Система инъекции с емкостным измерением

Иллюстрации

Показать все

Группа изобретений относится к медицинской технике, а именно к средствам инъекции. Система инъекции содержит устройство инъекции, удерживающее шприц и зону цилиндра шприца, емкостной детектор жидкости, емкостный детектор воздействий со стороны пользователя, электрическое поле которого проникает в зону цилиндра шприца, и логическую схему для определения воздействий со стороны пользователя на основании выходного сигнала емкостного детектора воздействий. Во втором варианте выполнения системы емкостной детектор жидкости имеет первый конденсатор, отдельный второй конденсатор и отдельный третий конденсатор, при этом электрическое поле трех конденсаторов проникает в зону цилиндра шприца в первом положении вдоль продольной оси зоны цилиндра шприца. В третьем варианте выполнения системы устройство инъекции включает силовую головку и корпус шприца, который содержит раму, простирающуюся за пределы силовой головки, емкостной детектор жидкости помещен внутри рамы корпуса шприца так, что рама корпуса шприца размещается между емкостным детектором жидкости и шприцем. В четвертом варианте система содержит логическую схему, при этом воздействие со стороны пользователя связано с работой устройства инъекции. Способы эксплуатации обеспечиваются работой соответствующих систем. Использование изобретений позволяет расширить арсенал технических средств инъекции с емкостным измерением. 8 н. и 36 з.п. ф-лы, 16 ил.

Реферат

Перекрестная ссылка на родственные заявки

По настоящей патентной заявке испрашивается приоритет находящейся на рассмотрении предварительной патентной заявки США 61/508734 под названием "INJECTION SYSTEM WITH CAPACITIVE SENSING", поданной 18 июля 2011 г, содержание которой во всей полноте включено в настоящую заявку посредством ссылки.

Область техники, к которой относится настоящее изобретение

Настоящее изобретение относится главным образом к системам инъекции, более конкретно, к детектированию жидкости в шприце, используемом в указанной системе инъекции.

Предшествующий уровень техники

Для проведения различных медицинских процедур требуется введение пациенту одной или нескольких медицинских жидкостей. Например, процедуры получения медицинских изображений часто предусматривают введение пациенту контрастных веществ, возможно, вместе с физиологическим раствором и/или другими жидкостями. Другие медицинские процедуры предусматривают введение пациенту одной или нескольких жидкостей в терапевтических целях. Для применения в этих целях могут использоваться автоматические инжекторы.

Автоматический инжектор обычно содержит так называемую силовую головку. На силовой головке различными способами (например, с возможностью отсоединения; с задней загрузкой, с передней загрузкой, с боковой загрузкой) может быть установлен один или несколько шприцев. Каждый шприц обычно содержит элемент, который может быть определен как плунжер, поршень и т.п. Каждый такой плунжер шприца сконструирован для взаимодействия (например, контакта и/или временного соединения) с соответствующим приводным механизмом плунжера шприца, который помещается в силовой головке, и под действием приводного механизма соответствующий плунжер шприца продвигается в осевом направлении внутри и относительно цилиндра шприца. Один из типичных приводных механизмов плунжера шприца представляет собой толкатель, установленный на резьбовом направляющем или подающем винте. При повороте подающего винта в одном направлении вращения соответствующий толкатель продвигается в одном осевом направлении, а при повороте подающего винта в противоположном направлении вращения соответствующий толкатель продвигается в противоположном осевом направлении.

Краткое изложение сущности изобретения

Каждая из особенностей настоящего изобретения с первой по четвертую воплощена в системе инъекции. Система инъекции содержит устройство инъекции и зону цилиндра шприца. Система инъекции дополнительно содержит емкостной детектор жидкости. Система инъекции способна удерживать шприц таким образом, чтобы цилиндр шприца и зона цилиндра шприца имели одинаковую протяженность. Зона цилиндра шприца дополнительно имеет длину, совпадающую с длиной цилиндра шприца, когда устройство инъекции удерживает шприц. Зона цилиндра шприца дополнительно имеет продольную ось, совпадающую с продольной осью цилиндра шприца, когда устройство инъекции удерживает шприц.

В соответствии с первой особенностью емкостной детектор жидкости размещается внутри устройства инъекции. Электрическое поле емкостного детектора жидкости проникает в зону цилиндра шприца по меньшей мере в первом положении и во втором положении вдоль продольной оси зоны цилиндра шприца. Первое положение отстоит от второго положения на первое расстояние, равное по меньшей мере половине длины зоны цилиндра шприца.

В соответствии со второй особенностью емкостной детектор жидкости размещается внутри устройства инъекции, а электрическое поле емкостного детектора жидкости проникает в зону цилиндра шприца по меньшей мере в первом положении и во втором положении вдоль продольной оси зоны цилиндра шприца. Первое положение отстоит от второго положения на первое расстояние, равное по меньшей мере половине длины зоны цилиндра шприца. Согласно второй особенности емкостной детектор жидкости содержит первый конденсатор. Первый конденсатор имеет первый протяженный электрод и второй протяженный электрод. Электрическое поле первого конденсатора проникает в зону цилиндра шприца по меньшей мере в первом положении и во втором положении.

В соответствии с третьей особенностью емкостной детектор жидкости размещается внутри устройства устройство инъекции. Емкостной детектор жидкости содержит первый конденсатор и второй конденсатор. Электрическое поле первого конденсатора проникает в зону цилиндра шприца в первом положении вдоль продольной оси зоны цилиндра шприца. Электрическое поле второго конденсатора проникает в зону цилиндра шприца в первом положении вдоль продольной оси зоны цилиндра шприца.

В соответствии с четвертой особенностью система инъекции содержит шприц, установленный в устройстве инъекции. Шприц содержит цилиндр. Цилиндр шприца имеет длину вдоль продольной оси. На протяжении цилиндра шприца размещается емкостной детектор жидкости. Емкостной детектор жидкости содержит множество конденсаторов, последовательно размещенных по длине цилиндра шприца. Каждый из множества конденсаторов размещается в отличающемся положении вдоль продольной оси цилиндра шприца. Зона цилиндра шприца имеет длину, совпадающую с длиной цилиндра шприца, и продольную ось, совпадающую с продольной осью цилиндра шприца

К каждой из рассмотренных выше первой, второй, третьей и четвертой особенностей настоящего изобретения применим ряд уточненных и дополнительных признаков. Эти уточненные и дополнительные признаки могут быть реализованы по отдельности или в любом сочетании применительно к каждой из первой, второй, третьей и четвертой особенностей. По существу, каждый из следующих признаков, который будет рассмотрен, может, но необязательно должен использоваться с каким-либо другим признаком или сочетанием признаков согласно каждой из первой, второй, третьей и четвертой особенностей. Следующее далее описание вплоть до начала описания пятой особенности настоящего изобретения применимо к каждой из первой, второй, третьей и четвертой особенностей.

Как было указано, согласно четвертой особенности множество конденсаторов последовательно расположены по длине цилиндра шприца (например, разнесены по длине цилиндра шприца). Кроме того, согласно первой и третьей особенностям множество конденсаторов могут быть последовательно расположены по длине зоны цилиндра шприца. В таких конструкциях с множеством конденсаторов, последовательно расположенных по длине зоны цилиндра шприца, емкостной детектор жидкости может содержать по меньшей мере восемь конденсаторов, последовательно расположенных по длине зоны цилиндра шприца. Каждый из множества конденсаторов может иметь пару электродов, при этом каждый электрод из пары электродов может размещаться таким образом, чтобы вектор, перпендикулярный электроду и пересекающий его, не пересекал какой-либо другой электрод (например, другой электрод из пары электродов и/или какой-либо электрод какого-либо другого конденсатора из множества конденсаторов). В одной из конструкций каждая пара электродов множества конденсаторов может лежать преимущественно в одной плоскости.

В конструкциях с множеством конденсаторов, последовательно расположенных по длине зоны цилиндра шприца, каждый из множества конденсаторов может быть соединен с интегральной схемой. Интегральная схема может быть рассчитана на обеспечение двухрежимного выходного сигнала для каждого из множества конденсаторов. Первый режим двухрежимного выходного сигнала может являться реакцией на присутствие жидкости, а второй режим двухрежимного выходного сигнала может являться реакцией на отсутствие жидкости. В связи с этим конденсаторы могут считаться распознающими присутствие жидкости, отсутствие жидкости (например, распознающими воздух и/или вакуум) или то и другое. В другой конструкции каждый из множества конденсаторов может быть рассчитан на обеспечение аналогового выходного сигнала, который изменяется в зависимости от количества жидкости в электрическом поле конденсатора. Система инъекции может дополнительно содержать логическую схему для определения уровня жидкости, способную определять уровень жидкости в зоне цилиндра шприца по меньшей мере частично на основе выходных сигналов множества конденсаторов.

В одном из вариантов осуществления второй особенности первый и второй протяженные электроды могут размещаться таким образом, что вектор, перпендикулярный первому протяженному электроду и пересекающий его, не пересекает второй протяженный электрод. Первый протяженный электрод может лежать преимущественно в одной плоскости со вторым протяженным электродом. Первый и второй протяженные электроды могут являться протяженными в направлении, параллельном продольной оси зоны цилиндра шприца. Первый конденсатор может быть способен обеспечивать аналоговый выходной сигнал в ответ на присутствие жидкости в зоне цилиндра шприца. На основании аналогового выходного сигнала может определяться объем жидкости в зоне цилиндра шприца. В одном из вариантов осуществления второй особенности также может быть предусмотрена логическая схема для определения уровня жидкости, способная определять уровень жидкости в зоне цилиндра шприца по меньшей мере частично на основании выходного сигнала первого конденсатора.

В одном из вариантов осуществления с первой по четвертую особенностей система инъекции может дополнительно содержать логическую схему для определения воздействий со стороны пользователя, способную определять воздействие со стороны пользователя по меньшей мере частично на основании выходного сигнала емкостного детектора жидкости. По существу, емкостной детектор жидкости может быть способен определять как уровень жидкости в шприце, так и воздействие со стороны пользователя. Таким воздействием со стороны пользователя может являться перемещение пальца пользователя по шприцу, установленному в устройстве инъекции.

Система инъекции может дополнительно содержать емкостный детектор воздействий со стороны пользователя, электрическое поле которого проникает в первую область вблизи зоны цилиндра шприца. Когда палец пользователя находится в первой области, электрическое поле емкостного детектора воздействий со стороны пользователя может изменяться, и на основании такого изменения логическая схема для определения воздействия может быть способна определять воздействие со стороны пользователя. В одной из конструкций электрическое поле емкостного детектора воздействий со стороны пользователя может проникать во вторую область вблизи зоны цилиндра шприца, которая может находиться на стороне зоны цилиндра шприца, противоположной первой области. В такой конструкции, емкостный детектор воздействий со стороны пользователя может быть способен распознавать пальцы, находящиеся в первой и второй областях с любой стороны зоны цилиндра шприца.

Пятая особенность воплощена в способе эксплуатации системы инъекции. В этом способе устанавливают шприц в устройство инъекции и затем перемещают толкатель устройства инъекции, чтобы обеспечить соответствующее перемещение плунжера шприца. Способ включает введение плунжера в контакт с толкателем. Стадия перемещения осуществляется, когда толкатель соприкасается с плунжером. Кроме того, на стадии перемещения множество раз осуществляется определение емкостными датчиками присутствия жидкости в цилиндре шприца. При каждом из определений присутствия оценивается объем жидкости в шприце. Оценка по меньшей мере частично основана на результатах измерения емкостными датчиками.

К рассмотренной выше пятой особенности настоящего изобретения применим ряд уточненных и дополнительных признаков. Эти уточненные и дополнительные признаки могут быть реализованы по отдельности или в любом сочетании применительно к пятой особенности. По существу, каждый из следующих признаков, который будет рассмотрен, может, но необязательно должен использоваться с каким-либо другим признаком или сочетанием признаков согласно пятой особенности. Следующее далее описание вплоть до начала описания шестой особенности настоящего изобретения применимо к пятой особенности.

Перемещение может включать втягивание и/или продвижение плунжера. В каждый из множества раз толкатель может находиться в однозначно определяемом местоположении. В одной из конфигураций стадии измерения емкостными датчиками и оценки могут непрерывно осуществляться на стадии перемещения. Способ может дополнительно включать стадии втягивания жидкости шприц на стадии перемещения и проверки для каждого из множества раз соответствия расчетного объема жидкости объему шприца между головкой шприца и плунжером. Способ также может дополнительно включать продвижение плунжера с целью инъекции жидкости пациенту.

Способ может дополнительно включать измерение емкостными датчиками пальца пользователя вблизи цилиндра шприца и интерпретацию системой инъекции измерения емкостными датчиками как воздействия на систему инъекции со стороны пользователя. В одной из разновидностей способ может включать измерение емкостными датчиками двух пальцев пользователя, перемещающихся с противоположных сторон цилиндра шприца. Такое измерение емкостными датчиками может интерпретироваться системой инъекции как входная команда очистки цилиндра шприца.

Шестая особенность воплощена в способе эксплуатации системы инъекции. В этом способе устанавливают шприц в устройство инъекции и затем распознают жидкость в цилиндре шприца. Измерение осуществляют с помощью первого, второго и третьего емкостных датчиков. В процессе измерения емкостными датчиками обнаруживают ошибочные показания по меньшей мере частично путем сравнения выходных сигналов первого, второго и третьего емкостных датчиков, зарегистрированных на стадии измерения. В одном из вариантов осуществления шестой особенности на основе стадий измерения и обнаружения может оцениваться общий объем жидкости в шприце.

Седьмая особенность воплощена в способе эксплуатации системы инъекции. В этом способе устанавливают шприц в устройство инъекции и с помощью первой части множества емкостных датчиков распознают присутствие жидкости в установленном шприце.

К рассмотренной выше седьмой особенности настоящего изобретения применим ряд уточненных и дополнительных признаков. Эти уточненные и дополнительные признаки могут быть реализованы по отдельности или в любом сочетании применительно к седьмой особенности. По существу, каждый из следующих признаков, который будет рассмотрен, может, но необязательно должен использоваться с каким-либо другим признаком или сочетанием признаков согласно седьмой особенности. Следующее далее описание вплоть до начала описания восьмой особенности настоящего изобретения применимо к седьмой особенности.

Способ может дополнительно включать определение отсутствия жидкости в установленном шприце с помощью второй части множества емкостных датчиков и оценку общего объема жидкости в шприце на основании по меньшей мере одной из стадий измерения (например, определения присутствия жидкости и/или определения отсутствия жидкости). Стадия оценки может включать вычисление процентного заполнения шприца на основании числа емкостных датчиков в первой части и/или числа емкостных датчиков во второй части. В одной из конструкций стадия оценки может включать проверку общего объема жидкости по справочной таблице. В такой конструкции в справочной таблице могут содержаться значения общего объема жидкости, соответствующие числу нескольких емкостных датчиков, входящих в первую и/или вторую части.

На стадии установки в шприце может содержаться общий объем жидкости, а до инъекции пациенту какой-либо жидкости из шприца может осуществляться по меньшей мере одна из стадий измерения. Соответственно, шприцем может являться предварительно наполненный шприц. Кроме того, способ может дополнительно включать ввод в систему инъекции значения, соответствующего общему объему жидкости, и проверку соответствия общего объема жидкости введенному значению. Стадия ввода может включать ввод вручную значения, соответствующего общему объему жидкости, сканирование машиночитаемой маркировки на шприце и/или считывание радиометки, соответствующей общему объему жидкости.

Восьмая особенность воплощена в способе эксплуатации системы инъекции. В этом способе устанавливают шприц в устройство инъекции и затем определяют емкостными датчиками присутствие пальца пользователя вблизи шприца. Затем с помощью системы инъекции интерпретируют результаты измерения емкостными датчиками как воздействие на систему инъекции со стороны пользователя.

Девятая особенность воплощена в системе инъекции. Система инъекции содержит устройство инъекции и зону цилиндра шприца. Система инъекции дополнительно содержит емкостный детектор и логическую схему для определения воздействий со стороны пользователя. Система инъекции способна удерживать шприц таким образом, чтобы цилиндр шприца имел одинаковую протяженность с зоной цилиндра шприца. Зона цилиндра шприца дополнительно имеет длину, совпадающую с длиной цилиндра шприца, когда устройство инъекции удерживает шприц. Зона цилиндра шприца дополнительно содержит продольную ось зоны цилиндра шприца, совпадающую с продольной осью цилиндра шприца, когда устройство инъекции удерживает шприц. Устройство инъекции содержит емкостный детектор. Электрическое поле емкостного детектор проникает в первую область вблизи зоны цилиндра шприца. Логическая схема для определения воздействий со стороны пользователя способна определять воздействие со стороны пользователя по меньшей мере частично на основании выходного сигнала емкостного детектора.

К рассмотренной выше девятой особенности настоящего изобретения применим ряд уточненных и дополнительных признаков. Эти уточненные и дополнительные признаки могут быть реализованы по отдельности или в любом сочетании применительно к девятой особенности. По существу, каждый из следующих признаков, который будет рассмотрен, может, но необязательно должен использоваться с каким-либо другим признаком или сочетанием признаков согласно девятой особенности. Следующее далее описание вплоть до начала описания термина "взаимосвязанный с возможностью движения жидкости" применимо к девятой особенности.

Электрическое поле емкостного детектора может проникать во вторую область вблизи зоны цилиндра шприца на стороне зоны цилиндра шприца, противоположной первой области. В такой конструкции логическая схема для определения воздействий со стороны пользователя может быть способна отличать воздействие со стороны пользователя в первой области от воздействия во второй области, например, логическая схема для определения воздействий со стороны пользователя может быть способна различать, с какой стороны зоны цилиндра шприца находится палец пользователя. Первая и вторая области могут проходить преимущество по всей длине зоны цилиндра шприца, а логическая схема для определения воздействий со стороны пользователя может быть способна определять, что пальцы пользователя перемещаются в первой и второй областях по длине зоны цилиндра шприца.

Используемый термин "взаимосвязанный с возможностью движения жидкости" означает, что два или более компонентов или объектов соединены (непосредственно или опосредованно) таким образом, что по заданному пути между ними может протекать (например, в одном направлении или в двух направлениях) жидкость. Например, "устройство инъекции, взаимосвязанное с возможностью движения жидкости с пациентом" означает конфигурацию, в которой жидкость способна вытекать из устройства инъекции через соединительные устройства (например, систему трубок, соединители) и поступать в организм пациента (например, в сосудистую сеть пациента).

Используемый термин "соединенные с возможностью разъединения" описывает взаимосвязь между компонентами, которые, будучи связанными, сохраняют способность отсоединяться друг от друга, при этом после отсоединения по меньшей мере один из компонентов остается в работоспособном состоянии. Например, "кассета и модуль-держатель контейнера с жидкостью связаны с возможностью разъединения" описывает состояние, в котором кассета в данный момент соединена с модулем-держателем контейнера с жидкостью с возможностью отсоединения от модуля-держателя контейнера с жидкостью. Кроме того, после такого отсоединения, по меньшей мере модуль-держатель контейнера с жидкостью или кассета сохраняют способность к взаимному соединению (например, разъемному) с другим компонентом.

К каждой из рассмотренных выше первой, второй, третьей, четвертой, пятой, шестой, седьмой, восьмой и девятой особенностям настоящего изобретения отдельно применим ряд уточненных и дополнительных признаков. Эти уточненные и дополнительные могут быть реализованы по отдельности или в любом сочетании применительно к первой, второй, третьей, четвертой, пятой, шестой, седьмой, восьмой и девятой особенностям. Любой признак любой из различных особенностей настоящего изобретения, который предположительно ограничен контекстом единственного числа и т.п., сопровождается в описании такими терминами, как "исключительно", "единственно", "ограниченный" и т.п. Простое упоминание признака в соответствии с общепринятой практикой предшествования не ограничивает соответствующий признак единственным числом (например, если указано, что автоматический инжектор содержит только "шприц", не означает, что автоматический инжектор содержит только один шприц). Кроме того, отсутствие такого оборота, как "по меньшей мере один", также не ограничивает соответствующий признак единственным числом (если указано, что автоматический инжектор содержит только "шприц", не означает, что автоматический инжектор содержит только один шприц). Наконец, оборот "по меньшей мере в целом" и т.п., используемый применительно к конкретному признаку, подразумевает соответствующую характеристику и ее незначительные разновидности (например, если указано, что корпус шприца является по меньшей мере в целом цилиндрическим, подразумевается, что корпус шприца является цилиндрическим).

Любая "логическая схема", которая может использоваться в любой из различных особенностей настоящего изобретения, может быть реализована любым применимым способом, в том числе без ограничения в любом применимом программном обеспечении, программно-аппаратном обеспечении или аппаратном обеспечении с использованием одной или несколько платформ, одного или нескольких процессоров, памяти любого применимого типа, любого одного компьютера любого применимого типа или множества компьютеров любого применимого типа, соединенных любым применимым способом, или любого их сочетания. Эта логическая схема может быть реализована в любом одном местоположении или множестве местоположений, соединенных любым применимым способом (например, посредством сети любого типа).

Любой автоматический инжектор, который может использоваться для выпуска жидкости, может иметь любой применимый размер, форму, конфигурацию и/или тип. В любом таком автоматическим инжекторе может использоваться один или несколько приводных механизмов плунжера шприца любого применимого размера, формы, конфигурации и/или типа, при этом каждый такой приводной механизм способен перемещаться по меньшей мере в двух направлениях (например, в первом направлении для выпуска жидкости; во втором направлении для загрузки и/или втягивания жидкости и/или возврата в положение для последующего выпуска жидкости) и может любым применимым способом взаимодействовать с соответствующим плунжером шприца (например, путем механического контакта; путем применимого соединения (механического или иного)) с тем, чтобы продвигать плунжер шприца по меньшей мере в одном направлении (например, для выпуска жидкости). В каждом приводном механизме плунжера шприца может использоваться один или несколько источников приводного механизма любого применимого размера, формы, конфигурации и/или типа. Выходные сигналы множества источников приводного механизма могут быть объединены любым применимым способом с целью продвижения плунжера шприца в заданное время. Один или несколько источников приводного механизма могут быть закреплены за одним из приводных механизмов плунжера шприца, связаны с множеством приводных механизмов (например, посредством своего рода трансмиссии для переключения выходного сигнала с одного плунжера шприца на другой плунжер шприца) и могут использоваться сочетание того и другого. Типичные формы источников приводного механизма включают щеточный или бесщеточный электродвигатель, гидравлический двигатель, пневмодвигатель, пьезоэлектрический двигатель или шаговый двигатель.

Любой такой автоматический инжектор может иметь любое соответствующее применение там, где желательна доставка одной или нескольких медицинских жидкостей, включая без ограничения любое соответствующее медицинское применение в целях формирования изображений (например, компьютерную томографию (КТ); магнитно-резонансную томографию (МРТ); однофотонную эмиссионную компьютерную томографию (ОФЭКТ); позитронную эмиссионную томографию (ПЭТ); рентгенографию; ангиографию; формирование оптических изображений; формирование ультразвуковых изображений). Любой такой автоматический инжектор может использоваться с любым компонентом или сочетанием компонентов, таким как применимая система формирования изображений (например, КТ-сканер). Например, между любым таким автоматическим инжектором и одним или несколькими компонентами может передаваться информация (например, информация о задержке сканирования, сигналах начала инъекции, скорости инъекции).

С любым таким автоматическим инжектором может любым применимым способом (например, съемно; с задней стороны; с передней стороны; сбоку) использоваться любое число применимых шприцев, из заданного шприца любого такого автоматического инжектора может выпускаться любая применимая медицинская жидкость (например, контрастное вещество, радиоактивный медицинский препарат, физиологический раствор и любое их сочетание), и из автоматического инжектора с множеством шприцев любым применимым способом (например, последовательно, одновременно) может выпускаться любая приемлемая жидкость, или может использоваться любое сочетание перечисленного. В одном из вариантов осуществления настоящего изобретения жидкость, выпущенная из шприца при срабатывании автоматического инжектора, направляется в трубопровод (например, комплект медицинских трубок), который с возможностью движения жидкости любым применимым способом связан со шприцем и по которому жидкость направляется в желаемое местоположение (например, в катетер, который вводят пациенту для инъекции). Содержимое множества шприцев может выпускаться в общий трубопровод (например, для доставки к единому месту инъекции), или содержимое одного шприца может выпускаться в один трубопровод (например, для доставки к одному месту инъекции), а содержимое другого шприца может выпускаться в другой трубопровод (например, для доставки к другому месту инъекции). В одном из вариантов осуществления каждый шприц содержит цилиндр и плунжер, который находится внутри цилиндра и перемещается относительно него. Этот плунжер может взаимодействовать с используемым в автоматическим инжекторе узлом приводного механизма плунжера шприца таким образом, чтобы узел приводного механизма плунжера шприца был способен продвигать плунжер по меньшей мере в одном направлении и, возможно, в двух различных противоположных направлениях.

Краткое описание чертежей

На Фиг.1 схематически проиллюстрирован один из вариантов осуществления автоматического инжектора,

на Фиг.2А показан вид в перспективе одного из вариантов осуществления портативного установленного на стойке автоматического инжектора с двойной головкой,

на Фиг.2Б показан увеличенный вид в перспективе с частичным изображением по частям силовой головки, используемой в автоматическом инжекторе, проиллюстрированном на Фиг.2А,

на Фиг.2В схематически проиллюстрирован один из вариантов осуществления узла приводного механизма плунжера шприца, используемого в автоматическом инжекторе, проиллюстрированном на фиг.2А,

на Фиг.3А схематически проиллюстрирован корпус шприца, в котором размещается емкостной детектор жидкости,

на Фиг.3Б схематически проиллюстрирован вид в поперечном разрезе (вид с торца) проиллюстрированного на Фиг.3А корпуса шприца и шприца,

на Фиг.3В схематически проиллюстрирован вид сбоку проиллюстрированного на Фиг.3А корпуса шприца и емкостного детектора жидкости с другим установленным в нем шприцем,

на Фиг.4А схематически проиллюстрирован вид сверху шприца, установленного в корпусе шприца, в котором размещается емкостной детектор жидкости,

на Фиг.4Б схематически проиллюстрирован вид в поперечном разрезе (вид с торца) проиллюстрированного на Фиг.4А корпуса шприца и шприца,

на Фиг.5А и 5Б показаны виды в поперечном разрезе (виды с торца) альтернативных вариантов осуществления шприца и корпуса шприца, в котором размещается емкостной детектор жидкости,

на Фиг.6 показана диаграмма, иллюстрирующая событие шума в конденсаторе емкостного детектора жидкости,

на Фиг.7 показана диаграмма, иллюстрирующая измеренную емкость в зависимости от времени на протяжении периода изменения объема жидкости в шприце,

на Фиг.8 схематически проиллюстрирован пользователь, два пальца которого перемещаются по цилиндру шприца,

на Фиг.9 схематически проиллюстрирован емкостный детектор воздействий со стороны пользователя,

на Фиг.10 проиллюстрирована группа ответных сигналов, которые могут наблюдаться, когда пальцы пользователя перемещаются, как показано на Фиг.8.

Подробное описание

На фиг.1 схематически проиллюстрирован один из вариантов осуществления автоматического инжектора 10 с силовой головкой 12. С силовой головкой 12 может быть связан один или несколько графических интерфейсов 11 пользователя (ГИП). Каждый ГИП 11: 1) может представлять собой интерфейс любого применимого размера, формы, конфигурации и/или типа; 2) может быть оперативно связан с силовой головкой 12 любым применимым способом; 3) может размещаться в любом применимом местоположении; 4) может быть сконфигурирован на обеспечение одной или любого сочетания следующих функций: управления одной или несколькими особенностями работы автоматического инжектора 10; ввода/изменения одного или нескольких параметров, связанных с действием автоматического инжектора 10; и отображения применимой информации (например, связанной с действием автоматического инжектора 10); или 5) содержать любое сочетание перечисленного. Может использоваться любое применимое число ГИП 11. В одном из вариантов осуществления автоматический инжектор 10 содержит ГИП 11, включенный в пульт, реализованный отдельно от силовой головки 12, но поддерживающий связь с ней. В другом варианте осуществления автоматический инжектор 10 содержит ГИП 11, являющийся частью силовой головки 12. В еще одном варианте осуществления в автоматическим инжекторе 10 используется один ГИП 11 на отдельном пульте, который поддерживает связь с силовой головкой 12, а также другой ГИП 11, который размещается на силовой головке 12. Каждый ГИП 11 способен обеспечивать одинаковые выполняемые функции или набор выполняемых функций, или ГИП 11 могут различаться по меньшей мере в том, что касается их соответствующих выполняемых функции.

На силовой головке 12 может быть установлен шприц 28, и в этом случае он может считаться частью автоматического инжектора 10. В случае некоторых процедур инъекции в шприце 28 может создаваться относительно высокое давление. Соответственно, может быть желательным размещать шприц 28 внутри герметичной оболочки 26. Герметичная оболочка 26 обычно связана с силовой головкой 12 таким образом, что шприц 28 может размещаться в ней как часть силовой головки или после установки шприца 28 на силовой головке 12. С силовой головкой 12 обычно используется одна и та же герметичная оболочка 26 с возможностью размещения в ней и извлечения из нее различных шприцев 28 для множества процедур инъекции. Герметичная оболочка 26 может отсутствовать, если автоматический инжектор 10 сконфигурирован/используется для инъекций под низким давлением и/или шприц(-ы) 28 для использования с автоматическим инжектором 210 имеет(-ют) достаточную прочность, чтоб выдерживать инъекции под высоким давлением без дополнительной защиты, обеспечиваемой герметичной оболочкой 26. В любом случае выпускаемая из шприца 28 жидкость может направляться в трубопровод 38 любого применимого размера, формы, конфигурации и/или типа, который с возможностью движения жидкости может быть связан со шприцем 28 любым применимым способом, и который может направлять жидкость в любое приемлемое местоположение (например, пациенту).

Силовая головка 12 содержит узел приводного механизма или привод 14 плунжера шприца, который взаимодействует (например, сопряжен) со шприцем 28 (например, его плунжером 32) с целью выпуска жидкости из шприца 28. Этот узел 14 приводного механизма плунжера шприца содержит источник 16 приводного механизма (например, электродвигатель любого применимого размера, формы, конфигурации и/или типа, необязательную зубчатую передачу и т.п.) для подачи мощности на выходную сторону 18 приводного механизма (например, вращающийся подающий винт). Выходная сторона 18 приводного механизма может продвигать толкатель 20 по соответствующей траектории (например, осевой). Толкатель 20 может содержать соединительную муфту 22, взаимодействующую или сопряженную с соответствующей частью шприца 28, как описано далее.

Шприц 28 содержит плунжер или поршень 32, который подвижно размещается в цилиндре 30 шприца (например, с возможностью возвратно-поступательного движения по оси, совпадающей с двунаправленной стрелкой В). Плунжер 32 может содержать соединительную муфту 34. Эта соединительная муфта 34 плунжера шприца может взаимодействовать или сопрягаться с соединительной муфтой 22 толкателя, что позволяет узлу 14 приводного механизма втягивать плунжер 32 в цилиндр 30 шприца. Соединительная муфта 34 плунжера шприца может представлять собой вал 36а, который проходит от корпуса плунжера 32 шприца, с головкой или заглушкой 36b. Тем не менее, соединительная муфта 34 плунжера шприца может представлять собой муфту любого применимого размера, формы, конфигурации и/или типа.

В целом, узел 14 приводного механизма плунжера шприца автоматического инжектора 10 может взаимодействовать с плунжером 32 шприца 28 любым применимым способом (например, путем механического контакта; применимого соединения (механического или иного)) с тем, чтобы иметь возможность перемещать или продвигать плунжер 32 шприца (относительно цилиндра 30 шприца) по меньшей мере в одном направлении (например, с целью выпуска жидкости из соответствующего шприца 28). Иными словами, хотя узел 14 приводного механизма плунжера шприца может быть способен перемещаться в двух направлениях (например, посредством срабатывания одного и того же источника 16 приводного механизма), автоматический инжектор 10 может быть сконфигурирован таким образом, что при срабатывании узла 14 приводного механизма только каждый плунжер 32 шприца, используемый автоматическим инжектором 10, в действительности перемещается только в одном направлении. Тем не менее, узел 14 приводного механизма плунжера шприца может быть сконфигурирован на взаимодействие с каждым плунжером 32 шприца, используемым автоматическим инжектором 10, с тем, чтобы быть способным перемещать каждый такой плунжер 32 шприца в каждом из двух различных направлениях (например, в различных направлениях по общей оси).

Втягивание плунжера 32 шприца может использоваться для ввода жидкости в цилиндр 30 шприца для последующей инъекции или выпуска, для фактического всасывания жидкости в цилиндр 30 шприца для последующей инъекции или выпуска или с любой другой применимой целью. В некоторых конфигурациях необязательно, чтобы узел 14 приво