Способ и устройство для офтальмологических устройств, включающих в себя циклоидально ориентированные жидкокристаллические слои

Иллюстрации

Показать все

Группа изобретений относится к медицине. Устройство офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, расположенной в части оптической зоны устройства офтальмологической линзы, которая содержит: криволинейную переднюю и криволинейную заднюю поверхности, причем данные поверхности выполнены с возможностью формирования камеры; источник энергии, встроенный во вставку с изменяемыми оптическими свойствами на участке, содержащем неоптическую зону; и ориентирующий слой, содержащий участки жидкокристаллического материала, расположенный внутри камеры. Ориентирующий слой выполнен таким образом, чтобы центрирование молекул в ориентирующем слое взаимодействовало с жидкокристаллическими молекулами участков жидкокристаллического материала с образованием плавно изменяющейся структуры циклоидального типа через первую часть вставки с изменяемыми оптическими свойствами от первой ориентации в центре линзы до второй ориентации далее по радиальной оси. В вариантах устройства офтальмологической линзы содержатся электродные слои. Применение данной группы изобретений позволит расширить арсенал устройств контактных и интраокулярных линз. 6 н. и 34 з.п. ф-лы, 10 ил.

Реферат

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА СМЕЖНЫЕ ИЗОБРЕТЕНИЯ

Настоящая заявка испрашивает приоритет по предварительной заявке на патент №61/878723, поданной 17 сентября 2013 г.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

1. Область применения изобретения

Настоящее изобретение описывает устройство офтальмологической линзы с возможностью изменения оптических свойств и, более конкретно, в некоторых примерах осуществления - производство офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы.

2. Обсуждение смежной области

Традиционно офтальмологическая линза, такая как контактная или интраокулярная линза, обладает предварительно заданными оптическими характеристиками. Контактная линза, например, может предоставлять одну или более из следующих возможностей: коррекцию зрения; косметическое улучшение; и терапевтическое воздействие, но только в виде набора функций коррекции зрения. Каждая из перечисленных функций обусловлена определенной физической характеристикой линзы. По существу, конфигурация линзы с использованием светопреломляющих свойств позволяет корректировать характеристики зрения. Введение в материал линзы пигмента позволяет получить косметический эффект. Введение в линзу активного агента позволяет получить диагностическую и/или терапевтическую функциональность.

На сегодняшний день оптические характеристики офтальмологической линзы обусловлены ее физическими характеристиками. По существу, оптические свойства линзы определяют и затем внедряют в процессе ее изготовления, например, отливкой или токарной обработкой. После изготовления линзы ее оптические характеристики остаются постоянными. Однако для обеспечения аккомодации зрения для пользователя иногда может быть эффективно наличие более одной доступной оптической силы. В отличие от тех, кто пользуется очками и может менять очки для оптической коррекции, пользователи контактных либо интраокулярных линз до сих пор могли менять оптические характеристики, только прикладывая значительные усилия или используя очки в дополнение к контактным либо интраокулярным линзам.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Соответственно, настоящее изобретение включает в себя инновации, относящиеся к вставке с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы, которая может обладать энергообеспечением, может быть включена в офтальмологическое устройство и имеет возможность изменять оптические свойства устройства. Примеры таких офтальмологических устройств могут включать в себя контактную линзу или интраокулярную линзу. Кроме того, здесь представлены способы и устройство для изготовления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы. Ряд примеров осуществления также включает в себя литую силикон-гидрогелевую контактную линзу с жесткой или формуемой вставкой с энергообеспечением, которая дополнительно включает в себя часть с изменяемыми оптическими свойствами, причем вставка включена в офтальмологическую линзу биосовместимым образом. Формуемую вставку с энергообеспечением можно также поместить между двумя слоями независимо сформированного материала контактной линзы, такого как гидрогель.

Таким образом, настоящее изобретение включает в себя описание офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, устройства формирования офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, а также способов их производства. Источник энергии можно нанести или установить на вставку с изменяемыми оптическими свойствами, а вставку можно разместить вблизи первой части формы для литья и/или второй части формы для литья. Композицию, содержащую реакционную смесь мономера (далее - «реакционная смесь мономера»), помещают между первой частью формы для литья и второй частью формы для литья. Первую часть формы для литья располагают в непосредственной близости от второй части формы для литья, тем самым формируя полость линзы с несущей вставкой с энергообеспечением и по меньшей мере некоторым количеством реакционной смеси мономера в полости линзы; реакционную смесь мономера подвергают воздействию актиничного излучения для формирования офтальмологической линзы. Линзы формируют путем управления потоком актиничного излучения, которым облучают реакционную смесь мономера. В некоторых примерах осуществления край офтальмологической линзы или герметизирующий вставку слой содержит стандартные гидрогелевые составы для офтальмологической линзы. Примеры материалов с характеристиками, которые могут обеспечивать приемлемое сочетание со множеством материалов вставки, могут включать в себя, например, материалы семейства нарафилкона (включая нарафилкон A и нарафилкон B), семейства этафилкона (включая этафилкон A), галифилкон А и сенофилкон А.

Способы формирования вставки с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы, и полученные вставки представляют собой важные аспекты различных примеров настоящего изобретения. В ряде примеров жидкий кристалл можно размещать между ориентирующими слоями, которые могут устанавливать ориентацию покоя жидкого кристалла. В некоторых примерах ориентирующие слои можно структурировать различным образом. Формирование структуры ориентирующих слоев можно выполнить таким образом, чтобы центрирование молекул ориентирующих слоев взаимодействовало с жидкокристаллическими молекулами с образованием плавно изменяющейся структуры циклоидального типа от первой ориентации в центре линзы до второй ориентации далее по радиальной оси, где эта структура повторяется. В некоторых примерах, период повторения структуры можно варьировать для различных целей, таких как сжатие структуры вдоль направления оси до зависимости второго порядка или параболического характера. Другие сжатия или расширения различных порядков в радиальном измерении могут быть возможными. Плавно изменяющуюся структуру можно классифицировать как циклоидальную структуру, и поскольку ориентация жидкокристаллических молекул может изменяться в плоскости поверхности, эффективный показатель преломления света, проходящего через слой или ориентированный материал, может быть относительно постоянным. Тем не менее, циклоидальная структура из молекул может взаимодействовать со светом различным образом и, в частности, может порождать дифференциальные фазовые сдвиги для света правовращающей по сравнению с левовращающей круговой поляризацией. Ориентирующие слои могут находиться в электрической связи с источником энергии посредством электродов, нанесенных на слои подложки, содержащие часть с изменяемыми оптическими свойствами. Электроды могут получать энергообеспечение через промежуточное соединение с источником энергии или непосредственно через компоненты, встроенные во вставку.

Подача питания на электродные слои может вызвать сдвиг в жидком кристалле от ориентации покоя, которая может быть упорядочена в циклоидальную структуру, причем эта структура может называться структурой линзы с дифракционной волновой пластиной, до ориентации с энергообеспечением, в которой циклоидальная структура может отсутствовать. В примерах осуществления, использующих два уровня подачи питания, запитанный и незапитанный, жидкий кристалл имеет только одну ориентацию с энергообеспечением. Структура волновой пластины может быть сформирована в тонкие слои из жидкокристаллического материала с толщинами менее чем длина волны видимого света.

Результирующее центрирование и ориентация молекул воздействуют на свет, проходящий через жидкокристаллический слой, вызывая, таким образом, изменение во вставке с изменяемыми оптическими свойствами. Например, рефракционные или дифракционные свойства, получаемые в результате центрирования и ориентации, могут влиять на падающий свет. Кроме того, эффект может включать в себя изменение поляризации света или влиять на фазу света в зависимости от поляризации. Некоторые примеры могут включать в себя вставку с изменяемыми оптическими свойствами, в которой подача питания изменяет фокальные характеристики линзы.

В некоторых примерах жидкокристаллический слой может быть образован способом, при помощи которого вызывают полимеризацию полимеризуемой смеси, содержащей молекулы жидких кристаллов. Мономер(-ы), используемый(-ые) для образования полимерного матрикса, сами по себе могут содержать присоединенные жидкокристаллические части. Путем управления полимеризацией и введения молекул жидкого кристалла, не присоединенных к мономерным соединениям, можно сформировать матрикс из участков поперечно сшитого полимера, который будет включать в себя участки, где находятся отдельные молекулы жидких кристаллов. Терминологически, такую комбинацию поперечно сшитых полимеризованных молекул с внедренными в промежутки молекулами жидких кристаллов можно назвать сетевой конфигурацией. Ориентирующие слои могут контролировать центрирование молекул жидких кристаллов, прикрепленных к мономеру, таким образом, чтобы сеть из полимеризованного материала была центрирована с направляющими ориентирующими слоями. В некоторых примерах может присутствовать плавно изменяющаяся структура, формируемая различными способами в ориентирующие слои, которые затем могут воздействовать на молекулы жидких кристаллов или сети из жидкокристаллического материала с образованием циклоидальных структур. Присоединенные молекулы жидких кристаллов при полимеризации фиксируются в определенной ориентации, однако молекулы жидких кристаллов, внедренные в промежутки, могут свободно менять свою ориентацию в пространстве. При отсутствии внешнего воздействия свободные молекулы жидких кристаллов будут иметь центрирование, зависящее от матрикса центрированных молекул жидких кристаллов.

Соответственно, в некоторых примерах офтальмологическое устройство может быть сформировано путем введения вставки с изменяемыми оптическими свойствами, содержащей молекулы жидких кристаллов, внутрь офтальмологического устройства. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, которая может располагаться в оптической зоне офтальмологического устройства. Вставка с изменяемыми оптическими свойствами может содержать переднюю часть вставки и заднюю часть вставки. В некоторых примерах молекулы жидких кристаллов могут быть выстроены в структуру по меньшей мере в первой части вставки с изменяемыми оптическими свойствами, которая изменяется в циклоидальной последовательности. Также может быть показано, что ориентация главных осей показателя преломления по меньшей мере в первой части оптической вставки может изменяться с циклоидальным характером. Местоположения в ориентации жидкого кристалла, выстроенные вдоль радиальной оси по меньшей мере в первой части оптической вставки, могут иметь параболическую зависимость от радиального измерения. Местоположения центрирования по радиальной оси могут также называться местоположениями циклоидальных максимумов и могут быть устроены таким образом, что их местоположение относительно центра линзы может иметь главным образом параболическую зависимость от радиального расстояния или радиального измерения, а в некоторых примерах местоположение циклоидальных максимумов в циклоидальной структуре может иметь параболическую зависимость и параметрическую зависимость более высокого порядка от радиального расстояния от центра оптического устройства.

Любая или обе поверхности передней и задней части вставки могут быть искривлены различным образом, при этом в некоторых примерах радиус кривизны задней поверхности передней части вставки может почти совпадать с радиусом кривизны передней поверхности задней части вставки. В альтернативном способе описания, в некоторых примерах, передний элемент вставки может иметь поверхность с первой кривизной, а задний элемент вставки может иметь вторую поверхность со второй кривизной. В некоторых примерах первая кривизна может быть приблизительно такой же, как и вторая кривизна. Источник энергии можно включить в состав линзы и в состав вставки, а в некоторых примерах источник энергии можно разместить таким образом, чтобы по меньшей мере некоторая его часть находилась в неоптической зоне устройства.

В некоторых примерах слой с циклоидальной структурой, содержащий жидкокристаллический материал, может иметь способность вызывать оптический эффект, дополняющий эффект разных радиусов на поверхностях вставки. В некоторых примерах слой с циклоидальной структурой может принимать искривленную форму.

В некоторых примерах офтальмологическое устройство может представлять собой контактную линзу. В некоторых примерах офтальмологическое устройство может представлять собой интраокулярную линзу.

В некоторых примерах вставка офтальмологического устройства может содержать электроды, выполненные из различных материалов, включая прозрачные материалы, такие как оксид индия и олова (ITO), графен и оксиды графена в качестве примеров, не имеющих ограничительного характера. Первый электрод может быть размещен в непосредственной близости от задней поверхности переднего криволинейного элемента, при этом второй электрод может располагаться в непосредственной близости от передней поверхности заднего криволинейного элемента. Когда к первому и второму электродам прикладывают электрический потенциал, в жидкокристаллическом слое, размещенном между электродами, может образоваться электрическое поле. Приложение электрического поля к жидкокристаллическому слою может вызвать физической центрирование свободных молекул жидких кристаллов, находящихся в слое, с электрическим полем. В некоторых примерах свободные молекулы жидких кристаллов могут располагаться на промежуточных участках полимерной сети, а в некоторых примерах главная полимерная цепь может содержать химически связанные молекулы жидких кристаллов, которые можно центрировать в процессе полимеризации при помощи ориентирующих слоев. Когда молекулы жидкого кристалла центрируются с электрическим полем, такое центрирование может вызвать изменение оптических характеристик, при котором световой луч может восприниматься как проходящий через слой, содержащий молекулы жидких кристаллов, и может удалять циклоидальное структурирование. В качестве примера, не имеющего ограничительного характера, можно привести изменение коэффициента преломления, вызванное изменением центрирования. В некоторых примерах изменение оптических свойств может повлечь за собой изменение фокальных свойств линзы, которая содержит слой, содержащий молекулы жидких кристаллов, и может вызвать устранение циклоидального характера слоя.

В некоторых примерах описываемые офтальмологические устройства могут включать в себя процессор.

В некоторых примерах описываемые офтальмологические устройства могут включать в себя электрическую схему. Электрическая схема может контролировать или направлять электрический ток для обеспечения его протекания через офтальмологическое устройство. Электрическая схема может управлять электрическим током для обеспечения его протекания от источника энергии к первому или второму электродным элементам.

В некоторых вариантах осуществления устройство-вставка может содержать не только передний элемент вставки и задний элемент вставки. Между передней частью вставки и задней частью вставки можно размещать промежуточную часть или части. Например, слой, содержащий жидкий кристалл, может располагаться между передним элементом вставки и промежуточным элементом. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, которая может располагаться в оптической зоне офтальмологического устройства. Любая или обе поверхности передней, промежуточной и задней части вставки могут быть искривлены различным образом, при этом в некоторых примерах радиус кривизны задней поверхности передней части вставки может почти совпадать с радиусом кривизны передней поверхности промежуточной части вставки. Источник энергии можно включить в состав линзы и в состав вставки, а в некоторых примерах источник энергии можно разместить таким образом, чтобы по меньшей мере некоторая его часть находилась в неоптической зоне устройства.

Вставка с передней частью вставки, задней частью вставки и по меньшей мере первой промежуточной частью вставки может содержать по меньшей мере первую молекулу жидкого кристалла, и молекула или молекулы жидкого кристалла также могут находиться на участках полимерных сетей с внедренным в промежутки жидкокристаллическим материалом. В некоторых примерах может присутствовать плавно изменяющаяся структура, формируемая различными способами в ориентирующие слои, которые затем могут воздействовать на молекулы жидких кристаллов или сети из жидкокристаллического материала с образованием циклоидальных структур. В некоторых примерах циклоидальных структур местоположения в ориентации жидкого кристалла, центрированные по радиальной оси по меньшей мере в первой части оптической вставки, могут иметь параболическую зависимость от радиального измерения. Циклоидальная структура может иметь главным образом параболическую зависимость от радиального расстояния, а в некоторых примерах циклоидальная структура может иметь параболическую и параметрическую зависимость более высокого порядка от радиального расстояния от центра оптического устройства.

В некоторых примерах передняя часть вставки, задняя часть вставки и по меньшей мере первая промежуточная часть вставки офтальмологического устройства может представлять собой контактную линзу.

В некоторых примерах вставка офтальмологического устройства с передней частью вставки, задней частью вставки и по меньшей мере первой промежуточной частью вставки может содержать электроды, изготовленные из различных материалов, включая прозрачные материалы, такие как оксид индия и олова (ITO) в качестве примера, не имеющего ограничительного характера. Первый электрод может располагаться в непосредственной близости от задней поверхности переднего криволинейного элемента, при этом второй электрод может находиться в непосредственной близости от передней поверхности промежуточной части. Когда к первому и второму электродам прикладывают электрический потенциал, в жидкокристаллическом слое, размещенном между электродами, может образоваться электрическое поле. Приложение электрического поля к жидкокристаллическому слою может вызвать физическое центрирование молекул жидких кристаллов, находящихся в слое, с электрическим полем. В некоторых примерах молекулы жидких кристаллов могут располагаться на участках полимерных сетей с внедренным в промежутки жидкокристаллическим материалом. Когда молекулы жидких кристаллов центрируются в направлении электрического поля, такое центрирование может вызвать изменение оптических характеристик, при котором световой луч может восприниматься как проходящий через слой, содержащий молекулы жидких кристаллов. В качестве примера, не имеющего ограничительного характера, можно привести изменение коэффициента преломления, вызванное изменением центрирования. В некоторых примерах изменение оптических характеристик может привести к изменению фокальных свойств линзы, содержащей слой с молекулами жидких кристаллов.

В некоторых примерах промежуточная часть может содержать множество частей, соединенных вместе.

В некоторых примерах, где устройство-вставка может состоять из передней части вставки, задней части вставки и промежуточной части или частей, слой, содержащий жидкий кристалл, может располагаться между передней частью вставки и промежуточной частью или между промежуточной частью и задней частью вставки. Кроме того, поляризационный элемент также может размещаться внутри устройства-вставки с изменяемыми оптическими свойствами. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, которая может располагаться в оптической зоне офтальмологического устройства. Любая или обе поверхности передней, промежуточной и задней части вставки могут быть искривлены различным образом, при этом в некоторых примерах радиус кривизны задней поверхности передней части вставки может почти совпадать с радиусом кривизны передней поверхности промежуточной части вставки. Источник энергии можно включить в состав линзы и в состав вставки, а в некоторых примерах источник энергии можно разместить таким образом, чтобы по меньшей мере некоторая его часть находилась в неоптической зоне устройства.

В некоторых примерах можно ссылаться на поверхности внутри вставки с изменяемыми оптическими свойствами, а не на части. В некоторых примерах можно сформировать устройство офтальмологической линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Данные примеры могут включать в себя криволинейную переднюю поверхность и криволинейную заднюю поверхность. В некоторых примерах передняя поверхность и задняя поверхность могут быть выполнены с возможностью образования по меньшей мере одной камеры. Устройство офтальмологической линзы также может включать в себя источник энергии, встроенный во вставку по меньшей мере на участке, содержащем неоптическую зону. Устройство офтальмологической линзы также может включать в себя слой, содержащий жидкокристаллический материал, расположенный внутри камеры, причем слой включает в себя участки жидкокристаллического материала, ориентированные в циклоидальную структуру в плоскости локальной поверхности линзы. Устройство офтальмологической линзы также может включать в себя слой, где местоположения в ориентации жидкого кристалла, центрированные по радиальной оси по меньшей мере в первой части оптической вставки, могут иметь параболическую зависимость от радиального измерения.

В некоторых примерах можно сформировать устройство контактной линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Данные примеры могут включать в себя криволинейную переднюю поверхность и криволинейную заднюю поверхность. В некоторых примерах передняя поверхность и задняя поверхность могут быть выполнены с возможностью образования по меньшей мере первой камеры. Устройство контактной линзы также может включать в себя слой, содержащий жидкокристаллический материал, расположенный внутри камеры, причем этот слой включает в себя участки жидкокристаллического материала, выстроенные в циклоидальном порядке.

В некоторых примерах можно сформировать устройство контактной линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Устройство контактной линзы также может содержать слой, содержащий жидкокристаллический материал, расположенный внутри камеры, причем этот слой включает в себя участки жидкокристаллического материала, центрированного в циклоидальную структуру, и причем по меньшей мере первая поверхность слоя может быть криволинейной.

В некоторых примерах можно сформировать устройство офтальмологической линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Данные примеры могут включать в себя криволинейную переднюю поверхность и криволинейную заднюю поверхность. В некоторых примерах первая криволинейная передняя поверхность и первая криволинейная задняя поверхность могут быть выполнены с возможностью формирования по меньшей мере первой камеры. Вторая криволинейная передняя поверхность и вторая криволинейная задняя поверхность могут быть выполнены с возможностью формирования по меньшей мере второй камеры. Устройство офтальмологической линзы также может включать в себя слой, содержащий жидкокристаллический материал, расположенный внутри первой камеры, причем этот слой включает в себя участки жидкокристаллического материала, выстроенные в циклоидальном порядке. Устройство офтальмологической линзы также может включать в себя источник энергии, встроенный во вставку по меньшей мере на участке, содержащем неоптическую зону. В некоторых примерах офтальмологическая линза может представлять собой контактную линзу. В некоторых примерах офтальмологическая линза может представлять собой интраокулярную линзу.

В некоторых примерах можно сформировать устройство контактной линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Контактная линза может включать в себя криволинейную первую переднюю поверхность и криволинейную первую заднюю поверхность, причем первая передняя поверхность и первая задняя поверхность выполнены с возможностью формирования по меньшей мере первой камеры. Контактная линза также может содержать первый слой электродного материала в непосредственной близости от задней поверхности первой криволинейной передней поверхности. Контактная линза также может содержать второй слой электродного материала в непосредственной близости от передней поверхности первого заднего криволинейного элемента. Контактная линза также может включать в себя первый слой, содержащий жидкокристаллический материал, расположенный внутри первой камеры, причем слой включает в себя участки жидкокристаллического материала, выстроенные в структуру, в которой показатель преломления через по меньшей мере первую часть вставки с изменяемыми оптическими свойствами изменяется с радиальной зависимостью и в которой первый слой, содержащий жидкокристаллический материал, изменяет свой показатель преломления, влияющий на луч света, пересекающий первый слой жидкокристаллического материала, когда между первым слоем электродного материала и вторым слоем электродного материала прикладывают электрический потенциал. Устройство контактной линзы дополнительно может включать в себя вторую криволинейную переднюю поверхность и вторую криволинейную заднюю поверхность, причем вторая передняя поверхность и вторая задняя поверхность выполнены с возможностью формирования по меньшей мере второй камеры. Устройство контактной линзы также может содержать третий слой электродного материала в непосредственной близости от задней поверхности второй криволинейной передней поверхности и четвертый слой электродного материала в непосредственной близости от передней поверхности второго заднего криволинейного элемента. Также может быть включен второй слой, содержащий жидкокристаллический материал, расположенный внутри второй камеры, причем этот слой включает в себя участки жидкокристаллического материала, центрированные в циклоидальном порядке, и причем второй слой, содержащий жидкокристаллический материал, изменяет свой показатель преломления, влияющий на луч света, пересекающий первый слой жидкокристаллического материала, когда между третьим слоем электродного материала и четвертым слоем электродного материала прикладывают электрический потенциал. Введение электрического потенциала через слои электродного материала может стереть циклоидальную структуру в жидкокристаллическом слое вблизи электродов. Контактная линза также может включать в себя источник энергии, встроенный во вставку по меньшей мере на участке, содержащем неоптическую зону. Контактная линза также может включать в себя электрическую схему, содержащую процессор, причем электрическая схема управляет потоком электрической энергии, идущим от источника энергии к одному или более из первого, второго, третьего или четвертого электродных слоев. Кроме того, вставка с изменяемыми оптическими свойствами для контактной линзы также может изменять фокальные свойства офтальмологической линзы.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Указанные выше и прочие характеристики и преимущества настоящего изобретения наглядно представлены в следующем более подробном описании предпочтительных примеров настоящего изобретения, проиллюстрированных с помощью прилагаемых чертежей.

На Фиг. 1 представлен пример компонентов устройства узла формы для литья, которые могут быть подходящими для реализации некоторых примеров настоящего изобретения.

На Фиг. 2А и 2В представлен пример осуществления офтальмологической линзы с энергообеспечением и вставкой с изменяемыми оптическими свойствами.

На Фиг. 3 представлен вид в поперечном разрезе варианта осуществления устройства офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, в котором часть с изменяемыми оптическими свойствами может быть образована из циклоидально ориентированного жидкого кристалла.

На Фиг. 4A и 4B представлен пример взаимодействия ориентирующих слоев, которые могут ориентировать молекулы жидких кристаллов в плоскости поверхности, но с различными осевыми ориентациями.

На Фиг. 5A представлен пример дифракционной волновой пластины согласно настоящему описанию.

На Фиг. 5B представлен пример взаимодействия компонентов света с круговой поляризацией и дифракционных волновых пластин.

На Фиг. 5C представлен пример линзы с дифракционной волновой пластиной и модель для превращения примера дифракционной волновой пластины в пример линзы с дифракционной волновой пластиной.

На Фиг. 5D представлена структура, которая может возникнуть, когда линзу типа, изображенного на Фиг. 5C, помещают между скрещенными поляризаторами.

На Фиг. 5E показано, как линза с циклоидальной волновой пластиной может функционировать при различной поляризации света.

На Фиг. 5F представлен крупный план поперечного сечения примера вставки с изменяемыми оптическими свойствами, в которой часть с изменяемыми оптическими свойствами может быть образована из циклоидально ориентированных жидкокристаллических слоев в состоянии без энергообеспечения.

На Фиг. 5G представлен крупный план поперечного сечения примера вставки с изменяемыми оптическими свойствами, в которой часть с изменяемыми оптическими свойствами может быть образована из жидкокристаллических слоев в состоянии с энергообеспечением.

На Фиг. 6A представлены аспекты, связанные со способами и устройством, которые можно использовать для образования линз с циклоидальными волновыми пластинами.

На Фиг. 6B представлен альтернативный вариант осуществления линзы с изменяемыми оптическими свойствами, содержащей вставку, в которой части с изменяемыми оптическими свойствами могут быть образованы из линзы с циклоидальной волновой пластиной, участков молекул жидких кристаллов между элементами вставки особой формы и поляризационными слоями.

На Фиг. 7 представлены стадии способа для формирования офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, которая может быть образована из циклоидально центрированных участков молекул жидких кристаллов между элементами вставки особой формы.

На Фиг. 8 представлен пример компонентов устройства для помещения вставки с изменяемыми оптическими свойствами, образованной из циклоидально центрированных участков молекул жидких кристаллов между элементами вставки особой формы, в часть формы для литья офтальмологической линзы.

На Фиг. 9 представлен процессор, который можно использовать для реализации некоторых примеров настоящего изобретения.

На Фиг. 10 представлен вид в поперечном разрезе варианта осуществления устройства офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, в котором часть с изменяемыми оптическими свойствами может быть образована из циклоидально ориентированного жидкого кристалла.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение включает в себя способы и устройство, предназначенные для производства офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, причем часть с изменяемыми оптическими свойствами образована из жидкого кристалла или композитного материала, который сам содержит жидкокристаллические элементы. Кроме того, настоящее изобретение включает в себя офтальмологическую линзу со вставкой с изменяемыми оптическими свойствами, образованной из жидкого кристалла, встроенного в офтальмологическую линзу.

В соответствии с настоящим изобретением, сформирована офтальмологическая линза, содержащая встроенную вставку и источник энергии, такой как электрохимический элемент или аккумуляторная батарея в качестве средства для хранения энергии. В некоторых примерах материалы, содержащие источник энергии, можно герметизировать и изолировать от среды, в которую помещают офтальмологическую линзу. В некоторых примерах источник энергии может включать в себя электрохимический элемент, который можно использовать в первичной схеме или в схеме с перезарядкой.

Для изменения оптической части можно использовать регулирующее устройство, управляемое пользователем. Регулирующее устройство может включать в себя, например, электронное или пассивное устройство для увеличения или уменьшения напряжения на выходе или для подключения или отключения источника энергии. Некоторые примеры также могут включать в себя автоматизированное регулирующее устройство для изменения части с изменяемыми оптическими свойствами с помощью автоматизированного устройства в соответствии с измеренным параметром или данными, введенными пользователем. Пользователь может вводить данные, например, с помощью переключателя, управляемого беспроводным устройством. Беспроводное управление может включать в себя, например, радиочастотное управление, электромагнитное переключение, световое излучение с упорядоченной структурой и индуктивное переключение. В других примерах активация может происходить в ответ на воздействие биологической функции или в ответ на показания датчика внутри офтальмологической линзы. В других примерах, не имеющих ограничительного характера, активация может происходить также в результате изменения освещенности окружающей среды.

Изменение оптической силы происходит тогда, когда электрические поля, создаваемые подачей питания к электродам, вызывают перецентрирование внутри жидкокристаллического слоя, сдвигая, таким образом, молекулы из ориентации покоя в ориентацию с энергообеспечением. В других альтернативных примерах изобретения могут использоваться другие эффекты, вызванные изменением жидкокристаллических слоев за счет подачи питания к электродам, например, изменением состояния поляризации света, в частности, вращением плоскости поляризации.

В некоторых примерах с жидкокристаллическими слоями в неоптической зоне офтальмологической линзы могут присутствовать элементы с энергообеспечением, в то время как другие примеры не требуют подачи питания. В примерах, не требующих подачи питания, жидкий кристалл изменяется пассивно в результате воздействия какого-либо внешнего фактора, например, температуры окружающей среды или естественного освещения.

Альтернативный пример может предусматривать вариант, при котором физические элементы линзы, содержащие жидкокристаллические слои, меняют свою форму таким образом, чтобы обеспечивать изменение