Полимерный материал для теплоизолированного контейнера

Иллюстрации

Показать все

Изобретение относится к составу для формирования теплоизолирующего ячеистого неароматического полимерного материала, который может быть использован для получения изделия, в частности контейнера. Состав содержит базовый полимерный материал, второй полимерный материал, нуклеирующий агент, добавку, понижающую трение, и порообразователь. Причем базовый полимерный материал содержит полипропилен с высокой прочностью расплава, характеризующийся длинноцепочечным разветвлением, а второй полимерный материал содержит гомополимер полипропилена. Полученный полимерный материал обладает высокими теплоизоляционными характеристиками, легко поддается вторичной переработке, устойчив к прокалыванию и неломок. 12 н. и 51 з.п. ф-лы, 10 ил., 12 табл.

Реферат

ПРИТЯЗАНИЕ НА ПРИОРИТЕТ

[0001] Данная заявка испрашивает приоритет предварительных заявок №61/529632, поданной 31 августа 2011 г., и №61/618604, поданной 30 марта 2012 г., которые специально включены в данный документ посредством ссылки, согласно § 119(e) Патентного закона США 35 U.S.C.

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ

[0002] Настоящее раскрытие относится к полимерным материалам, которые можно формировать для получения контейнера, в частности к теплоизолирующим полимерным материалам. В частности, настоящее раскрытие относится к основанным на полимерах составам, которые могут быть сформированы для получения теплоизолирующих неароматических полимерных материалов.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0003] Полимерный материал в соответствии с настоящим раскрытием включает полимерную смолу и образующие ячейки агенты. В иллюстративных вариантах осуществления смесь полимерных смол и образующих ячейки агентов экструдируют или другим образом формируют для получения теплоизолирующего ячеистого неароматического полимерного материала.

[0004] В иллюстративных вариантах осуществления теплоизолирующий ячеистый неароматический полимерный материал, полученный в соответствии с настоящим раскрытием, может быть сформирован для получения теплоизолирующего стакана или другого продукта. Полипропиленовую смолу используют для формирования изолирующего ячеистого неароматического полимерного материала в иллюстративных вариантах осуществления.

[0005] В иллюстративных вариантах осуществления теплоизолирующий ячеистый неароматический полимерный материал включает полипропиленовую базовую смолу с высокой прочностью расплава, сополимер или гомополимер полипропилена (или оба), и образующие ячейки агенты, включая по меньшей мере один нуклеирующий агент и порообразователь, такой как диоксид углерода. В другом иллюстративном варианте осуществления теплоизолирующий ячеистый неароматический полимерный материал дополнительно содержит добавку, понижающую трение. Полипропиленовая базовая смола характеризуется широким унимодальным (не бимодальным) распределением молекулярной массы.

[0006] В иллюстративных вариантах осуществления состав на основе полипропилена в соответствии с настоящим раскрытием нагревают и экструдируют в две стадии для получения трубчатого экстсрудата (в процессе экструзии), который можно разрезать для получения полоски теплоизолирующего ячеистого неароматического полимерного материала. Порообразователь в виде инертного газа в иллюстративных вариантах осуществления вводят в расплавленную смолу во время первой стадии экструзии.

[0007] В иллюстративных вариантах осуществления теплоизолирующий стакан формуют, используя полоску изолирующего ячеистого неароматического полимерного материала. Теплоизолирующий стакан включает тело, содержащее боковую стенку в форме рукава, и дно, соединяемое с телом для объединения с боковой стенкой для формирования внутренней области для хранения пищевых продуктов, жидкости или любого подходящего продукта. Тело также содержит свернутый край, соединенный с верхним концом боковой стенки, и крепление дна, соединенное с нижним концом боковой стенки и с дном.

[0008] Теплоизолирующий ячеистый неароматический полимерный материал в соответствии с настоящим раскрытием предназначен предоставлять средство для обеспечения локализованной пластической деформации по меньшей мере в одной выбранной области тела (например, боковой стенке, свернутом крае, креплении дна и удерживающем дно выступе, включенном в крепление дна) для того, чтобы предоставлять (1) пластически деформируемый сегмент из первого материала, имеющего первую плотность в первой части выбранной области тела, и (2) сегмент из второго материала, имеющего относительно более низкую вторую плотность в смежной второй части выбранной области тела. В иллюстративных вариантах осуществления сегмент из первого материала более тонкий, чем сегмент из второго материала.

[0009] Дополнительные признаки настоящего изобретения будут понятны специалистам в данной области техники при рассмотрении иллюстративных вариантов осуществления, представляющих примеры наилучшей реализации изобретения, как оно понимается в настоящее время.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[0010] Подробное описание, в частности, содержит ссылки на сопутствующие графические материалы, на которых:

[0011] Фиг. 1 представляет собой схематический вид в перспективе способа формирования материала в соответствии с данным изобретением, показывающий, что данный способ формирования материала включает, слева направо, размещение состава теплоизолирующего ячеистого неароматического полимерного материала в бункере, из которого его подают в первую экструзионную зону первого экструдера, где применяют нагрев и давление для образования расплавленной смолы, а также показывающий, что порообразователь впрыскивают в расплавленную смолу для образования экструдируемой смеси смолы, которую направляют во вторую экструзионную зону второго экструдера, где экструдируемая смесь смолы расширяется на выходе с образованием экструдата, который разрезают для получения полосок теплоизолирующего ячеистого неароматического полимерного материала;

[0012] Фиг. 2 представляет собой вид в перспективе теплоизолирующего стакан, изготавливаемого из полоски материала, включающего теплоизолирующий ячеистый неароматический полимерный материал, представленный на Фиг. 1, показывающий, что теплоизолирующий стакан включает тело и дно, а также показывающий, что четыре участка тела были удалены, чтобы показать локализованные области пластической деформации, которые обеспечивают увеличенную плотность в этих областях, при этом поддерживая заданное теплоизолирующее свойство в теле;

[0013] Фиг. 3 представляет собой увеличенный вид в разрезе части боковой стенки, включенной в тело теплоизолирующего стакана, представленного на Фиг. 2, показывающий, что боковая стенка изготовлена из листа, который включает, слева направо, оболочку, включая пленку, слой краски и клейкий слой, а также полоску теплоизолирующего ячеистого неароматического полимерного материала, представленного на Фиг 1;

[0014] Фиг. 4 представляет собой покомпонентное изображение сборки теплоизолирующего стакана, представленного на Фиг. 2, показывающее, что теплоизолирующий стакан содержит, сверху вниз, дно и тело, включающее свернутый край, соковую стенку и крепление дна, предназначенное для соединения дна с боковой стенкой, как показано на Фиг. 2;

[0015] Фиг. 5 представляет собой вид в разрезе, выполненный вдоль линии 5-5 на фиг. 2, показывающий, что боковая стенка, включенная в тело теплоизолирующего стакана, имеет в целом равномерную толщину, и что дно соединено с креплением дна, включенного в тело;

[0016] Фиг. 6-9 представляют собой ряд изображений, показывающих первый, второй, третий и четвертый участки теплоизолирующего стакана, представленного на Фиг. 2, каждый из которых включает локализованную пластическую деформацию;

[0017] Фиг. 6 представляет собой частичный вид в разрезе, выполненном по линии 5-5 на Фиг. 2, показывающий первый участок, находящийся в боковой стенке тела;

[0018] Фиг. 7 представляет собой частичный вид в разрезе, выполненном по линии 5-5 на Фиг. 2, показывающий второй участок, находящийся в свернутом краю тела;

[0019] Фиг. 8 представляет собой частичный вид в разрезе, выполненном по линии 5-5 на Фиг. 2, показывающий, третий участок, находящийся в соединительном ребре, включенном в крепление дна тела;

[0020] Фиг. 9 представляет собой частичный вид в разрезе, выполненном по линии 5-5 на Фиг. 2, показывающий, четвертый участок, находящийся в поддерживающем ребра кольце, включенном в крепление дна тела; и

[0021] Фиг. 10 представляет собой график, демонстрирующий характеристики теплоизолирующих стаканов с течением времени в соответствии с настоящим изобретением, подвергаемых температурному испытанию.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0022] Теплоизолирующий ячеистый неароматический полимерный материал, полученный в соответствии с настоящим раскрытием, может быть сформован с получением теплоизолирующего стакана 10, как предложено на Фиг. 2-9. В качестве примера теплоизолирующий ячеистый неароматический полимерный материал включает полипропиленовую базовую смолу с высокой прочностью расплава, сополимер или гомополимер полипропилена (или оба), и образующие ячейки агенты, включая по меньшей мере один нуклеирующий агент и порообразователь, такой, как диоксид углерода. В другом примере теплоизолирующий ячеистый неароматический полимерный материал дополнительно содержит добавку, понижающую трение. Полипропиленовая базовая смола характеризуется широким унимодальным (не бимодальным) распределением молекулярной массы.

[0023] В способе 100 формирования материала используют состав 121 на основе полипропилена в соответствии с настоящим изобретением для получения полоски 82 теплоизолирующего ячеистого неароматического полимерного материала, как показано на Фиг. 1. Состав 121 нагревают и экструдируют в две стадии для получения трубчатого экструдата 124, который можно разрезать с получением полоски 82 теплоизолирующего ячеистого неароматического полимерного материала, как проиллюстрировано, например, на Фиг. 1. Порообразователь в виде сжиженного инертного газа в иллюстративных вариантах осуществления вводят в расплавленную смолу 122 в первой экструзионной зоне.

[0024] Теплоизолирующий ячеистый неароматический полимерный материал используют для формирования теплоизолирующего стакана 10. Теплоизолирующий стакан 10 включает тело 11, имеющее боковую стенку 18 в форме рукава, и дно 20, как показано на Фигурах. 2 и 4. Дно 20 соединено с телом 11 и объединяется с боковой стенкой 18 с образованием внутренней области 14 между ними для хранения пищевых продуктов, жидкости или любого подходящего продукта. Тело 11 также содержит свернутый край 16, соединенный с верхним концом боковой стенки 18, и крепление дна 17, соединенное с нижним концом боковой стенки 18 и дном 20, как представлено на фиг. 5.

[0025] Теплоизолирующий ячеистый неароматический полимерный материал в соответствии с настоящим раскрытием предназначен предоставлять средство для обеспечения локализованной пластической деформации по меньшей мере в одной выбранной области тела 11 (например, боковой стенке 18, свернутом крае 16, креплении дна 17 и удерживающем дно выступе 26, включенном в крепление дна 17) для того, чтобы предоставлять (1) пластически деформируемый сегмент из первого материала, имеющего первую плотность в первой части выбранной области тела 11, и (2) сегмент из второго материала, имеющего относительно более низкую вторую плотность в смежной второй части выбранной области тела 11, как предложено, например, на Фигурах. 2 и 6-9. В иллюстративных вариантах осуществления сегмент из первого материала более тонкий, чем сегмент из второго материала.

[0026] В одном аспекте настоящего изобретения предложен состав для производства теплоизолирующего ячеистого неароматического полимерного материала. Как упоминается в данном документе, теплоизолирующий ячеистый неароматический полимерный материал имеет отношение к экструдированной структуре, имеющей ячейки, сформированные в нем, и обладает требуемыми теплоизолирующими свойствами при заданной толщине. В другом аспекте настоящего изобретения предложен материал из смолы для производства экструдированной структуры теплоизолирующего ячеистого неароматического полимерного материала. В еще одном аспекте настоящего изобретения предложен экструдат, содержащий теплоизолирующий ячеистый неароматический полимерный материал. В другом аспекте настоящего изобретения предложен структура материала, сформированная из теплоизолирующего ячеистого неароматического полимерного материала. В другом аспекте настоящего изобретения предложена структура материала, сформированная из теплоизолирующего ячеистого неароматического полимерного материала.

[0027] В иллюстративном варианте осуществления состав включает по меньшей мере один полимерный материал. В одном иллюстративном варианте осуществления основной или базовый полимер содержит полипропилен с высокой прочностью расплава, характеризующийся длинноцепочечным разветвлением. Длинноцепочечное разветвление происходит за счет замены заместителя, например, атома водорода, на мономерном субзвене другой ковалентно связанной цепью этого полимера, или в случае привитого сополимера - цепью другого типа. Например, реакция переноса цепи во время полимеризации может вызывать разветвление полимера. Длинноцепочечное разветвление представляет собой разветвление боковой цепи, длина которой больше, чем среднее критическое расстояние переплетения линейной полимерной цепи. Обычно подразумевают, что в зависимости от конкретной структуры мономера, используемого в полимеризации, длинноцепочечное разветвление включает полимерные цепи с по меньшей мере 20 атомами углерода. Другой пример разветвления представляет собой сшивку полимера после завершения полимеризации. Некоторые длинноцепочечные разветвленные полимеры образуются без сшивки. Разветвление полимерной цепи может иметь существенное влияние на свойства материала. Окончательный выбор полипропиленового материала может быть основан на свойствах целевого материала, дополнительных материалах, необходимых во время приготовления состава, а также должен учитывать условия в процессе экструзии. В иллюстративных вариантах осуществления полипропилены с высокой прочностью расплава могут быть материалами, которые могут удерживать газ (как обсуждается здесь и ниже), образовывать ячейки требуемого размера, иметь требуемую гладкость поверхности и иметь приемлемый уровень запаха (если он присутствует).

[0028] Одним иллюстративным примером пригодной полипропиленовой базовой смолы является гомополимер DAPLOY™ WB140 (можно приобрести у компании Borealis AJS), конструкционный изомерный модифицированный гомополимер полипропилена с высокой прочностью расплава (прочность расплава = 36, согласно испытанию по методике ISO 16790, которая включена в данный документ путем ссылки, температура плавления = 325,4°F (163°С), определена по методике ISO 11357, которая включена в данный документ путем ссылки).

[0029] Свойства Borealis DAPLOY™ WB140 (как описано в информационном листке продукта компании Borealis):

[0030] Другие полипропиленовые полимеры, обладающие подходящей прочностью расплава, степенью разветвления и температурой плавления, также могут быть использованы. Можно применять и смешивать вместе несколько базовых смол.

[0031] В некоторых иллюстративных вариантах вместе с базовым полимером может использоваться второй полимер. Вторым полимером может быть, например, полимер с достаточной кристалличностью. В иллюстративных вариантах осуществления второй полимер может быть по меньшей мере одним кристаллическим гомополимером пропилена, ударопрочным сополимером, их смесью или подобным. Одним иллюстративным примером является высококристаллический гомополимер полипропилена, который можно приобрести под маркой F020HC у компании Braskem. Другим иллюстративным примером является полимер, который можно приобрести под маркой PRO-FAX SC204™ (поставляется компанией LyndellBasell Industries Holdings, В.V.). Другой иллюстративный пример включает Homo РР - INSPIRE 222, который можно приобрести у компании Braskem. В одном аспекте полипропилен может иметь высокую степень кристалличности, т.е. содержание кристаллической фазы превышает 51% (по результатам испытания с помощью дифференциальной сканирующей калориметрии) при скорости охлаждения 10°С/мин. В иллюстративных вариантах осуществления могут применяться и смешиваться вместе несколько различных вторых полимеров.

[0032] В иллюстративных вариантах осуществления второй полимер может быть полиэтиленом или включать его. В иллюстративных вариантах осуществления второй полимер может включать полиэтилен низкой плотности, линейный полиэтилен низкой плотности, полиэтилен высокой плотности, сополимеры этилен-винилацетат, сополимеры этилен-этилакрилат, сополимеры этилен-акриловая кислота, смеси по меньшей мере двух из вышеперечисленного и подобное. Использование отличных от полипропилена материалов может иметь отрицательное влияние на пригодность к переработке, теплоизоляцию, использование в микроволновой печи, ударопрочность или другие характеристики, как обсуждается здесь и далее.

[0033] Один или более нуклеирующих агентов используют для обеспечения и регулирования центров зародышеобразования, тем самым способствуя образованию ячеек, пузырьков или пустот в расплавленной смоле во время процесса экструзии. Нуклеирующий агент означает химический или физический материал, который предоставляет центры для образования ячеек в расплавленной смеси смол. Нуклеирующие агенты могут быть физическими или химическими веществами. Подходящие физические нуклеирующие агенты имеют требуемые свойства, а именно, гранулометрический состав, соотношение размеров и максимальный размер частиц. Примеры включают, но без ограничения, тальк, СаСО3, слюду и смеси по меньшей мере двух из вышеупомянутых веществ. Нуклеирующий агент может быть смешан с составом полимерной смолы, который вносят в загрузочный бункер. Альтернативно, нуклеирующий агент можно вводить в расплавленную смесь смол в экструдере. По достижении температуры химической реакции нуклеирующий агент действует, обеспечивая формирование пузырьков, которые образуют ячейки в расплавленной смоле. Иллюстративным примером химического порообразователя является лимонная кислота или материал на основе лимонной кислоты. После разложения химический порообразователь образует маленькие ячейки, заполненные газом, которые впоследствии служат в качестве центров зародышеобразования для роста более крупных ячеек с помощью физического порообразователя или других типов порообразователей. Одним характерным примером является Hydrocerol™ CF-40E™ (можно приобрести у компании Clariant Corporation), который содержит лимонную кислоту и кристаллический нуклеирующий агент. В иллюстративных вариантах осуществления могут быть введены один или несколько катализаторов или других реагентов для ускорения или способствования формированию ячеек.

[0034] В некоторых вариантах осуществления могут быть включены один или несколько порообразователей. Порообразователь означает физический или химический материал (или комбинация материалов), чье действие увеличивает в объеме центры зародышеобразования. Нуклеирующие агенты и порообразователи могут действовать вместе. Действие порообразователей направлено на уменьшение плотности путем формирования ячеек в расплавленной смоле. Порообразователь можно вводить в расплавленную смесь смол в эктрудере. Характерные примеры физических порообразователей включают, но без ограничения, диоксид углерода, азот, гелий, аргон, воздух, пентан, бутан или другие смеси алканов из вышеупомянутых и подобных им. В некоторых иллюстративных вариантах осуществления может быть применена технологическая добавка, которая повышает растворимость физического порообразователя. Альтернативно, физический порообразователь может представлять собой фторуглеводород, такой как 1,1,1,2-тетрафторэтан, также известный как R134a, или другой хладагент, являющийся галогеналканом. Выбор порообразователя может осуществляться с учетом его воздействия на окружающую среду.

[0035] В иллюстративных вариантах осуществления физические порообразователи обычно представляют собой газы, которые вводят в виде жидкостей под давлением в расплавленную смолу через вход в экструдере, как показано на Фиг. 1. Расплавленная смола проходит через экструдер и фильеру, давление падает, что вызывает изменение фазы физического порообразователя из жидкой в газообразную, тем самым создавая ячейки в экструдированной смоле. Избыток газа улетучивается после экструзии, при том что оставшийся газ остается в ячейках экструдата.

[0036] Химические порообразователи представляют собой материалы, которые разлагаются или реагируют с выделением газа. Химические порообразователи могут быть эндотермическими или экзотермическими. Химические порообразователи обычно разрушаются при определенной температуре, при этом разлагаясь и выделяя газ. В одном аспекте химический порообразователь может представлять собой один или более материалов, выбранных из группы, состоящей из азодикарбонамида; азодиизобутиронитрила; бензолсульфонгидразида; 4,4-оксибензол сульфонилсемикарбазида; п-толуол сульфонил семикарбазида; азодикарбоксилата бария; N,N′-диметил-N,N′-динитрозотерефталамида; тригидразино триазина; метана; этана; пропана; н-бутана; изобутана; н-пентана; изопентана; неопентана; фтористого метила; перфторметана; фтористого этила; 1,1-дифторэтана; 1,1,1-трифторэтана; 1,1,1,2-тетрафторэтана; пентафторэтана; перфторэтана; 2,2-дифторпропана; 1,1,1-трифторпропана; перфторпропана; перфторбутана; перфторциклобутана; метилхлорида; метиленхлорида; этилхлорида; 1,1,1-трихлорэтана; 1,1-дихлор-1-фторэтана; 1-хлор-1,1-дифторэтана; 1,1-дихлор-2,2,2-трифторэтана; 1-хлор-1,2,2,2-тетрафторэтана; трихлормонофторметана; дихлордифторметана; трихлортрифторэтана; дихлортетрафторзтана; хлоргептафторпропана; дихлоргексафторпропана; метанола; этанола; н-пропанола; изопропанола; бикарбоната натрия; карбоната натрия; бикарбоната аммония; карбоната аммония; нитрита аммония; N,N′-диметил-N,N′-динитрозотерефталамида; N,N′-динитрозопентаметилен тетрамина; азобизизобутилонитрила; азоциклогексилнитрила; азодиаминобензола; бензолсульфонилгидразида; толуолсульфонилгидразида; п,п′-оксибис (бензолсульфонилгидразида); дифенилсульфон-3,3′-дисульфонилгидразида; азида кальция; 4,4′-дифенилдисульфонил азида; и п-толуолсульфонилазида.

[0037] В одном аспекте настоящего изобретения, в случае использования химического порообразователя, химический порообразователь может быть введен в состав смолы, которую вносят в питающий бункер.

[0038] В одном аспекте настоящего изобретения химический порообразователь может быть разлагаемым материалом, который образует газ при разложении. Характерным примером такого материала является лимонная кислота или материал на основе лимонной кислоты. В одном иллюстративном аспекте настоящего изобретения может быть возможным использование смеси физических и химических порообразователей.

[0039] В одном аспекте настоящего изобретения по меньшей мере одна добавка, понижающая трение, может быть включена в смесь смолы для способствования повышению скорости производства. Добавка, понижающая трение (также известная как технологическая добавка), является термином, используемым для описания общего класса материалов, которые добавляют в смесь смол, и которые обеспечивают смазывание поверхности полимера во время и после переработки. Добавки, понижающие трение, также могут уменьшить отложения в фильере. Характерные примеры добавок, снижающих трение, включают амиды жиров или жирных кислот, такие как, но без ограничения, эрукамид и олеамид. В одном иллюстративном варианте осуществления могут быть использованы амиды от олеилового (С-18 с одной ненасыщенной связью) до эруцилового (С-22 с одной ненасыщенной связью). Другие характерные примеры добавок, понижающих трение, включают низкомолекулярные амиды и фторированные эластомеры. Можно применять комбинации двух или более добавок, понижающих трение. Добавки, понижающие трение, могут быть предоставлены в гранулах маточной смеси и смешаны с составом смолы.

[0040] Необязательно могут быть включены один или несколько дополнительных компонентов и добавок, таких как, но без ограничения, модификаторы ударной прочности, окрашивающие вещества (такие, как, но без ограничения, диоксид титана) и измельченный полимерный компаунд.

[0041] Полимерные смолы могут быть смешаны с любыми дополнительными желаемыми компонентами и расплавлены с образованием смеси состава смолы.

[0042] Помимо поверхностной топографии и морфологии, было найдено, что еще один фактор имеет благоприятное влияние на получение теплоизолирующего стакана высокого качества, не содержащего складок, а именно анизотропность теплоизолирующей ячеистой неароматической полимерной полоски. Соотношение размеров - это отношение главной оси к малой оси ячейки. В одном иллюстративном варианте осуществления подтвержденные микроскопией средние размеры ячейки в направлении 67 машинной обработки (в направлении машинной обработки или продольном направлении) экструдированной полоски 82 теплоизолирующего ячеистого неароматического полимерного материала составляли примерно 0,0362 дюймов (0,92 мм) в ширину на примерно 0,0106 дюймов (0,27 мм) в высоту. В результате соотношение размеров ячейки в направлении машинной обработки составляет примерно 3,5. Средние размеры ячейки в поперечном направлении (поперек сетки или поперек движения) составляли примерно 0,0205 дюймов (0,52 мм) в ширину и примерно 0,0106 дюймов (0,27 мм) в высоту. В результате соотношение размеров ячейки в поперечном направлении составляет примерно 1,94. В одном иллюстративном варианте осуществления было найдено, что для того, чтобы полоска смогла выдержать сжимающее усилие при формовании стакана, одно желательное среднее соотношение размеров ячейки находилось в интервале примерно 1,0-3,0. В одном иллюстративном варианте осуществления одно желательное среднее соотношение размеров ячейки находилось в интервале примерно 1,0-2,0.

[0043] Отношение длины ячейки в направлении машинной обработки к длине в поперечном направлении используется как критерий анизотропности экструдированной полоски. В иллюстративных вариантах осуществления полоска теплоизолирующего ячеистого неароматического полимерного материала может быть ориентирована биаксиально, причем коэффициент анизотропии принимает значения в интервале примерно 1,5-3. В одном иллюстративном варианте осуществления коэффициент анизотропии был примерно 1,8.

[0044] Бели окружность стакана совмещена с направлением 67 машинной обработки экструдированной полоски 82, имеющей соотношение размеров ячейки, превышающее примерно 3,0, то в таком случае на внутренней поверхности стакана обычно образуются глубокие складки, в глубину превышающие 200 микрон, что делает стакан непригодным к использованию. В одном иллюстративном варианте осуществления неожиданно было обнаружено, что, если окружность стакана была совмещена с поперечным направлением экструдированной полоски 82, которая может характеризоваться отношением размеров ячейки меньше примерно 2,0, то глубокие складки внутри стакана не образуются, указывая на то, что поперечное направление экструдированной полоски 82 было устойчиво к сжимающим усилиям во время формования стакана.

[0045] Одной возможной причиной более высокой способности к сжатию экструдированной полоски с ячейками, имеющими соотношение размеров меньше примерно 2,0 в направлении окружности стакана, т.е. в поперечном направлении, может быть более низкая концентрация напряжений в случае ячеек с радиусом большего размера. Другой возможной причиной может быть то, что большее отношение размеров ячеек может означать больший коэффициент гибкости стенки ячейки, которая обратно пропорциональна прочности при продольном изгибе. Образование складок в полоске при сжатии может быть приближенно принято за продольный изгиб стенок ячейки. Для стенок ячейки с большей длиной коэффициент гибкости (длина к диаметру) может быть выше. Еще одним возможным фактором в снятии нагрузки при сжатии может быть более благоприятная упаковка полимерных цепей в стенках ячейки в поперечном направлении, позволяющая перемещения полимерных цепей под воздействием сжимающего усилия. Предполагается, что в направлении 67 машинной обработки полимерные цепи имеют предпочтительную ориентацию и более плотную упаковку.

[0046] В иллюстративных вариантах осуществления окружность формуемого стакана выровнена вдоль направления экструдированной полоски, а соотношение размеров меньше приблизительно 2,0. В результате поверхность экструдированной полоски с размером кристаллической области, обращенной внутрь стакана, меньше примерно 100 ангстрем, может обеспечить благоприятные результаты достижения требуемой топографии поверхности с глубиной дефектов менее чем примерно 5 микрон.

[0047] В одном аспекте настоящего раскрытия смола полипропилена (либо базовая смола, либо комбинированная базовая и вторая смолы) может иметь плотность в интервале, равном от примерно 0,01 г/см3 до примерно 0,19 г/см3. В одном иллюстративном варианте осуществления плотность может быть в интервале, равном от примерно 0,05 г/см3 до примерно 0,19 г/см3. В одном иллюстративном варианте осуществления плотность может быть в интервале, равном от примерно 0,1 г/см3 до примерно 0,185 г/см3.

[0048] В альтернативном иллюстративном варианте осуществления вместо полипропилена в качестве первого полимера можно использовать материал на основе полимолочной кислоты, такой, как, но не ограничиваясь этим, материал на основе полимолочной кислоты, полученный из пищевого материала, например, кукурузного крахмала. В одном иллюстративном варианте осуществления в качестве первого полимера может быть использован полиэтилен.

[0049] В одном иллюстративном аспекте настоящего раскрытия один состав материала, полезного для формирования теплоизолирующего ячеистого неароматического полимерного материала, включает следующее: по меньшей мере одну первую смолу, содержащую длинноцепочечный разветвленный полипропилен с высокой прочностью расплава, по меньшей мере одну вторую смолу, содержащую высококристаллический гомополимер полипропилена или ударопрочный сополимер, по меньшей мере один нуклеирующий агент, по меньшей мере один порообразователь и по меньшей мере одну добавку, понижающую трение. По выбору может быть включено красящее вещество.

[0050] Состав может быть введен в экструдер через питающий бункер, такой, как показан на Фиг. 1. Во время процесса экструзии состав нагревается и плавится с образованием расплавленной смеси смолы. В иллюстративных вариантах осуществления по меньшей мере один физический порообразователь вводят в расплавленную смесь смолы через один или несколько входов в экструдере. Затем расплавленную смесь смолы и газ экструдируют через фильеру.

[0051] В другом иллюстративном варианте осуществления состав может содержать как по меньшей один химический порообразователь, так и по меньшей мере один физический порообразователь.

[0052] Стаканы или другие контейнеры или конструкции могут быть сформованы из листа согласно традиционным оборудованию и способам.

[0053] Исключительно в качестве неограничивающего примера будет описано формирование стакана из материала, раскрываемого в данном документе в иллюстративном варианте осуществления; однако контейнер может иметь любую из возможных форм или конструкций или предназначаться для различных применений, таких как, но не ограничиваясь этим, традиционный стакан для напитков, контейнер для хранения, бутылка и т.п. В качестве исключительно неограничивающего примера в качестве материала, который может вмещаться контейнером, будет использоваться жидкий напиток; однако контейнер может вмещать жидкости, твердые вещества, гели, их комбинации или другие материалы.

[0054] Способ 100 формирования материала показан, например, на Фиг. 1. В способе 100 формирования материала экструдируют неароматический полимерный материал в виде листа или полоски теплоизолирующего неароматического полимерного материала 82, как предложено на Фиг. 1. В качестве примера в способе 100 формирования материала используют методику двойной экструзии, в котором первый экструдер 111 и второй экструдер 112 взаимодействуют с целью экструзии полоски теплоизолирующего неароматического полимерного материала 82.

[0055] Как показано на Фиг. 1, состав 121 теплоизолирующего неароматического полимерного материала 82 загружают в питающий бункер 113, соединенный с первым экструдером 111. Состав 121 может быть в виде гранул, гранулярных чешуек, порошка или в других подходящих формах. Состав 121 теплоизолирующего неароматического полимерного материала 82 перемещается из питающего бункера 113 с помощью шнека 114, содержащегося в первом экструдере 111. Состав 121 преобразуется в расплавленную смолу 122 в первой экструзионной зоне первого экструдера 111 путем применения тепла 105 и давления шнека 114, как показано на Фиг. 1. В примерных вариантах осуществления физический порообразователь 115 может быть введен и смешан с расплавленной смолой 122 после формирования расплавленной смолы 122. В примерных вариантах осуществления, как обсуждается далее в данном документе, физический порообразователь может представлять собой газ, введенный в виде жидкости под давлением через вход 115А и смешиваемый с расплавленной смолой 122 с образованием расплавленной экструзионной смеси смолы 123, как показано на Фиг. 1.

[0056] Экструзионная смесь смолы 123 передвигается шнеком 114 во вторую экструзионную зону, включенную во второй экструдер 112, как показано на Фиг. 1. Там экструзионная смесь смолы 123 далее обрабатывается вторым экструдером 112 перед ее выходом через экструзионную фильеру 116, соединенную со вторым экструдером 112, с образованием экструдата 124. При прохождении экструзионной смеси смолы 123 через экструзионную фильеру 116 газ 115 выходит из раствора в экструзионной смеси смолы 123 и начинает образовывать ячейки и расширяться таким образом, что формируется экструдат 124. В качестве иллюстративного варианта осуществления, показанного на Фиг. 1, экструдат 124 может быть сформован с помощью круглой экструзионной фильеры 116 с образованием трубчатого экструдата. Продольный резак 117 разрезает экструдат 124 с получением листа или полоски 82 теплоизолирующего неароматического полимерного материала, как показано на Фиг. 1.

[0057] Экструдат означает материал, который выходит из экструзионной фильеры. Материал экструдата может быть в такой форме, как, например, но не ограничиваясь этим перечнем, лист, полоса, трубка, нить, катышек, гранула или другая структура, которая является результатом экструзии состава на основе полимера, как описывается здесь, через фильеру экструдера. Исключительно для целей иллюстрации в качестве характерной структуры экструдата, которая может быть сформована, будет рассмотрен лист, но подразумевается включение структур, приведенных в данном документе. Экструдат может быть далее сформован в любые конечные продукты, такие, как, но не ограничиваясь этим перечнем, стаканы, контейнеры, подносы, обертки, свернутые в рулон полоски теплоизолирующего ячеистого неароматического полимерного материала, и т.п.

[0058] В качестве примера, полоска 82 теплоизолирующего ячеистого неароматического полимерного материала свернута с образованием рулона теплоизолирующего ячеистого неароматического полимерного материала и хранится для последующего применения. Однако данное раскрытие охватывает применение полоски 82 теплоизолирующего ячеистого неароматического полимерного материала непосредственно сразу в процессе формования стакана. В одном иллюстративном примере, полоска 82 теплоизолирующего ячеистого неароматического полимерного материала ламинирована в оболочку, содержащую пленку и слой краски, напечатанный на пленке, для предоставления изображения высокого качества.

[0059] Теплоизолирующий стакан 10 сформован с использованием полоски 82 теплоизолирующего ячеистого неароматического полимерного материала, как показано на Фиг. 2 и 3. Теплоизолирующий стакан 10 включает, например, тело 11, содержащее боковую стенку 18 в форме рукава, и дно 20, соединяемое с телом 11 для объединения с боковой стенкой 18 для формирования внутренней области 14 для хранения пищевых продуктов, жидкости или любого подходящего продукта, как показано на Фиг.2. Тело 11 также содержит свернутый край 16, соединенный с верхним концом боковой стенки 18, и крепление дна 17, соединенное с нижним концом боковой стенки 18 и дном 20, как показано на Фиг. 2 и 7.

[0060] Тело 11 сформовано из полоски 82 теплоизолирующего ячеистого неароматического полимерного материала,