Способ контроля дефектов и устройство контроля дефектов

Иллюстрации

Показать все

Использование: для контроля дефектов. Сущность изобретения заключается в том, что способ контроля дефектов включает в себя: первый процесс формирования ультразвуковых колебаний в поверхности стального листа; второй процесс обнаружения эхо-сигнала F и эхо-сигнала B в ультразвуковых колебаниях; третий процесс корректировки значения обнаружения эхо-сигнала B, обнаруженного на конце стального листа, на основе значения обнаружения эхо-сигнала B, обнаруженного в области общей оценки, причем область общей оценки является областью иной, чем конец стального листа; и четвертый процесс оценивания внутреннего дефекта стального листа на основе значения обнаружения эхо-сигнала F, полученного во втором процессе, и значения обнаружения эхо-сигнала B, скорректированного в третьем процессе на конце стального листа. Технический результат: обеспечение возможности точно обнаруживать отраженные волны в окрестности кромки контролируемого объекта при электромагнитной ультразвуковой дефектоскопии. 2 н. и 12 з.п. ф-лы, 21 ил., 1 табл.

Реферат

[ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ]

[0001] Настоящее изобретение относится к способу контроля дефектов и устройству контроля дефектов.

Приоритет испрашивается по Заявке на патент Японии № 2013-018560, поданной 1 февраля 2013 г., содержание которой включается в этот документ посредством ссылки.

[ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ]

[0002] В последние годы приобрел известность электромагнитный акустический преобразователь, который обнаруживает некий внутренний дефект (например, включение, внутреннюю трещину или дефект под воздействием водорода), например, у стального материала с использованием ультразвуковых волн бесконтактным способом. Например, Патентный документ 1 раскрывает электромагнитный акустический преобразователь (EMAT), включающий в себя постоянный магнит и катушку индуктивности, которая подходит для образования дефектоскопических импульсов и для приема отраженных импульсов. Патентный документ 2 раскрывает матричный электромагнитный акустический преобразователь (EMAT), включающий в себя намагничивающее устройство, которое прикладывает подмагничивающее поле к испытуемому материалу, и множество воспринимающих обмоток, которые передают ультразвуковые волны в испытуемый материал и принимают ультразвуковые волны, отраженные от испытуемого материала.

[СПИСОК ИСТОЧНИКОВ]

[ПАТЕНТНЫЙ ДОКУМЕНТ]

[0003] [Патентный документ 1] Патент Японии № 4842922

[Патентный документ 2] Нерассмотренная заявка на патент Японии, первая публикация № 2005-214686

[СУЩНОСТЬ ИЗОБРЕТЕНИЯ]

[ПРОБЛЕМЫ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ]

[0004] Однако авторы изобретения обнаружили проблему в том, что когда электромагнитный акустический преобразователь использовался для выполнения дефектоскопии испытуемого материала (контролируемого объекта), например стального листа, затухание отраженных волн в окрестности кромки испытуемого материала было больше затухания отраженных волн из области иной, чем окрестность кромки на этапе до того, как испытуемый материал разрезался под нужный размер изделия. В частности, затухание отраженных волн от нижней части в окрестности кромки значительно больше затухания отраженной волны от нижней части в области иной, чем окрестность кромки. Считается, что это обусловлено следующим: кристаллическая структура в окрестности кромки обладает свойствами, отличными от кристаллической структуры в области иной, чем окрестность кромки вследствие процесса прокатки или охлаждения, и возникает акустическая анизотропия в окрестности кромки. На электромагнитный акустический преобразователь существенно воздействует акустическая анизотропия, поскольку она формирует поперечные волны в испытуемом материале. Поэтому, когда внутренний дефект оценивается (классифицируется) на основе отношения отраженных волн от нижней части испытуемого материала и отраженных волн от внутреннего дефекта, затухание отраженных волн в окрестности кромки затрудняет точное оценивание внутреннего дефекта.

[0005] Изобретение создано в связи с вышеупомянутыми проблемами, и цель изобретения – предоставить новый и усовершенствованный способ контроля дефектов и новое и усовершенствованное устройство контроля дефектов, которые могут точно обнаруживать отраженные волны в окрестности кромки контролируемого объекта при электромагнитной ультразвуковой дефектоскопии.

[СРЕДСТВО ДЛЯ РЕШЕНИЯ ПРОБЛЕМЫ]

[0006] Настоящее изобретение принимает следующие меры для решения вышеописанных проблем.

(1) В соответствии с первым аспектом настоящего изобретения способ контроля дефектов включает в себя: первый процесс, в котором формируют ультразвуковые колебания в поверхности стального листа в направлении по ширине стального листа; второй процесс, в котором обнаруживают эхо-сигнал F и эхо-сигнал B в ультразвуковых колебаниях; третий процесс, в котором корректируют значение обнаружения эхо-сигнала B, обнаруженного на конце стального листа, на основе значения обнаружения эхо-сигнала B, обнаруженного в области общей оценки, причем область общей оценки является областью иной, чем конец стального листа в направлении по ширине стального листа; и четвертый процесс, в котором оценивают внутренний дефект стального листа на основе значения обнаружения эхо-сигнала F и значения обнаружения эхо-сигнала B, полученных во втором процессе в области общей оценки, и оценивают внутренний дефект на основе значения обнаружения эхо-сигнала F, полученного во втором процессе, и значения обнаружения эхо-сигнала B, скорректированного в третьем процессе на конце стального листа.

[0007] (2) В аспекте в соответствии с (1) третий процесс может включать в себя: вычисление опорного значения, соответствующего значению обнаружения эхо-сигнала B, обнаруженного, когда внутренний дефект отсутствует в области общей оценки, на основе значения обнаружения эхо-сигнала B, обнаруженного в области общей оценки; и корректировку значения обнаружения эхо-сигнала B, обнаруженного на конце стального листа, до значения, полученного путем вычитания заранее установленного заданного значения коррекции из опорного значения.

[0008] (3) В аспекте в соответствии с (2) заданное значение коррекции может быть значением разности между значением обнаружения эхо-сигнала B, которое получено опытным путем заранее, когда внутренний дефект отсутствует в области общей оценки, и значением обнаружения эхо-сигнала B, которое получено опытным путем заранее, когда в области общей оценки присутствует внутренний дефект со значительным уровнем дефекта.

[0009] (4) В аспекте в соответствии с (1) третий процесс может включать в себя: вычисление опорного значения, соответствующего значению обнаружения эхо-сигнала B, обнаруженного, когда внутренний дефект отсутствует в области общей оценки, на основе значения обнаружения эхо-сигнала B, обнаруженного в области общей оценки; вычисление заданного значения коррекции на основе опорного значения и значения обнаружения эхо-сигнала F, обнаруженного в области общей оценки; и корректировку значения обнаружения эхо-сигнала B, обнаруженного на конце стального листа, до значения, полученного путем вычитания заданного значения коррекции из опорного значения.

[0010] (5) В аспекте в соответствии с любым из (2) – (4) опорное значение может быть максимальным значением среди значений обнаружения эхо-сигнала B, обнаруженного в области общей оценки.

[0011] (6) В аспекте в соответствии с любым из (2) – (4) опорное значение может быть значением за исключением значения меньше заранее установленного значения среди значений обнаружения эхо-сигнала B, обнаруженного в области общей оценки.

[0012] (7) В аспекте в соответствии с любым из (2)–(4) опорное значение может быть средним значением или медианой значений за исключением значения меньше заранее установленного значения среди значений обнаружения эхо-сигнала B, обнаруженного в области общей оценки.

[0013] (8) В соответствии со вторым аспектом изобретения устройство контроля дефектов включает в себя: электромагнитный акустический преобразователь, который формирует ультразвуковые колебания в поверхности стального листа в направлении по ширине стального листа и включает в себя множество катушек, которые обнаруживают эхо-сигнал F и эхо-сигнал B в ультразвуковых колебаниях; блок исполнения коррекции, который корректирует значение обнаружения эхо-сигнала B, обнаруженного катушкой, включенной в конец стального листа, на основе значения обнаружения эхо-сигнала B, обнаруженного катушкой, включенной в область общей оценки, причем область общей оценки является областью иной, чем конец стального листа в направлении по ширине стального листа; блок вычисления F/B, который вычисляет отношение эхо-сигнала F к значению обнаружения эхо-сигнала B, обнаруженного катушкой, включенной в область общей оценки, и вычисляет отношение значения обнаружения эхо-сигнала F к значению обнаружения эхо-сигнала B, скорректированному блоком исполнения коррекции; и блок оценки дефекта, который оценивает внутренний дефект стального листа на основе этого отношения.

[0014] (9) В аспекте в соответствии с (8) блок исполнения коррекции может вычислить опорное значение, соответствующее значению обнаружения эхо-сигнала B, обнаруженного, когда внутренний дефект отсутствует в области общей оценки, на основе значения обнаружения эхо-сигнала B, обнаруженного катушкой, включенной в область общей оценки, и скорректировать значение обнаружения эхо-сигнала B, обнаруженного катушкой, включенной в конец стального листа, до значения, полученного путем вычитания опорного значения из заранее установленного заданного значения коррекции.

[0015] (10) В аспекте в соответствии с (9) заданное значение коррекции может быть значением разности между значением обнаружения эхо-сигнала B, которое получено опытным путем заранее, когда внутренний дефект отсутствует в области общей оценки, и значением обнаружения эхо-сигнала B, которое получено опытным путем заранее, когда в области общей оценки присутствует внутренний дефект со значительным уровнем дефекта.

[0016] (11) В аспекте в соответствии с (8) можно дополнительно включить блок вычисления значения коррекции, который вычисляет опорное значение, соответствующее значению обнаружения эхо-сигнала B, обнаруженного, когда внутренний дефект отсутствует в области общей оценки, на основе значения обнаружения эхо-сигнала B, обнаруженного катушкой, включенной в область общей оценки, и вычисляет заданное значение коррекции на основе опорного значения и значения обнаружения эхо-сигнала F, обнаруженного катушкой, включенной в область общей оценки. Блок исполнения коррекции может скорректировать значение обнаружения эхо-сигнала B, обнаруженного катушкой, включенной в конец стального листа, до значения, полученного путем вычитания заданного значения коррекции из опорного значения.

[0017] (12) В аспекте в соответствии с любым из (9) – (11) опорное значение может быть максимальным значением среди значений обнаружения эхо-сигнала B, обнаруженного катушками, включенными в область общей оценки.

[0018] (13) В аспекте в соответствии с любым из (9)–(11) опорное значение может быть значением за исключением значения меньше заранее установленного значения среди значений обнаружения эхо-сигнала B, обнаруженного катушками, включенными в область общей оценки.

[0019] (14) В аспекте в соответствии с любым из (9) – (11) опорное значение может быть средним значением или медианой значений за исключением значения меньше заранее установленного значения среди значений обнаружения эхо-сигнала B, обнаруженного катушками, включенными в область общей оценки.

[РЕЗУЛЬТАТЫ ИЗОБРЕТЕНИЯ]

[0020] В соответствии с каждым из вышеупомянутых аспектов можно точно обнаруживать отраженные волны в окрестности кромки контролируемого объекта при электромагнитной ультразвуковой дефектоскопии.

[КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ]

[0021] Фиг. 1 – схематическое представление, показывающее конфигурацию электромагнитного ультразвукового устройства в соответствии с первым вариантом осуществления изобретения.

Фиг. 2 – схематическое представление, показывающее конфигурацию электромагнитного ультразвукового устройства, если смотреть из направления Y фиг. 1.

Фиг. 3A – диаграмма характеристик, показывающая положение обнаружения дефекта стального листа и интенсивность сигнала (эхо-сигнала F и эхо-сигнала B), обнаруженную электромагнитным акустическим преобразователем.

Фиг. 3B – диаграмма характеристик, показывающая положение обнаружения дефекта стального листа и интенсивность сигнала (отношение F/B), обнаруженную электромагнитным акустическим преобразователем.

Фиг. 4 – схематическое представление, показывающее карту дефектов стального листа.

Фиг. 5 – схематическое представление, показывающее аспект, в котором ультразвуковые волны, сформированные в стальном листе, распространяются внутри стального листа.

Фиг. 6 – вид сверху, показывающий катушки 1–3, предусмотренные в электромагнитном акустическом преобразователе 102, если смотреть из направления Z фиг. 5.

Фиг. 7 – диаграмма характеристик, показывающая эхо-сигнал B в окрестности кромки стального листа и отношение F/B, когда дефектоскопия выполняется над стальным листом без внутреннего дефекта.

Фиг. 8A – диаграмма характеристик, показывающая эхо-сигнал B и эхо-сигнал F в области иной, чем окрестность кромки.

Фиг. 8B – диаграмма характеристик, показывающая эхо-сигнал B и эхо-сигнал F в окрестности кромки.

Фиг. 8C – диаграмма характеристик, показывающая отношение F/B в области иной, чем окрестность кромки.

Фиг. 8D – диаграмма характеристик, показывающая отношение F/B в окрестности кромки.

Фиг. 9A – диаграмма характеристик, показывающая способ коррекции в соответствии с первым вариантом осуществления.

Фиг. 9B – диаграмма характеристик, показывающая отношение F/B в области иной, чем окрестность кромки и отношение F/B в окрестности кромки, которое вычисляется по способу коррекции в соответствии с первым вариантом осуществления.

Фиг. 10 – диаграмма характеристик, показывающая связь между размером внутреннего дефекта (горизонтальная ось) и отношением F/B (вертикальная ось).

Фиг. 11 – блок-схема алгоритма, показывающая процесс коррекции значения обнаружения эхо-сигнала B в соответствии с первым вариантом осуществления.

Фиг. 12A – диаграмма характеристик, показывающая способ коррекции в соответствии со вторым вариантом осуществления.

Фиг. 12B – диаграмма характеристик, показывающая отношение F/B в области иной, чем окрестность кромки и отношение F/B в окрестности кромки, которое вычисляется по способу коррекции в соответствии со вторым вариантом осуществления.

Фиг. 13 – диаграмма характеристик, показывающая связь между F/Bmax и уменьшением эхо-сигнала B, которые получаются из сигналов обнаружения внутренних дефектов с разными размерами, которые заранее подвергаются дефектоскопическому испытанию.

Фиг. 14 – диаграмма характеристик, показывающая связь между значением эхо-сигнала F и уменьшением эхо-сигнала B.

Фиг. 15 – блок-схема алгоритма, показывающая способ коррекции в соответствии со вторым вариантом осуществления.

[ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ]

[0022] Ниже будут подробно описываться предпочтительные варианты осуществления изобретения со ссылкой на чертежи. В описании изобретения и на чертежах одинаковые номера ссылок назначаются одинаковым компонентам, обладающим практически одинаковыми функциями и конфигурациями, и их совпадающие описания пропускаются.

[0023] (ПЕРВЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ)

[ПРИМЕР КОНФИГУРАЦИИ ЭЛЕКТРОМАГНИТНОГО УЛЬТРАЗВУКОВОГО УСТРОЙСТВА]

Сначала со ссылкой на фиг. 1 и 2 будет описываться конфигурация электромагнитного ультразвукового устройства 100 (устройства контроля дефектов) в соответствии с первым вариантом осуществления изобретения. Фиг. 1 – схематическое представление, показывающее конфигурацию электромагнитного ультразвукового устройства 100. Электромагнитное ультразвуковое устройство 100 включает в себя электромагнитные акустические преобразователи 102, усилители 104 (не показаны на фиг. 1), измерительный валик 106, датчик 108 обнаружения края, арифметическое устройство 110, устройство 120 отображения и устройство 130 сигнализации.

[0024] Стальной лист 200, который является целью контроля дефектов, размещается на столе прохождения листа (не показан) и перемещается в направлении X фиг. 1 путем приведения в действие ролика в столе прохождения листа. Электромагнитный акустический преобразователь 102 обнаруживает внутренний дефект 202 стального листа 200. Множество электромагнитных акустических преобразователей 102 размещается в направлении по ширине (направлении Y фиг. 1) стального листа 200. Как показано на фиг. 1, два ряда электромагнитных акустических преобразователей 102 размещают в направлении перемещения (направлении X фиг. 1) стального листа 200. Восемь электромагнитных акустических преобразователей 102 размещаются в каждом из ряда (переднего ряда), который находится на передней (выходной) стороне в направлении X перемещения, и ряда (заднего ряда), который находится на задней (входной) стороне в направлении X перемещения. К тому же восемь электромагнитных акустических преобразователей 102 в переднем и заднем рядах размещаются в разных положениях в направлении Y по ширине стального листа 200. Электромагнитный акустический преобразователь 102 в заднем ряду располагается между соседними электромагнитными акустическими преобразователями 102 в переднем ряду. Поэтому электромагнитные акустические преобразователи 102 в заднем ряду, которые располагаются между электромагнитными акустическими преобразователями 102 в переднем ряду, могут надежно обнаружить внутренний дефект 202, который нельзя обнаружить электромагнитными акустическими преобразователями 102 в переднем ряду. К тому же показанный на фиг. 1 электромагнитный акустический преобразователь 102X указывает крайний электромагнитный акустический преобразователь 102 в направлении Y по ширине стального листа 200. Электромагнитный акустический преобразователь 102X будет описываться ниже.

[0025] Фиг. 2 – схематическое представление, показывающее конфигурацию электромагнитного ультразвукового устройства 100, если смотреть из направления Y фиг. 1. Как показано на фиг. 2, электромагнитный акустический преобразователь 102 размещается над стальным листом 200, чтобы находиться близко к стальному листу 200. Воздух поступает из нижней части электромагнитного акустического преобразователя 102 на стальной лист 200, и зазор (расстояние) между нижней частью электромагнитного акустического преобразователя 102 и поверхностью 200a стального листа 200 доводится приблизительно до 0,5 мм с помощью воздуха. Усилитель 104 размещается над электромагнитным акустическим преобразователем 102 и усиливает сигнал обнаружения от электромагнитного акустического преобразователя 102. На фиг. 1 усилитель 104 не показан.

[0026] Электромагнитный акустический преобразователь 102 формирует ультразвуковые колебания в поверхности 200a (первая поверхность) стального листа 200 и с использованием катушек обнаруживает вихревой ток, который формируется колебаниями ультразвуковых волн, отраженных от нижней части 200b (вторая поверхность) стального листа 200 в статическом магнитном поле. Затем обнаруживается уровень эхо-сигнала (эхо-сигнала B) ультразвуковых волн, отраженных от нижней части 200b. Когда в стальном листе 200 возникает внутренний дефект 202, показанный на фиг. 1, ультразвуковые волны отражаются от внутреннего дефекта 202, и электромагнитный акустический преобразователь 102 обнаруживает ультразвуковые волны, отраженные от внутреннего дефекта 202. Таким образом, обнаруживается уровень эхо-сигнала (эхо-сигнала F) ультразвуковых волн, отраженных от внутреннего дефекта 202. По существу, в случае, где в стальном листе 200 возникает внутренний дефект 202, уровень эхо-сигнала ультразвуковых волн изменяется по сравнению со случаем, в котором внутренний дефект 202 не возникает в стальном листе 200. Поэтому можно оценить (классифицировать) внутренний дефект 202 из отношения (отношения F/B) эхо-сигнала F к эхо-сигналу B. В отношении F/B B означает значение (интенсивность сигнала) эхо-сигнала B, а F означает значение (интенсивность сигнала) эхо-сигнала F.

[0027] Арифметическое устройство 110 обладает функцией подвода тока высокой частоты (высокочастотного сигнала) к каждому электромагнитному акустическому преобразователю 102. То есть арифметическое устройство 110 подводит ток высокой частоты для формирования ультразвуковых колебаний в стальном листе 200 к восьми катушкам, предусмотренным в каждом электромагнитном акустическом преобразователе 102.

Арифметическое устройство 110 оценивает внутренний дефект 202 из отношения (отношения F/B) эхо-сигнала F к эхо-сигналу B. Как показано на фиг. 1, арифметическое устройство 110 включает в себя блок 112 исполнения коррекции, блок 114 вычисления значения коррекции, блок 116 вычисления F/B, блок 118 оценки дефекта и запоминающее устройство 119 значений коррекции. Функции каждого компонента арифметического устройства 110 будут описываться ниже.

[0028] Устройство 120 отображения отображает уровень внутреннего дефекта 202 и положение внутреннего дефекта 202. Устройство 130 сигнализации выдает предупреждение, когда уровень внутреннего дефекта 202 выше опорного уровня. Стальной лист 200, у которого обнаруживается внутренний дефект 202 с уровнем выше опорного уровня, отделяется от общего пути перемещения, и выполняется дополнительный контроль внутреннего дефекта 202.

[0029] Фиг. 3A – диаграмма характеристик, показывающая положение обнаружения дефекта стального листа 200 в направлении X перемещения и интенсивность сигнала у эхо-сигнала F и эхо-сигнала B, полученную путем обнаружения в электромагнитном акустическом преобразователе 102. Фиг. 3B – диаграмма характеристик, показывающая интенсивность сигнала у отношения F/B. Как показано на фиг. 3A, в случае, где в стальном листе 200 возникает внутренний дефект 202, значение эхо-сигнала F увеличивается, а значение эхо-сигнала B уменьшается в соответствии с размером внутреннего дефекта 202. Поэтому, как показано на фиг. 3B, в положении обнаружения, где возникает внутренний дефект 202, значение отношения F/B увеличивается по сравнению с положением обнаружения, где внутренний дефект 202 не возникает. Когда размер внутреннего дефекта 202 увеличивается, значение эхо-сигнала F увеличивается, а значение эхо-сигнала B уменьшается. В результате увеличивается значение отношения F/B. Поэтому на основе значения отношения F/B можно обнаружить, возникает ли внутренний дефект 202, и оценить размер внутреннего дефекта 202. К тому же, когда изменяется зазор между нижней частью электромагнитного акустического преобразователя 102 и поверхностью 200a стального листа 200, изменяются значения эхо-сигнала B и эхо-сигнала F. Вычисление отношения F/B позволяет компенсировать изменение эхо-сигнала B и эхо-сигнала F вследствие изменения зазора. К тому же, поскольку внутренний дефект 202 оценивается на основе значения отношения F/B, можно подавить шум, даже когда шум включается в эхо-сигнал F и эхо-сигнал B. Поэтому можно с высокой точностью оценить внутренний дефект 202.

[0030] Сигналы обнаружения от множества электромагнитных акустических преобразователей 102, которые размещаются в направлении Y по ширине стального листа 200, и сигнал положения от измерительного валика 106, который измеряет положение от края стального листа 200, передаются в арифметическое устройство 110. Датчик 108 обнаружения края обнаруживает положение края стального листа 200. Положение края является исходным положением, когда измерительный валик 106 обнаруживает положение стального листа 200. Арифметическое устройство 110 синхронизирует сигнал отношения F/B с сигналом положения, чтобы создать карту дефектов, указывающую положение внутреннего дефекта 202, который возникает в стальном листе 200, как показано на фиг. 4.

[0031] Длина (ширина) одного электромагнитного акустического преобразователя 102 в направлении Y по ширине стального листа составляет приблизительно 100 мм, и сложно установить в ноль расстояние между соседними электромагнитными акустическими преобразователями 102. Поэтому, чтобы контролировать всю область, которая описана выше, два ряда электромагнитных акустических преобразователей 102 размещают в направлении X перемещения стального листа, так что положения двух рядов электромагнитных акустических преобразователей 102 в направлении Y по ширине стального листа 200 отличаются друг от друга (так называемое шахматное расположение). Здесь зазор между передним и задним рядами электромагнитных акустических преобразователей 102 находится в диапазоне от 0,5 м до 1,5 м.

[0032] Арифметическое устройство 110 синхронизирует сигналы обнаружения от множества электромагнитных акустических преобразователей 102, которые размещаются таким образом, с положением стального листа 200, который движется на столе прохождения листа, чтобы распознать точное положение дефекта, и создает показанную на фиг. 4 карту дефектов. Карта дефектов отображается на устройстве 120 отображения. Поэтому можно сразу проверить положение внутреннего дефекта 202 в стальном листе 200 и длину внутреннего дефекта 202.

[0033] [ВЛИЯНИЕ СОСЕДНИХ КАТУШЕК НА ЗНАЧЕНИЕ ОБНАРУЖЕНИЯ]

ФИГ. 5 – схематическое представление, показывающее аспект, в котором ультразвуковые колебания, которые формируются электромагнитным акустическим преобразователем 102 в поверхности 200a стального листа 200, распространяются внутри стального листа 200. В этом варианте осуществления каждый электромагнитный акустический преобразователь 102 включает в себя восемь катушек, которые размещаются рядом друг с другом. Однако для удобства объяснения на фиг. 5 показаны три катушки. Как показано на фиг. 5, в одном электромагнитном акустическом преобразователе 102 размещается множество катушек с 1 по 3, которые формируют ультразвуковые волны. Катушки с 1 по 3 формируют ультразвуковые колебания в поверхности 200a стального листа 200 и принимают ультразвуковые волны, отраженные от нижней части 200b стального листа 200 и внутреннего дефекта 202, будучи синхронизированными друг с другом.

Фиг. 6 – вид сверху, показывающий три катушки 1–3, если смотреть из направления Z фиг. 5. На фиг. 5 для удобства иллюстрации три катушки 1–3 размещаются с заранее установленными интервалами, чтобы не перекрывать друг друга. Однако на практике, как показано на фиг. 6, три катушки 1–3 размещаются рядом друг с другом, чтобы частично перекрывать друг друга. К тому же восемь катушек (катушки с 1 по 8), включая три катушки с 1 по 3, размещаются на линии на печатной плате (гибкие печатные схемы) (не показано).

Ширина каждой катушки составляет, например, 10 мм. Количество катушек, предусмотренных в каждом электромагнитном акустическом преобразователе 102, и их ширина особо не ограничиваются и могут устанавливаться подходящим образом в соответствии, например, с эффективностью обнаружения.

[0034] Как показано на фиг. 5, электромагнитный акустический преобразователь 102 снабжается постоянными магнитами 102a, соответствующими катушкам 1–3. Фиг. 5 показывает только постоянный магнит 102a, соответствующий катушке 2. Будет описываться катушка 2. Когда ток высокой частоты течет в катушку 2, в поверхности 200a стального листа 200 формируется магнитное поле M1, которое изменяется с высокой частотой. Затем в поверхности 200a стального листа 200 формируется наведенный ток I1 в направлении, в котором он компенсирует магнитное поле M1. Затем наведенный ток I1 течет в проводник (стальной лист 200) в статическом магнитном поле M2, сформированном постоянным магнитом 102a, и формируется сила F Лоренца. Сила F Лоренца меняется синхронно с током высокой частоты, который течет в катушку 2. Поэтому поверхность 200a стального листа 200 колеблется вследствие силы F Лоренца, и формируется ультразвуковая волна 300.

[0035] Как показано на фиг. 5, ультразвуковая волна 300, которая формируется в поверхности 200a стального листа 200, отражается от нижней части 200b стального листа 200. Катушка 2 принимает уровень эхо-сигнала (эхо-сигнала B) ультразвуковой волны 301, отраженной от нижней части 200b. Сформированная катушкой 2 ультразвуковая волна 300 также отражается от внутреннего дефекта 202. Катушка 2 также обнаруживает уровень эхо-сигнала (эхо-сигнала F) ультразвуковой волны 302, отраженной от внутреннего дефекта 202. Катушка 2 обнаруживает вихревой ток, который формируется колебаниями ультразвуковой волны 301, отраженной от нижней части 200b, и ультразвуковой волны 302, отраженной от внутреннего дефекта 202, в статическом магнитном поле постоянного магнита 102a, чтобы обнаружить эхо-сигнал B и эхо-сигнал F.

[0036] Аналогичным образом другие катушки формируют ультразвуковые колебания в поверхности 200a стального листа 200 и обнаруживают эхо-сигнал B и эхо-сигнал F.

[0037] [ХАРАКТЕРИСТИКИ ЗНАЧЕНИЯ ОБНАРУЖЕНИЯ В ОКРЕСТНОСТИ КРОМКИ СТАЛЬНОГО ЛИСТА]

Как описано выше, кристаллическая структура конца (в окрестности кромки) стального листа 200 в направлении Y по ширине обладает характеристиками, отличными от кристаллической структуры центральной части стального листа 200 вследствие влияния прокатки или охлаждения. Фиг. 7 – диаграмма характеристик, показывающая связь между эхо-сигналом B или отношением F/B и расстоянием от кромки стального листа, когда контролируется стальной лист 200 без внутреннего дефекта 202, то есть бездефектный стальной лист 200. Здесь будет описываться случай, в котором дефектоскопия выполняется крайним электромагнитным акустическим преобразователем 102X в направлении Y по ширине стального листа 200, показанным на фиг. 1. На фиг. 7 горизонтальная ось указывает расстояние x катушек 1–13 от кромки, а вертикальная ось указывает уровень эхо-сигнала B и значение (дБ) отношения F/B, обнаруженного катушками 1–13. На фиг. 7 катушки с 1 по 8 предоставляются в электромагнитном акустическом преобразователе 102X, а катушки с 9 по 13 предоставляются в электромагнитном акустическом преобразователе 102 рядом с электромагнитным акустическим преобразователем 102X. К тому же фиг. 7 показывает случай, в котором в стальном листе 200 не возникает внутренний дефект 202. Поэтому показанное на фиг. 7 отношение F/B является отношением шума к эхо-сигналу B.

[0038] Как описано выше, каждый электромагнитный акустический преобразователь 102 включает в себя восемь катушек с 1 по 8. Как показано на фиг. 7, катушка 1 электромагнитного акустического преобразователя 102X располагается на кромке (x = 0), а катушки с 2 по 13 размещаются вдали от кромки стального листа 200 к центру (внутрь) в направлении по ширине. Катушки 7 и 9 размещаются, чтобы перекрывать друг друга, и катушки 8 и 10 размещаются, чтобы перекрывать друг друга.

[0039] Как показано на фиг. 7, значение обнаружения эхо-сигнала B от катушки в окрестности кромки уменьшается (затухает) по сравнению со значением обнаружения от катушки иной, чем катушка в окрестности кромки. В частности, значения обнаружения от катушек 1 и 2 в окрестности кромки затухают по сравнению со значениями обнаружения от катушек с 3 по 8. Когда значение эхо-сигнала B в окрестности кромки затухает, значение отношения F/B в окрестности кромки больше значения отношения F/B в области иной, чем окрестность кромки. Поэтому, когда внутренний дефект 202 оценивается на основе отношения F/B, в некоторых случаях стальной лист 200 определяется имеющим внутренний дефект 202, даже если у него нет никакого дефекта, в результате стальной лист не проходит контроль. Здесь область иная, чем окрестность кромки (конца), также называется областью общей оценки.

[0040] Далее это будет подробно описываться со ссылкой на фиг. 8A–8D. Фиг. 8A и 8B – диаграммы характеристик, показывающие значения обнаружения эхо-сигнала B и эхо-сигнала F. Фиг. 8A показывает характеристики катушек (соответствующих катушкам 3–8, показанным на фиг. 7) электромагнитного акустического преобразователя 102X в области иной, чем кромка стального листа 200, а фиг. 8B показывает характеристики катушек (соответствующих катушкам 1 и 2, показанным на фиг. 7) в окрестности кромки. Фиг. 8C и 8D показывают значение отношения F/B, вычисленное из значений обнаружения эхо-сигнала B и эхо-сигнала F, показанных на фиг. 8A и 8B. Фиг. 8C показывает значение отношения F/B в области иной, чем окрестность кромки, а фиг. 8D показывает значение отношения F/B в окрестности кромки.

[0041] В JIS G0801 оценка внутреннего дефекта 202 при ультразвуковой дефектоскопии классифицируется на три уровня, а именно O, Δ и X, в соответствии с уровнем обнаружения. На основе этой классификации на фиг. 8A и 8B дефекты классифицируются на легкий дефект (уровень O), средний дефект (уровень Δ) и значительный дефект (уровень X или уровень XX) в качестве уровней внутреннего дефекта 202 в возрастающем порядке размера дефекта. Для значительного дефекта размер дефекта с уровнем XX больше размера дефекта с уровнем X. Чтобы отличать уровень XX от уровня X, уровень XX в дальнейшем называется критическим дефектом.

[0042] Как показано на фиг. 8A, в катушках 3–8, предусмотренных внутри (в области иной, чем окрестность кромки) электромагнитного акустического преобразователя 102X, когда обнаруживается внутренний дефект 202, эхо-сигнал F увеличивается, а эхо-сигнал B уменьшается в соответствии с размером внутреннего дефекта 202. Тогда, как показано на диаграмме характеристик из фиг. 8C, значение отношения F/B меняется в зависимости от размера внутреннего дефекта 202. Когда значение отношения F/B больше либо равно пороговому значению T1 и меньше порогового значения T2, внутренний дефект 202 определяется как легкий дефект (уровень O). Когда значение отношения F/B больше либо равно пороговому значению T2 и меньше порогового значения T3, внутренний дефект 202 определяется как средний дефект (уровень Δ). Когда значение отношения F/B больше либо равно пороговому значению T3, внутренний дефект 202 определяется как значительный дефект (уровень X) или критический дефект (уровень XX). По существу, в катушках 3–8, предусмотренных внутри электромагнитного акустического преобразователя 102X, поскольку не возникает затухание эхо-сигнала B, описанное со ссылкой на фиг. 7, можно определить уровень внутреннего дефекта 202 на основе значения отношения F/B.

[0043] В отличие от этого, как показано на фиг. 7 и фиг. 8B, значение эхо-сигнала B затухает в катушках 1 и 2 в окрестности кромки. Фиг. 8B показывает случай, в котором затухание эхо-сигнала B равно D в окрестности кромки стального листа 200. Поэтому, как показано на фиг. 8D, значение отношения F/B в окрестности кромки в целом увеличивается по сравнению со значением отношения F/B в области иной, чем окрестность кромки. В результате стальной лист 200, которые следует определить не имеющим внутреннего дефекта, признается имеющим внутренний дефект с уровнем среднего дефекта (уровень Δ) или больше, и возникает ошибка определения.

[0044] В первом варианте осуществления, чтобы предотвратить ошибку определения, не используются значения обнаружения эхо-сигнала B, обнаруженного катушками 1 и 2, которые предоставляются в окрестности кромки стального листа 200 в электромагнитном акустическом преобразователе 102X, а эхо-сигнал B (от катушек 1 и 2) в окрестности кромки корректируется с использованием значения на основе эхо-сигнала B от катушек 3 – 8, расположенных в области иной, чем окрестность кромки в электромагнитном акустическом преобразователе 102X. С другой стороны, для эхо-сигнала F используются значения обнаружения от катушек 1 и 2 в окрестности кромки, и отношение F/B вычисляется на основе эхо-сигнала F, обнаруженного катушками 1 и 2 в окрестности кромки, и скорректированного эхо-сигнала B. Причина того, почему используется эхо-сигнал B от катушек 3–8, расположенных в области иной, чем окрестность кромки в электромагнитном акустическом преобразователе 102X, выглядит следующим образом. Когда используются одинаковые электромагнитные акустические преобразователи, зазор или температура стального листа практически одинакова. Поэтому изменение уровня эхо-сигнала B вследствие зазора или температуры одинаково.

[0045] [ПРИМЕР ПОДРОБНОЙ СТРУКТУРЫ ИЗ ПЕРВОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ]

Как показано на фиг. 3A, эхо-сигнал F увеличивается в соответствии с размером внутреннего дефекта 202, а эхо-сигнал B уменьшается. С другой стороны, когда не возникает внутренний дефект 202, не возникает и уменьшение эхо-сигнала B вследствие внутреннего дефекта 202. Поэтому в случае, в котором внутренний дефект 202 возникает непосредственно под катушкой, предусмотренной в окрестности кромки, и внутренний дефект 202 не возникает непосредственно под катушкой, предусмотренной в области иной, чем окрестность кромки, когда эхо-сигнал B от катушек 1 и 2 в окрестности кромки просто заменяется эхо-сигналом B от катушек 3–8 в области иной, чем окрестность кромки, предполагается, что значение отношения F/B у катушек 1 и 2 в окрестности кромки слишком мало, и внутренний дефект 202 сложно обнаружить.

[0046] По этой причине в первом варианте осуществления при предварительном испытании выполняется дефектоскопия над образцом для испытаний (лист с искусственным дефектом), в котором создается искусственный дефект, чтобы заранее вычислить размер искусственного дефекта и уменьшение B’ эхо-сигнала B. Таким образом, можно получить уменьшение B’ эхо-сигнала B по отношению к размеру внутреннего дефекта 202. Эхо-сигнал B от катушек 1 и 2 в окрестности кромки корректируется с помощью следующего Уравнения (1).

Ba=Bmax -