного хладагента

Изобретение относится к способам и устройству для извлечения потока сжиженного природного газа (СПГ) из потока углеводородсодержащего исходного газа с использованием единственного замкнутого цикла со смешанным хладагентом. В заявленном способе охлаждают исходный поток газа. Затем разделяют его в первой дистилляционной колонне с образованием первого метан-обогащенного нижнего потока и первого метан-обедненного верхнего потока. Далее фракционируют первый метан-обогащенный поток во второй дистилляционной колонне и образованием второго метан-обогащенного нижнего потока и второго метан-обедненного верхнего поток. Затем извлекают второй метан-обогащенный нижний поток. Обеспечивается эффективное извлечение метана из синтез-газа и других углеводородсодержащих газов несмотря на присутствие монооксида углерода и водорода в этих газах. 3 н. и 26 з.п. ф-лы, 1 ил., 1 табл.

Реферат

1. Область техники, к которой относится изобретение

Настоящее изобретение, в общем, касается способов и систем для извлечения сжиженного природного газа ("СПГ") из углеводородсодержащего газа. Более конкретно, настоящее изобретение, в общем, касается способов и систем для извлечения СПГ из синтез-газа с использованием единственного замкнутого цикла со смешанным хладагентом.

2. Описание предшествующего уровня техники

Синтез-газ, который также известен как "сингаз", является обычным побочным продуктом, образующимся во время парового риформинга природного газа или углеводородов, газификации угля и газификации отходов в энергию. Синтез-газ обычно содержит различные количества монооксида углерода и водорода и, в некоторых случаях, может также содержать заметные количества метана. Вследствие коммерческой стоимости метана может быть желательно в некоторых случаях удалять часть метана из синтез-газа. Однако присутствие монооксида углерода и водорода в этих газах может сильно снижать эффективности обычных способов извлечения, так как эти способы обычно неспособны полностью конденсировать и отделять монооксид углерода и водород от метана при температурах извлечения, обычно применяемых во время этих различных способов. Таким образом, извлеченный метан может быть загрязнен высокими уровнями остаточного монооксида углерода и/или водорода. Следовательно, присутствие монооксида углерода и водорода в синтез-газе и других углеводородсодержащих газах может отрицательно влиять на извлечение метана из этих газов.

Поэтому существует потребность в способах и системах, которые могут эффективно извлекать метан из синтез-газа и других углеводородсодержащих газов несмотря на присутствие монооксида углерода и водорода в этих газах.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Один или более вариантов осуществления, описанных здесь, касаются способа извлечения сжиженного метанового газа из углеводородсодержащего газа. Данные способы содержат: (а) охлаждение и, по меньшей мере, частичную конденсацию углеводородсодержащего газа с обеспечением охлажденного исходного потока: (b) отделение, по меньшей мере, части охлажденного исходного потока в первой дистилляционной колонне с образованием первого метан-обогащенного нижнего потока и первого метан-обедненного верхнего потока; (с) фракционирование, по меньшей мере, части первого метан-обогащенного нижнего потока во второй дистилляционной колонне с образованием второго метан-обогащенного нижнего потока и второго метан-обедненного верхнего потока; и (d) извлечение, по меньшей мере, части второго метан-обогащенного потока с получением СПГ-обогащенного потока.

Один или более описанных здесь вариантов осуществления касаются способа извлечения сжиженного метанового газа из углеводородсодержащего газа. Указанный способ содержит: (а) охлаждение и, по меньшей мере, частичную конденсацию углеводородсодержащего газа с обеспечением охлажденного потока сырья; (b) разделение, по меньшей мере, части охлажденного потока сырья в первой дистилляционной колонне с образованием первого жидкого метан-обогащенного потока и первого газового метан-обедненного потока; (с) фракционирование, по меньшей мере, части первого жидкого метан-обогащенного потока во второй дистилляционной колонне с образованием второго жидкого метан-обогащенного потока и второго газового метан-обедненного потока; и (d) охлаждение, по меньшей мере, части второго жидкого метан-обогащенного потока с получением СПГ-обогащенного жидкого потока.

Один или более описанных здесь вариантов осуществления касаются устройства для извлечения сжиженного метанового газа из углеводородсодержащего газа. Указанное устройство содержит: первый теплообменник, имеющий расположенный в нем первый охлаждающий проход, где первый охлаждающий проход организован так, чтобы охлаждать углеводородсодержащий газ в охлажденный углеводородсодержащий газ; парожидкостный сепаратор в сообщении по текучей среде с первым охлаждающим проходом, где указанный парожидкостный сепаратор организован так, чтобы разделять охлажденный углеводородсодержащий газ на первый верхний метан-обедненный поток и первый нижний метан-обогащенный поток; первую дистилляционную колонну в сообщении по текучей среде с данным парожидкостным сепаратором, где первая дистилляционная колонна содержит первый впуск жидкости для приема первого метан-обогащенного нижнего потока и первый впуск пара для приема первого метан-обедненного верхнего потока, где первая дистилляционная колонна организована так, чтобы разделять первый метан-обогащенный нижний поток и первый метан-обедненный верхний поток на второй метан-обогащенный нижний поток и второй метан-обедненный верхний поток; вторую дистилляционную колонну в сообщении по текучей среде с первой дистилляционной колонной, где вторая дистилляционная колонна содержит второй впуск жидкости для приема второго метан-обогащенного нижнего потока и второй впуск газа для приема второго метан-обедненного верхнего потока, где вторая дистилляционная колонна организована так, чтобы разделять второй метан-обогащенный нижний поток и второй метан-обедненный верхний поток на третий метан-обогащенный нижний поток и третий метан-обедненный верхний поток; второй охлаждающий проход, расположенный внутри первого теплообменника в сообщении по текучей среде со второй дистилляционной колонной, где второй охлаждающий проход организован так, чтобы охлаждать третий метан-обогащенный нижний поток в СПГ-обогащенный жидкий поток; и единственный замкнутый цикл со смешанным хладагентом, по меньшей мере, частично расположенный внутри первого теплообменника. Указанный единственный замкнутый цикл со смешанным хладагентом содержит компрессор хладагента, задающий всасывающий впуск для приема потока смешанного хладагента и разгрузочный выпуск для выпуска потока сжатого смешанного хладагента; первый охлаждающий проход хладагента в сообщении по текучей среде с разгрузочным выпуском компрессора хладагента, где первый охлаждающий проход хладагента организован так, чтобы охлаждать сжатый поток смешанного хладагента; устройство расширения хладагента в сообщении по текучей среде с первым охлаждающим проходом хладагента, где указанное устройство расширения хладагента организовано так, чтобы расширять охлажденный поток смешанного хладагента и вызывать охлаждение; и первый нагревающий проход хладагента в сообщении по текучей среде с устройством расширения хладагента и всасывающим впуском компрессора хладагента, где первый нагревающий проход хладагента организован так, чтобы нагревать расширенный поток смешанного хладагента путем косвенного теплообмена.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Варианты осуществления настоящего изобретения описываются здесь со ссылкой на следующие изображающие фигуры, где:

Фиг. 1 представляет схематичное изображение устройства извлечения СПГ, организованного согласно одному варианту осуществления настоящего изобретения, в частности изображающее применение единственной замкнутой системы со смешанным хладагентом для извлечения метана из исходного газового потока.

ПОДРОБНОЕ ОПИСАНИЕ

Следующее подробное описание вариантов осуществления данного изобретения ссылается на сопровождающий чертеж. Варианты осуществления предназначены описывать аспекты изобретения с достаточными подробностями, чтобы позволить специалистам в данной области техники выполнить на практике указанное изобретение. Могут быть использованы другие варианты осуществления, и могут быть сделаны изменения без отклонения от объема формулы изобретения. Следовательно, следующее подробное описание не следует понимать в ограничивающем смысле. Объем настоящего изобретения задается только приложенной формулой изобретения вместе с полным объемом эквивалентов, на которые дает право формула изобретения.

Настоящее изобретение, в общем, касается способов и систем для разделения углеводородсодержащего газа на поток СПГ и поток побочных продуктов, содержащий водород и монооксид углерода. Как описывается ниже, данные способы и системы могут применять охлаждающую систему для извлечения, по меньшей мере, части метана из углеводородсодержащих газов. Хотя Фиг. 1 изображает эту охлаждающую систему, содержащую единственный замкнутый цикл со смешанным хладагентом, специалист в данной области техники будет понимать, что другая охлаждающая система может быть использована в способе и системе, описанных ниже. Например, охлаждающая система может содержать единственный поток смешанного хладагента в замкнутом цикле охлаждения, двойной цикл со смешанным хладагентом или каскадный цикл охлаждения. Такие охлаждающие системы описаны в U.S. 3763658, U.S. 5669234, U.S. 6016665, U.S. 6119479, U.S. 6289692 и U.S. 6308531, содержания которых включены сюда посредством ссылки во всей их полноте. Кроме того, в различных вариантах осуществления описанные здесь способы и системы не используют петлю азотного хладагента, что отличается от раскрытых охлаждающих систем из-за конфигураций, дополнительно описанных ниже.

Возвращаясь к Фиг. 1, обеспечивается схематичное изображение устройства 10 извлечения СПГ, организованного согласно одному или нескольким вариантам осуществления настоящего изобретения. Устройство 10 извлечения СПГ может работать, удаляя или извлекая существенную часть всего количества метана во входящем углеводородсодержащем газовом потоке путем охлаждения газа в единственном замкнутом охлаждающем цикле 12 и отделения получаемых конденсированных жидкостей в зоне 14 отделения СПГ. Дополнительные детали, касающиеся конфигурации и работы устройства 10 извлечения СПГ согласно различным вариантам осуществления настоящего изобретения, описаны ниже со ссылкой на Фиг. 1.

Как показано на Фиг. 1, исходный поток углеводородсодержащего газа может сначала вводиться в устройство 10 извлечения СПГ через трубопровод 110. Углеводородсодержащий газ может представлять собой любой подходящий углеводородсодержащий текучий поток, такой как, например, поток природного газа, поток синтез-газа, поток крекингового газа или их комбинации. Углеводородсодержащий газовый поток в трубопроводе 110 может происходить из разных источников газа (не показано), включая нефтедобывающую скважину; нефтеперерабатывающую установку, такую как реактор каталитического крекинга с псевдоожиженным слоем (FCC) или установку коксования нефти; или установку переработки тяжелой нефти, такую как установка для переработки нефтеносных песков, но не ограничиваясь этим. В определенных вариантах осуществления углеводородсодержащий газ в трубопроводе 110 может содержать синтез-газ или состоять из него.

В зависимости от его источника углеводородсодержащий газ может содержать различные количества метана, водорода и монооксида углерода. Например, углеводородсодержащий газ может содержать по меньшей мере приблизительно 1, 5, 10, 15 или 25 и/или не больше чем приблизительно 80, 70, 60, 50 или 40 мольных процентов метана. Более конкретно, углеводородсодержащий газ может содержать в интервале приблизительно от 1 до 80, от 5 до 70, от 10 до 60, от 15 до 50, от 15 до 50 или от 25 до 40 мольных процентов метана. Следует заметить, что все мольные проценты основаны на полном числе молей углеводородсодержащего газа.

Дополнительно или альтернативно, углеводородсодержащий газ может содержать по меньшей мере приблизительно 15, 25 или 40 и/или не больше чем приблизительно 95, 90 или 80 мольных процентов монооксида углерода. Более конкретно, углеводородсодержащий газ может содержать в интервале приблизительно от 15 до 95, от 25 до 90 или от 40 до 80 мольных процентов монооксида углерода. Кроме того, в определенных вариантах осуществления углеводородсодержащий газ может содержать по меньшей мере 25, 40 или 50 и/или не больше чем приблизительно 99, 90 или 75 мольных процентов водорода. Более конкретно, углеводородсодержащий газ может содержать в интервале приблизительно от 25 до 99, от 40 до 90 или от 50 до 70 мольных процентов водорода.

Как будет понятно специалистам в данной области техники, содержания водорода и монооксида углерода в углеводородсодержащем газе могут меняться в зависимости от его источника. Таким образом, в различных вариантах осуществления углеводородсодержащий газ может иметь мольное отношение водорода к монооксиду углерода, по меньшей мере, 1:1, 1,5:1 или 2:1 и/или не больше чем 10:1, 5:1 или 2,5:1. Более конкретно, углеводородсодержащий газ может иметь мольное отношение водорода к монооксиду углерода в интервале от 1:1 до 10:1, от 1,5:1 до 5:1 или от 2:1 до 2,5:1.

Кроме того, углеводородсодержащий газ может содержать некоторое количество С25 компонентов, которые включают их парафиновые и олефиновые изомеры. Например, углеводородсодержащий газ может содержать менее чем 15, 10, 5 или 2 мольных процента С25 компонентов.

Как показано на Фиг. 1, углеводородсодержащий газ в трубопроводе 110 может сначала направляться в зону 16 предварительной обработки, где один или несколько нежелательных компонентов могут удаляться из газа перед охлаждением. В одном или нескольких вариантах осуществления зона 16 предварительной обработки может включать в себя один или несколько резервуаров для парожидкостного разделения (не показаны) для удаления жидкой воды или углеводородных компонентов из исходного газа. Необязательно, зона 16 предварительной обработки может включать в себя одну или несколько зон удаления кислых газов (не показано), таких как, например, аминовая установка для удаления диоксида углерода или серосодержащих соединений из газового потока в трубопроводе 110.

Поток обработанного газа, покидающий зону 16 предварительной обработки по трубопроводу 122, может затем направляться в устройство 18 дегидратации, где вся остающаяся вода может удаляться из потока исходного газа. Устройство 18 дегидратации может использовать любую известную систему удаления воды, такую как, например, слои молекулярного сита. Высушенный поток газа в трубопроводе 114 может иметь температуру по меньшей мере 5, 10 или 15°С и/или не больше чем 100, 75 или 40°С. В частности, поток газа в трубопроводе 114 может иметь температуру в интервале от 5 до 100°С, от 10 до 75°С или от 15 до 40°С. Дополнительно или альтернативно, поток газа в трубопроводе 114 может иметь давление по меньшей мере 1,5, 2,5, 3,5 или 4,5 и/или 9, 8, 7 или 6 МПа. В частности, поток газа в трубопроводе 114 может иметь давление в интервале от 1,5 до 9, от 2,5 до 8, от 3,5 до 7 или от 4,5 до 6 МПа.

Как показано на Фиг. 1, углеводородсодержащий исходный поток в трубопроводе 114 может вводиться в первый охлаждающий проход 22 первого теплообменника 20. Первый теплообменник 22 может быть любым теплообменником или рядом теплообменников, способным охлаждать и, по меньшей мере, частично конденсировать исходный газовый поток в трубопроводе 114 путем косвенного теплообмена с одним или несколькими охлаждающими потоками. В одном или нескольких вариантах осуществления первый теплообменник 20 может быть паяным алюминиевым теплообменником, содержащим множество охлаждающих и нагревающих проходов (например, сердцевин), расположенных в нем для облегчения косвенного теплообмена между одним или несколькими потоками способа и одним или несколькими потоками хладагента. Хотя на Фиг. 1 он изображается содержащим единственную сердцевину или "оболочку", следует понимать, что первый теплообменник 20 может, в некоторых вариантах осуществления, содержать две или больше сердцевин или оболочек, возможно охватываемых "холодным кожухом", чтобы минимизировать рост тепла из окружающей среды.

Углеводородсодержащий исходный газовый поток, проходящий через охлаждающий проход 22 первого теплообменника 20, может охлаждаться и, по меньшей мере, частично конденсироваться путем косвенного теплообмена с газовыми потоками хладагента и/или остатка в соответствующих проходах 24 и 26, которые описаны ниже более подробно. Во время охлаждения существенная часть метановых компонентов в исходном газовом потоке может конденсироваться из газовой фазы, обеспечивая охлажденный двухфазный газовый поток в трубопроводе 116. В одном или нескольких вариантах осуществления по меньшей мере 50, 60, 70, 80 или 90 мольных процентов от всего количества метана, вводимого в первый теплообменник 20 через трубопровод 114, может конденсироваться внутри охлаждающего прохода 22.

Охлажденный газовый поток в трубопроводе 116 может иметь температуру по меньшей мере -30, -40, -50 или -60°С и/или не больше чем -130, -120, -110 или -100°С. В частности, охлажденный газовый поток в трубопроводе 116 может иметь температуру в интервале приблизительно от -30 до -130°С, от -40 до -120°С, от -50 до -110°С или от -60 до -100°С. В определенных вариантах осуществления охлажденный газовый поток в трубопроводе 116 может иметь температуру приблизительно -66°С. Дополнительно или альтернативно, охлажденный газовый поток в трубопроводе 116 может иметь давление по меньшей мере 1,5, 2,5, 3,5 или 4,5 и/или 9, 8, 7 или 6 МПа. В частности, газовый поток в трубопроводе 114 может иметь давление в интервале от 1,5 до 9, от 2,5 до 8, от 3,5 до 7 или от 4,5 до 6 МПа.

Как показано на Фиг. 1, охлажденный газовый поток в трубопроводе 116 может переноситься в по меньшей мере один ребойлер 28, возможно выступая в качестве тепловой среды для колонны 30 ректификации метана. Как описано ниже, ребойлер 28 может использоваться для нагрева и, по меньшей мере, частичного испарения жидкого потока, забираемого из колонны 30 ректификации метана по трубопроводу 118. Ребойлер 28 может нагревать жидкий поток в трубопроводе 118 путем косвенного теплообмена с нагревающим текучим потоком, таким как, например, охлажденный газовый поток в трубопроводе 116. Хотя обычно изображается включение единственного ребойлера 28, следует понимать, что любое подходящее число ребойлеров, способных забирать потоки на одной или разных стадиях массопереноса внутри дистилляционной колонны 30, может быть использовано, чтобы поддерживать в ней желаемую температуру и/или профиль состава.

Находясь в ребойлере 28, охлажденный газовый поток из трубопровода 116 может дополнительно охлаждаться с помощью жидкого потока из трубопровода 118. Например, при нахождении в ребойлере 28 температура охлажденного газового потока из трубопровода 116 может снижаться по меньшей мере на 20, 30, 40 или 50°С и/или не больше чем приблизительно 100, 80, 70 или 60°С. В частности, при нахождении в ребойлере 28 температура охлажденного газового поток из трубопровода 116 может снижаться на величину в интервале от 20 до 100°С, от 30 до 80°С, от 40 до 70°С или от 50 до 60°С.

После выхода из ребойлера 28 охлажденный газовый поток в трубопроводе 120 может иметь давление по меньшей мере 1,5, 2,5, 3,5 или 4,5 и/или 9, 8, 7 или 6 МПа. В частности, газовый поток в трубопроводе 120 может иметь давление в интервале от 1,5 до 9, от 2,5 до 8, от 3,5 до 7 или от 4,5 до 6 МПа. Следует отметить, что перепад давления может обычно относится к неэффективности, связанной с трубами и теплообменом.

Возвращаясь опять к Фиг. 1, по меньшей мере, часть охлажденного газового потока в трубопроводе 120 может направляться в охлаждающий проход 32, расположенный внутри первого теплообменника 20, где указанный газовый поток может охлаждаться и, по меньшей мере, частично конденсироваться путем косвенного теплообмена с потоками хладагента и/или остаточного газа в соответствующих проходах 24 и 26, которые описаны ниже более подробно. Во время охлаждения существенная часть метановых компонентов в охлажденном газовом потоке из трубопровода 120 может конденсироваться из газовой фазы, обеспечивая дополнительно охлажденный, двухфазный газовый поток в трубопроводе 122. В одном или нескольких вариантах осуществления по меньшей мере 50, 60, 70, 80 или 90 мольных процентов от всего количества метана, вводимого в первый теплообменник 20 по трубопроводу 120, который находится газообразной форме, может конденсироваться внутри охлаждающего прохода 32.

Охлажденный газовый поток в трубопроводе 122 может иметь температуру по меньшей мере -120, -130, -140 или -145°С и/или не больше чем приблизительно -200, -190, -180 или -165°С. В частности, охлажденный газовый поток в трубопроводе 122 может иметь температуру в интервале приблизительно от -120 до -200°С, от -130 до -190°С, от -140 до -180°С или от -145 до -165°С. В определенных вариантах осуществления охлажденный газовый поток в трубопроводе 122 может иметь температуру приблизительно -156°С. Дополнительно или альтернативно, охлажденный газовый поток в трубопроводе 122 может иметь давление по меньшей мере 1,5, 2,5, 3,5 или 4,5 и/или 9, 8, 7 или 6 МПа. В частности, газовый поток в трубопроводе 122 может иметь давление в интервале от 1,5 до 9, от 2,5 до 8, от 3,5 до 7 или от 4,5 до 6 МПа.

Как показано на Фиг. 1, охлажденный, предпочтительно двухфазный поток в трубопроводе 122 может вводиться в разделяющий резервуар 34, где газовая и жидкая части исходного газового потока могут разделяться на начальный метан-обогащенный нижний поток, выходящий по трубопроводу 124, и начальный метан-обедненный верхний поток, выходящий по трубопроводу 126. Применяемые здесь выражения "метан-обедненный" и "метан-обогащенный" относятся к содержанию метана в отдельных компонентах относительно содержания метана в исходном компоненте, из которого получены разделенные компоненты. Таким образом, метан-обогащенный компонент содержит больший мольный процент метана, чем компонент, из которого он получен, тогда как метан-обедненный компонент содержит меньший мольный процент метана, чем компонент, из которого он получен. В настоящем случае, начальный метан-обогащенный нижний поток содержит больший мольный процент метана по сравнению с потоком из трубопровода 122, тогда как начальный метан-обедненный верхний поток содержит меньший мольный процент метана по сравнению с потоком из трубопровода 122. Количества начального метан-обогащенного нижнего потока и начального метан-обедненного верхнего потока могут меняться в зависимости от содержаний углеводородсодержащего газа и рабочих условий разделяющего резервуара 34.

Разделяющий резервуар 34 может быть любым подходящим парожидкостным разделяющим резервуаром и может иметь любое число действительных или теоретических стадий разделения. В одном или нескольких вариантах осуществления разделяющий резервуар 34 может содержать единственную ступень разделения, тогда как в других вариантах осуществления разделяющий резервуар 34 может включать в себя от 2 до 10, от 4 до 20 или от 6 до 30 действительных или теоретических ступеней разделения. Когда разделяющий резервуар 34 находится в многоступенчатом разделяющем резервуаре, любой подходящий тип заполнения колонны, такого как туманоуловители, сетчатые подушки, парожидкостные контактные тарелки, произвольная насадка и/или структурированная насадка, может быть использован для облегчения тепло- и массопереноса между газовым и жидким потоками. В некоторых вариантах осуществления, когда разделяющий резервуар 34 представляет собой одноступенчатый разделяющий резервуар, может применяться малое заполнение колонны или не применяться совсем.

В различных вариантах осуществления разделяющий резервуар 34 может работать при давлении по меньшей мере 1,5, 2,5, 3,5 или 4,5 и/или 9, 8, 7 или 6 МПа. В частности, разделяющий резервуар 34 может работать при давлении в интервале от 1,5 до 9, от 2,5 до 8, от 3,5 до 7 или от 4,5 до 6 МПа. Начальный метан-обогащенный нижний поток в трубопроводе 124 и/или начальный метан-обедненный верхний поток в трубопроводе 126 может иметь температуру по меньшей мере -120, -130, -140 или -145°С и/или не больше чем приблизительно -200, -190, -180 или -165°С. В частности, начальный метан-обогащенный нижний поток в трубопроводе 124 и/или начальный метан-обедненный верхний поток в трубопроводе 126 может иметь температуру в интервале приблизительно от -120 до -200°С, от -130 до -190°С, от -140 до -180°С или от -145 до -165°С.

Начальный метан-обогащенный нижний поток в трубопроводе 124 может быть в виде жидкости и может содержать большую долю метана. Например, начальный метан-обогащенный нижний поток в трубопроводе 124 может содержать по меньшей мере 10, 25, 40 или 50 и/или не больше чем 95, 85, 75 или 70 мольных процентов метана. В частности, начальный метан-обогащенный нижний поток в трубопроводе 124 может содержать метан в интервале приблизительно от 10 до 95, от 25 до 85, от 40 до 75 или от 50 до 70 мольных процентов. Кроме того, начальный метан-обогащенный нижний поток в трубопроводе 124 может содержать по меньшей мере 50, 60, 70, 80 или 90 процентов метана, исходно присутствующего в потоке из трубопровода 122.

Начальный метан-обогащенный нижний поток в трубопроводе 124 может также содержать остаточные количества водорода и монооксида углерода. Например, начальный метан-обогащенный нижний поток в трубопроводе 124 может содержать меньше чем приблизительно 40, 30, 20 или 10 мольных процентов водорода. Дополнительно или альтернативно, начальный метан-обогащенный нижний поток в трубопроводе 124 может содержать меньше чем приблизительно 60, 50, 45 или 40 мольных процентов монооксида углерода.

Начальный метан-обедненный верхний поток в трубопроводе 126 может быть в виде газа и может содержать большую долю водорода и/или монооксида углерода. Например, начальный метан-обедненный верхний поток в трубопроводе 126 может содержать по меньшей мере 10, 20, 35 или 50 и/или не больше чем приблизительно 95, 90, 85 или 70 мольных процентов водорода. В частности, начальный метан-обедненный верхний поток в трубопроводе 126 может содержать водород в интервале от 10 до 95, от 20 до 90, от 35 до 85 или от 50 до 70 мольных процентов. Дополнительно или альтернативно, начальный метан-обедненный верхний поток в трубопроводе 126 может содержать по меньшей мере 5, 10, 15 или 20 и/или не больше чем приблизительно 80, 60, 50 или 40 мольных процентов монооксида углерода. В частности, начальный метан-обедненный верхний поток в трубопроводе 126 может содержать монооксид углерода в интервале приблизительно от 5 до 80, от 10 до 60, от 15 до 50 или от 20 до 40 мольных процентов. Кроме того, начальный метан-обедненный верхний поток в трубопроводе 126 может содержать небольшие количества метана. Например, начальный метан-обедненный верхний поток в трубопроводе 126 может содержать меньше чем приблизительно 20, 15, 10 или 5 мольных процентов метана.

Как изображено на Фиг. 1, начальный метан-обогащенный нижний поток в трубопроводе 124 может проходить через расширительное устройство 36, в котором давление жидкости может снижаться, чтобы быстро испарять или испарять, по меньшей мере, ее часть. Расширительное устройство 36 может быть любым подходящим расширительным устройством, таким как, например, вентиль Джоуля-Джонса или диафрагма или гидравлическая турбина. Хотя на Фиг. 1 изображено, что имеется единственное устройство 36, следует понимать, что любое подходящее число расширительных устройств может быть использовано. В определенных вариантах осуществления расширение может представлять собой, по существу, изоэнтальпийное расширение. Применяемый здесь термин "по существу, изоэнтальпийное" относится к этапу расширения или быстрого испарения, проходящему так, что меньше чем 1 процент всей работы, генерированной во время расширения, переносится из текучей среды в окружающее пространство. Это является противоположностью "изоэнтропийному" расширению, при котором большая часть или, по существу, вся работа, генерированная во время расширения, переносится в окружающее пространство.

В результате расширения температура быстро испаренного или расширенного потока текучей среды в трубопроводе 128 может быть по меньшей мере на 2, 5 или 10°С и/или не больше чем на 50, 40 или 30°С ниже, чем температура потока в трубопроводе 124. Кроме того, давление быстро испаренного или расширенного потока текучей среды в трубопроводе 128 может быть по меньшей мере на 0,1, 0,2 или 0,3 и/или не больше чем на 1,5, 1 или 0,6 МПа ниже, чем давление потока в трубопроводе 124.

Как показано на Фиг. 1, расширенный двухфазный поток в трубопроводе 128 может вводиться в первый впуск текучей среды 38 дистилляционной колонны 40. Применяемые здесь термины "первый", "второй", "третий" и подобные используются, чтобы описать различные элементы, и такие элементы не следует ограничивать этими терминами. Эти термины используются только, чтобы различать один элемент от другого, и не обязательно предполагают конкретный порядок или даже конкретный элемент. Например, один элемент может обозначаться как "первый" элемент в описании и "второй элемент" в формуле изобретения без отклонения от объема настоящего изобретения. Внутри описания и каждого независимого пункта формулы изобретения поддерживается соответствие, но такая номенклатура не обязательно предназначена быть совместимой между ними.

Дистилляционная колонна 40 может быть любым резервуаром для парожидкостного разделения, способным дополнительно отделять метан от водорода и монооксида углерода. В одном или нескольких вариантах осуществления дистилляционная колонна 40 может быть многоступенчатой дистилляционной колонной, содержащей по меньшей мере 2, 5, 10 или 12 и/или не больше чем 50, 40, 30 или 20 действительных или теоретических ступеней разделения. Когда дистилляционная колонна 40 содержит многоступенчатую колонну, один или несколько типов заполнения колонны могут быть использованы, чтобы облегчать тепло- и/или массоперенос между паровой и жидкой фазами. Примеры подходящих внутренних элементов колонны могут включать в себя парожидкостные контактные тарелки, структурированную насадку, произвольную насадку и любую их комбинацию, но не ограниваются этим.

В различных вариантах осуществления дистилляционная колонна 40 может работать, отделяя по меньшей мере 65, 75, 85, 90 или 99 процентов метана, присутствующего в потоке вводимой в нее текучей среды. Дистилляционная колонна 40 может работать при давлении по меньшей мере приблизительно 1, 1,5, 2 или 2,5 и/или не больше чем приблизительно 5, 4, 3,5 или 3 МПа. В частности, дистилляционная колонна 40 может работать при давлении в интервале от 1 до 5, от 1,5 до 4, от 2 до 3,5 или от 2,5 до 3 МПа. В определенных вариантах осуществления дистилляционная колонна 40 может работать при давлении приблизительно 2,6 МПа.

Температура дистилляционной колонны 40 может меняться в зависимости от состава углеводородсодержащего газа, вводимого в систему. В различных вариантах осуществления верхняя половина дистилляционной колонны 40 может работать при температуре по меньшей мере -125, -150, -160 или -170°С и/или не больше чем приблизительно -215, -200, -190 или -180°С. В частности, верхняя половина дистилляционной колонны 40 может работать при температуре в интервале от -125 до -215°С, от -150 до -200°С, от -160 до -190°С или от -170 до -180°С. В определенных вариантах осуществления верхняя половина дистилляционной колонны 40 может работать при температуре приблизительно -173°С. Кроме того, нижняя половина дистилляционной колонны 40 может работать при температуре по меньшей мере приблизительно -110, -125, -140 или - 150°С и/или не больше чем приблизительно -200, -190, -180 или -160°С. В частности, нижняя половина дистилляционной колонны 40 может работать при температуре в интервале от -110 до -200°С, от -125 до -190°С, от -140 до -180°С или от -150 до -160°С. В определенных вариантах осуществления нижняя половина дистилляционной колонны 40 может работать при температуре приблизительно -158°С. Дополнительная информация относительно работы дистилляционной колонны 40 подробно обсуждается ниже.

Возвращаясь обратно к начальному метан-обедненному верхнему потоку в трубопроводе 126, по меньшей мере, часть этого потока может переноситься в расширительное устройство 42. Как показано на Фиг. 1, поток из трубопровода 126 может расширяться с помощью расширительного устройства 42, обеспечивая быстро испаренный или расширенный газовый поток в трубопроводе 130. В определенных вариантах осуществления указанное расширение может представлять собой, по существу, изоэнтальпийное расширение, и расширительное устройство 42 может быть вентилем Джоуля-Томпсона или диафрагмой. В других вариантах осуществления расширение может быть изоэнтропийным, и расширительное устройство 42 может быть турбодетандером или расширительной турбиной. В различных вариантах осуществления расширение может происходить при температуре в интервале от -110 до -200°С, от -130 до -190°С, от -150 до -180°С или от -160 до -175°С.

В результате расширения температура быстро испаренного или расширенного потока текучей среды в трубопроводе 130 может быть по меньшей мере на 2, 5 или 10°С и/или не больше чем на 50, 40 или 30°С ниже, чем температура потока в трубопроводе 126. Кроме того, давление быстро испаренного или расширенного потока текучей среды в трубопроводе 130 может быть по меньшей мере на 0,1, 0,2 или 0,3 и/или не больше чем на 1,5, 1 или 0,5 МПа ниже, чем давление потока в трубопроводе 126.

Как показано на Фиг. 1, по меньшей мере, часть расширенного потока в трубопроводе 130 может вводиться во второй впуск 44 дистилляционной колонны 40. В определенных вариантах осуществления второй впуск 44 может находиться у более высокой ступени разделения, чем первый впуск 38. Применяемые здесь термины "более высокая ступень разделения" и "более низкая ступень разделения" относятся к действительным, теоретическим, или действительным или теоретическим ступеням тепло- и/или массопереноса, вертикально разнесенным в дистилляционной колонне. В одном или нескольких вариантах осуществления второй впуск 44 текучей среды может находиться в верхней половине, верхней трети или верхней четверти от всего числа ступеней разделения в дистилляционной колонне 40, тогда как первый впуск 38 может находиться в нижней половине, в нижних двух третях или в середине или нижней трети или четверти от всего числа ступеней разделения в дистилляционной колонне 40. Согласно различным вариантам осуществления первый и второй впуски 38, 44 текучей среды могут быть вертикально разнесены один от другого с помощью по меньшей мере 1, 4, 8, 10 или 12 действительных, теоретических, или действительных или теоретических ступеней тепло- и/или массопереноса дистилляционной колонны 40.

Как изображено на Фиг. 1, первый метан-обогащенный нижний поток выходит из дистилляционной колонны 40 по трубопроводу 132, а первый метан-обедненный верхний поток выходит из дистилляционной колонны 40 по трубопроводу 134.

Первый метан-обогащенный нижний поток в трубопроводе 132 может быть в виде жидкости и может содержать значительное количество метана. Например, первый метан-обогащенный нижний поток в трубопроводе 132 может содержать по меньшей мере 10, 25, 40 или 50 и/или не больше чем 95, 85, 75 или 70 мольных процентов метана. В частности, первый метан-обогащенный нижний поток в трубопроводе 132 может содержать метан в интервале от 10 до 95, от 25 до 85, от 40 до 75 или от 50 до 70 мольных процентов.

Кроме того, первый метан-обогащенный нижний поток в трубопроводе 132 может также содержать некоторый остаточный водород и монооксид углерода. Например, первый метан-обогащенный нижний поток в трубопроводе 132 может содержать меньше чем приблизительно 15, 10, 5 или 2 мольных процента водорода. Дополнительно или альтернативно, первый метан-обогащенный нижний поток в трубопроводе 132 может содержать меньше чем приблизительно 60, 50, 45 или 40 мольных процентов монооксида углерода.

Первый метан-обедненный верхний поток в трубопроводе 134 может быть в виде газа и может содержать значительные количества водорода и монооксида углерода. Например, первый метан-обедненный верхний поток в трубопроводе 134 может содержать по меньшей мере приблизительно 25, 40, 60 или 75 и/или не больше чем приблизительно 99, 95, 90 или 85 мольных процентов водорода. В частности, первый метан-обедненный верхний поток в трубопроводе 134 может содержать водород в интервале от 25 до 99, от 40 до 95, от 60 до 90 или от 75 до 85 мольных процентов. Дополнительно или альтернативно, первый метан-обедненный верхний поток в трубопроводе 134 может содержать по меньшей мере 1, 5, 10 или 20 и/или не больше чем приблизительно 75, 60, 50 или 40 мольных процентов монооксида углерода. В частности, первый метан-обедненный верхний поток в трубопроводе 134 может содержать монооксид углерода в интервале от 1 до 75, от 5 до 60, от 10 до 50 или от 20 до 40 мольных процентов.

Кроме того, первый метан-обедненный верхний поток в трубопроводе 134 может также содержать некоторый остаточный метан. Например, первый метан-обедненный верхний поток в трубопроводе 134 может содержать меньше чем приблизительно 10, 5, 1 или 0,5 мольных проце