Пористый неорганический композитный оксид

Иллюстрации

Показать все

Изобретение относится к пористому неорганическому композитному оксиду, предназначенному для использования в качестве материала подложки для катализатора, включающему оксиды алюминия и церия, или оксиды алюминия и циркония, или оксиды алюминия, церия и циркония и необязательно один или более оксидов допирующих элементов, выбранных из переходных металлов, редкоземельных металлов и их смесей, причем указанный неорганический композитный оксид имеет: (a) удельную площадь поверхности после прокаливания при 1100°C в течение 5 часов, больше или равную площади, вычисленной согласно уравнению SA=0,8235[Al]+11,157, в котором: SA представляет собой удельную площадь поверхности неорганического композитного оксида по БЭТ, в квадратных метрах на грамм, и [Al] представляет собой количество оксидов алюминия в композитном оксиде, выраженное в виде массовых долей Al2O3 на 100 массовых долей композитного оксида, и (b) общий объем пор после прокаливания при 900°С в течение 2 часов, больше или равный объему, вычисленному согласно уравнению PV=0,0097[Al]+0,0647 в котором PV представляет собой объем пор неорганического композитного оксида, в кубических сантиметрах на грамм, при этом композитный оксид включает, в каждом случае в количестве, выраженном в виде массовой доли отдельного бинарного оксида соответствующего элемента на 100 массовых долей композитного оксида: (a) примерно от 20 до 98 массовых долей Al2O3, и (b) (i) примерно от 2 до 80 массовых долей ZrO2, или (b)(ii) примерно от 2 до 80 массовых долей CeO2, или (b) (iii) примерно от 2 до менее чем 78 массовых долей ZrO2 и от 2 до 78 массовых долей CeO2 при условии, что объединенное количество ZrO2 и CeO2 не превышает 80 массовых долей, и (c) необязательно вплоть до примерно 15 массовых долей оксидов одного или более допирующих элементов, выбранных из переходных металлов, редкоземельных металлов и их смесей. Изобретение также относится к способу получения пористого неорганического композитного оксида, а также к катализатору выхлопных газов для двигателя внутреннего сгорания. Технический результат заключается в получении термически стабильного пористого неорганического композитного оксида с увеличенным объемом пор. 3 н. и 16 з.п. ф-лы, 16 ил., 1 табл., 20 пр.

Реферат

Область техники, к которой относится изобретение

Данное изобретение относится к пористому неорганическому композитному оксиду, применимому для обработки выхлопных газов двигателей внутреннего сгорания.

Уровень техники

Продукты выхлопа двигателей внутреннего сгорания представляют известную опасность для здоровья и жизни людей, животных, а также растений. Загрязняющие вещества, в общем, представляют собой несгоревшие углеводороды, монооксид углерода, оксиды азота, а также остаточные количества серы и серосодержащих соединений. Катализаторы для выхлопных газов должны отвечать жестким требованиям относительно характеристик запуска, эффективности, длительной активности, механической стабильности, а также низкой стоимости, чтобы подходить для использования в транспортных средствах. Загрязняющие вещества, представляющие собой несгоревшие углеводороды, монооксиды углерода, а также оксиды азота, были успешно обработаны посредством контакта с многофункциональными катализаторами на основе благородных металлов, которые способны превратить загрязняющие вещества с высоким процентным содержанием в менее вредные продукты, представляющие собой диоксид углерода, воду (пар) и азот. Однако сера и соединения серы, присутствующие в топливе и, в свою очередь, в продуктах сгорания, как известно, отравляют благородные металлы, приводя к снижению их каталитической эффективности и срока службы.

«Каталитический нейтрализатор отработавших газов», используемый для превращения вредных загрязняющих веществ в безвредные газы, обычно состоит из трех компонентов, а именно, каталитически активного металла, носителя, на котором распределен активный металл, и подложки, на которую носитель наносят или осаждают в виде слоя пористого оксида.

Каталитические металлы, которые применяют, чтобы вызывать эффективную конверсию вредных загрязняющих веществ, таких как монооксид углерода, оксиды азота и несгоревшие углеводороды, при переменных встречающихся условиях, представляют собой благородные металлы, обычно металлы платиновой группы, такие как платина, палладий, родий и их смеси. Данные катализаторы на основе благородных металлов хорошо известны в уровне техники и более подробно описываются, например, в DE-053830318.

Благородный металл типично наносят на неорганические оксиды с высокой площадью поверхности, например, на частицы оксида алюминия с высокой площадью поверхности. Оксид алюминия с высокой площадью поверхности наносят или осаждают в виде слоя пористого оксида на керамическую или металлическую подложку, например, в форме ячеистого монолита или проволочной сетки или аналогичной конструкции. Также можно нанести благородные металлы на носитель после нанесения тонкого слоя материала носителя на монолит.

Патент США 6335305 описывает катализатор, который включает носитель на основе неорганического оксида и благородный металл, нанесенный на носитель, где носитель включает пористый оксид и композитный оксид формулы (Al2O3)a(CeO2)b(ZrO2)1-b, в которой a равно от 0,4 до 2,5, а b равно от 0,2 до 0,7.

EP 2036606 и EP 2036607 описывают неорганические оксиды, включающие оксид алюминия, металлический оксид, который не образует композитный оксид с оксидом алюминия и, по меньшей мере, один дополнительный элемент, выбранный из редкоземельных элементов и щелочноземельных элементов, применимые в качестве катализатора для обработки выхлопных газов, которые описываются как имеющие превосходную термостойкость.

Желательно сформировать пористый неорганический композитный оксид, который показывает улучшенную термостойкость и улучшенную устойчивость фаз при повышенной температуре.

Сущность изобретения

В первом аспекте настоящее изобретение нацелено на пористый неорганический композитный оксид, включающий оксиды алюминия и церия, или оксиды алюминия и циркония, или оксиды алюминия, церия и циркония, и необязательно оксиды одного или более допирующих элементов, выбранных из переходных металлов, редкоземельных металлов и их смесей, причем указанный неорганический композитный оксид имеет:

(a) удельную площадь поверхности после прокаливания при 1100°C в течение 5 часов, больше или равную площади, вычисленной согласно уравнению (2):

SA=0,8235[Al]+11,157 (Уравн. 2)

в котором:

SA представляет собой удельную площадь поверхности неорганического композитного оксида по БЭТ, в квадратных метрах на грамм, и

[Al] представляет собой количество оксидов алюминия в композитном оксиде, выраженное в виде массовых долей Al2O3 на 100 массовых долей композитного оксида, и

(b) общий объем пор после прокаливания при 900°C в течение 2 часов, больше или равный объему, вычисленному согласно уравнению (4.1):

PV=0,0097[Al]+0,0647 (Уравн. 4.1)

в котором:

PV представляет собой объем пор неорганического композитного оксида, в кубических сантиметрах на грамм, и

[Al] является таким, как определено выше для уравнения (2).

Во втором аспекте настоящее изобретение нацелено на катализатор, включающий один или более благородных металлов, диспергированных на вышеописанном пористом неорганическом композитном оксиде.

В третьем аспекте настоящее изобретение нацелено на способ получения пористого неорганического композитного оксида, включающий:

(a) формирование (i) частиц, включающих гидрат алюминия, и (ii) частиц, включающих гидрат циркония, или частиц, включающих гидрат церия, или частиц, включающих гидрат циркония и гидрат церия, в водной среде:

(1) последовательно:

(1.1) формируя частицы гидрата алюминия в водной среде при температуре больше чем 50°C,

(1.2.) после стадии (a) (1.1) регулирование pH водной среды до pH от 4 до 6, и

(1.3) после стадии (a) (1.2) формирование частиц, включающих гидрат циркония, частиц, включающих гидрат церия, или частиц, включающих гидрат циркония и гидрат церия, в водной среде или

(2) одновременно формируя (i) частицы, включающие гидрат алюминия, и (ii) частицы, включающие гидрат циркония, или частицы, включающие гидрат церия, или частицы, включающие гидрат циркония и гидрат церия, в водной среде при температуре больше чем 50°C,

(b) выделение частиц, полученных на стадии (a) из водной среды,

(c) сушку выделенных частиц, и

(d) прокаливание высушенных частиц,

с получением пористого неорганического композитного оксида.

В своих различных вариантах осуществления пористый неорганический композитный оксид по настоящему изобретению обеспечивает термическую стабильность, а также увеличенный объем пор, улучшенную фазовую чистоту, улучшенную устойчивость фаз и улучшенную локализацию областей смешанного циркониево-цериевого оксида.

Краткое описание чертежей

Фиг. 1 показывает рентгеновскую дифрактограмму композиции из примера 1 после прокаливания при 1200°C в течение 10 часов. В каждом случае предоставленная здесь рентгеновская дифрактограмма показывает график дифракционной интенсивности (в виде количества импульсов счета) относительно угла 2 тэта (в градусах в интервале от 20 до 90 градусов).

Фиг. 2 показывает производный логарифмический график распределения размера пор для композиции из примера 1 после прокаливания при 900°C в течение 2 часов. В каждом случае производный логарифмический график распределения размера пор, предоставленный здесь, показывает график dV/d(log w), где «V» представляет собой объем пор в сантиметрах на грамм (см3/г) и «w» представляет собой ширину пор (в Ангстремах (Å)).

Фиг. 3 показывает рентгеновскую дифрактограмму композиции из примера сравнения 1 после прокаливания при 1200°C в течение 5 часов.

Фиг. 4 показывает производный логарифмический график распределения размера пор для композиции из примера сравнения 1 после прокаливания при 900°C в течение 2 часов.

Фиг. 5 показывает рентгеновскую дифрактограмму композиции из примера 11 после прокаливания при 1200°C в течение 10 часов.

Фиг. 6 показывает производный логарифмический график распределения размера пор для композиции из примера 11 после прокаливания при 900°C в течение 2 часов.

Фиг. 7 показывает снимок, полученный методом просвечивающей электронной микроскопии, композиции из примера 11 при низком усилении (включая шкалу отсчета 2 микрометра (мкм)) после прокаливания при 900°C в течение 2 часов.

Фиг. 8 показывает снимок, полученный методом просвечивающей электронной микроскопии, композиции из примера 11 при высоком усилении (включая шкалу отсчета 500 нанометров (нм)) после прокаливания при 900°C в течение 2 часов.

Фиг. 9 показывает рентгеновскую дифрактограмму композиции из примера 12 после прокаливания при 1200°C в течение 5 часов.

Фиг. 10 показывает производный логарифмический график распределения размера пор для композиции из примера 12 после прокаливания при 900°C в течение 2 часов.

Фиг. 11 показывает рентгеновскую дифрактограмму композиции из примера 15 после прокаливания при 900°C в течение 2 часов.

Фиг. 12 показывает производный логарифмический график распределения размера пор для композиции из примера 15 после прокаливания при 900°C в течение 2 часов.

Фиг. 13 показывает рентгеновскую дифрактограмму композиции из примера 16 после прокаливания при 1200°C в течение 5 часов.

Фиг. 14 показывает производный логарифмический график распределения размера пор для композиции из примера 16 после прокаливания при 900°C в течение 2 часов.

Фиг. 15 показывает рентгеновскую дифрактограмму композиции из примера 17 после прокаливания при 1200°C в течение 5 часов.

Фиг. 16 показывает производный логарифмический график распределения размера пор для композиции из примера 17 после прокаливания при 900°C в течение 2 часов.

Подробное описание изобретения

Следующие ниже термины, используемые в настоящем описании и прилагаемой формуле изобретения, имеют следующие значения:

Используемый здесь термин «дисперсный» относится к сформированным частицам в форме порошка, гранул, экструдата и аналогичной. В данном описании он используется со ссылкой к ядрам, носителям, а также к полученным в результате продуктам на основе нанесенных благородных металлов.

Используемый здесь термин «неорганический композитный оксид» обозначает неорганический оксидный материал, который включает, по меньшей мере, две отличные друг от друга кристаллографические фазы по результатам рентгеновской дифракции.

Используемый здесь термин «наночастицы» обозначает первичные частицы, имеющие диаметр частицы вплоть до примерно 500 нм, более типично примерно от 1 до 100 нм и еще более типично примерно от 1 до 50 нм. Соответствующие размеры частиц можно рассчитать, исходя из данных рентгеновской дифракции, или определить посредством наблюдения с использованием просвечивающего электронного микроскопа.

Используемая здесь терминология «первичная частица» обозначает одиночные отдельные частицы, а терминология «вторичная частица» обозначает агломерат из двух или более первичных частиц. Ссылка на «частицы», которая не конкретизирует «первичная» или «вторичная», обозначает первичные частицы, или вторичные частицы, или первичные частицы и вторичные частицы.

Используемый здесь термин «оксид алюминия» относится к любым формам оксида алюминия по отдельности или в виде смеси с другими металлами и/или оксидами металлов.

Используемый здесь термин «адсорбированный» или «адсорбция» следует коллективно относить к явлению адсорбции (способности удерживать или концентрировать газы, жидкости или растворенные вещества на поверхности адсорбента, например, оксида алюминия), и абсорбции (способности удерживать или концентрировать газы, жидкости или растворенные вещества по всему объему абсорбента, например, оксида алюминия); либо посредством химической реакции, которая может быть ионной, ковалентной или смешанной природы, либо посредством физических сил.

Используемая здесь для описания относительного количества данного компонента данной композиции терминология «массовые доли» компонента на основе 100 массовых долей данной композиции эквивалентна «массовому проценту» компонента на основе общей массы данной композиции. Например, ссылка на 10 массовых долей данного компонента на 100 массовых долей данной композиции эквивалентна по значению отнесению к 10% масс. компонента в композиции.

Если не указано иным образом, относительные количества соответствующих оксидов алюминия, церия, циркония и соответствующих допирующих элементов композиции композитного оксида по настоящему изобретению, каждое выражают, исходя из отдельного бинарного оксида соответствующего элемента (например, для алюминия как Al2O3, для циркония как ZrO2, для церия как CeO2, для иттрия как Y2O3, для лантана как La2O3, для неодима как Nd2O3, для празеодима как Pr6O11 и для гадолиния как Gd2O3).

Компонент оксида алюминия неорганического оксида по настоящему изобретению может быть аморфным или кристаллическим. В одном варианте осуществления композитный оксид по настоящему изобретению включает один или несколько оксидов алюминия в количестве, выраженном в виде массовых долей Al2O3 на 100 массовых долей композитного оксида, от примерно 20 до 90 массовых долей, более типично примерно 25 до 80 массовых долей и еще более типично примерно 30 до 70 массовых долей Al2O3.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению дополнительно включает оксиды циркония, оксиды церия или оксиды циркония и церия. В одном варианте осуществления неорганический композитный оксид по настоящему изобретению дополнительно включает один или более оксидов циркония, таких как ZrO2. В одном варианте осуществления неорганический композитный оксид по настоящему изобретению дополнительно включает один или более оксидов церия, таких как CeO2. В одном варианте осуществления неорганический композитный оксид по настоящему изобретению дополнительно включает один или более оксидов циркония и один или более оксидов церия.

В одном варианте осуществления композитный оксид по настоящему изобретению включает один или более оксидов циркония в количестве, выраженном в виде массовых долей ZrO2 на 100 массовых долей композитного оксида, составляющем от примерно 2 до 80 массовых долей, более типично от примерно 5 до 70 массовых долей и еще более типично от примерно 10 до 60 массовых долей ZrO2.

В одном варианте осуществления композитный оксид по настоящему изобретению включает один или более оксидов церия в количестве, выраженном в виде массовых долей CeO2 на 100 массовых долей композитного оксида, составляющем от примерно 2 до 80 массовых долей, более типично от примерно 5 до 70 массовых долей и еще более типично от примерно 10 до 60 массовых долей CeO2.

В одном варианте осуществления композитный оксид по настоящему изобретению включает один или более оксидов циркония и церия, каждый в количестве, выраженном в виде массовой доли ZrO2 или массовой доли CeO2 на 100 массовых долей композитного оксида:

от примерно 2 до 78 массовых долей, более типично от примерно 5 до 75 массовых долей, еще более типично от примерно 10 до 70 массовых долей и еще более типично от примерно 15 до 60 массовых долей ZrO2, и

от примерно 2 до 78 массовых долей, более типично от примерно 5 до 75 массовых долей, еще более типично от примерно 10 до 70 массовых долей и еще более типично от примерно 15 до 60 массовых долей CeO2,

при условии, что объединенное количество ZrO2 и CeO2 не превышает 80 массовых долей.

В одном варианте осуществления композитный оксид по настоящему изобретению включает оксиды алюминия и церия, или оксиды алюминия и циркония, или оксиды алюминия, церия и циркония, и необязательно оксиды одного или более допирующих элементов, выбранных из переходных металлов, редкоземельных металлов и их смесей, каждый в количестве, выраженном в виде массовой доли отдельного бинарного оксида соответствующего элемента на 100 массовых долей композитного оксида:

(a) примерно от 20 до 98 массовых долей, более типично примерно от 20 до 95 массовых долей Al2O3, и

(b)(i) примерно от 2 до 80 массовых долей, более типично примерно от 5 до 80 массовых долей ZrO2, или

(b)(ii) примерно от 2 до 80 массовых долей, более типично примерно от 5 до 80 массовых долей CeO2, или

(b)(iii) примерно от 2 до менее чем 78 массовых долей, более типично примерно от 5 до 75 массовых долей ZrO2 и от 2 до 78 массовых долей, более типично примерно от 5 до 75 массовых долей CeO2 при условии, что объединенное количество ZrO2 и CeO2 не превышает 80 массовых долей,

и

(c) необязательно вплоть до 15 массовых долей объединенного количества оксидов одного или более допирующих элементов, выбранных из переходных металлов, редкоземельных металлов и их смесей.

Каждый из оксидов допирующих элементов может независимо присутствовать в виде отдельного оксида соответствующего допирующего элемента, в виде компонентов в оксидах алюминия, циркония, церия и/или одного или нескольких других допирующих элементов. Подходящие допирующие элементы включают иттрий (Y), лантан (La), празеодим (Pr), неодим (Nd), самарий (Sa), европий (Eu), гадолиний (Gd), тербий (Tb), диспрозий (Dy), гольмий (Ho), эрбий (Er), тулий (Tm), иттербий (Yb), лютеций (Lu) и скандий (Sc). В одном варианте осуществления неорганические оксиды включают оксиды одного или более элементов, выбранных из Y, La, Pr, Nd и Gd.

В одном варианте осуществления композитный оксид по настоящему изобретению включает оксиды алюминия и лантана, где, когда каждое из количеств оксидов алюминия и лантана в композитном оксиде выражено в виде количества отдельного бинарного оксида соответствующего элемента, количество La2O3 больше или равно 2 массовым долям на 100 массовых долей Al2O3, и композитный оксид показывает улучшенную устойчивость фазы оксида алюминия.

В одном варианте осуществления композитный оксид по настоящему изобретению включает оксиды алюминия, циркония, церия и иттрия, где, когда каждое из количеств оксидов циркония, церия и иттрия выражено в виде количества отдельного бинарного оксида соответствующего элемента, количество Y2O3 больше или равно 2 массовым долям на 100 массовых долей объединенного количества ZrO2 и CeO2, и композитный оксид показывает улучшенную устойчивость фазы оксида циркония-оксида церия.

В одном варианте осуществления неорганический оксид по настоящему изобретению включает оксиды Y и La, оксиды Y и Pr, оксиды Y и Nd, оксиды Y и Gd, оксиды La и Pr, оксиды La и Nd, оксиды La и Gd, оксиды Pr и Nd, оксиды Pr и Gd или оксиды Nd и Gd.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению включает:

оксиды алюминия, циркония, церия, Y и La,

оксиды алюминия, циркония, церия, Y и Pr,

оксиды алюминия, циркония, церия, Y и Nd,

оксиды алюминия, циркония, церия, Y и Gd,

оксиды алюминия, циркония, церия, La и Pr,

оксиды алюминия, циркония, церия, La и Nd,

оксиды алюминия, циркония, церия, La и Gd,

оксиды алюминия, циркония, церия, Pr и Nd,

оксиды алюминия, циркония, церия, Pr и Gd, или

оксиды алюминия, циркония, церия, Nd и Gd.

В одном варианте осуществления неорганический оксид по настоящему изобретению включает оксиды Y, La и Pr, оксиды Y, La и Nd, оксиды Y, La и Gd, оксиды Y, Pr и Nd, оксиды Y, Pr и Gd, оксиды Y, Nd и Gd, оксиды La, Pr и Nd, оксиды La, Pr и Gd, оксиды La, Nd и Gd или оксиды Pr, Nd и Gd.

В одном варианте осуществления неорганический оксид по настоящему изобретению включает:

оксиды алюминия, циркония, церия, Y, La и Pr,

оксиды алюминия, циркония, церия, Y, La и Nd,

оксиды алюминия, циркония, церия, Y, La и Gd,

оксиды алюминия, циркония, церия, Y, Pr и Nd,

оксиды алюминия, циркония, церия, Y, Pr и Gd,

оксиды алюминия, циркония, церия, Y, Nd и Gd,

оксиды алюминия, циркония, церия, La, Pr и Nd,

оксиды алюминия, циркония, церия, La, Pr и Gd,

оксиды алюминия, циркония, церия, La, Nd и Gd, или

оксиды алюминия, циркония, церия, Pr, Nd и Gd.

В одном варианте осуществления композитный оксид по настоящему изобретению включает оксиды алюминия, циркония, церия и иттрия и лантана и/или неодима и/или празеодима, где, когда каждое из количеств оксидов циркония, церия и соответствующих допирующих элементов выражено в виде количества отдельного бинарного оксида соответствующего элемента:

объединенное количество La2O3, Nd2O3 и/или Pr6O11 больше или равно 2 массовым долям на 100 массовых долей Al2O3, и

количество Y2O3 больше или равно 2 массовым долям на 100 массовых долей объединенного количества ZrO2 и CeO2, и

композитный оксид показывает улучшенную устойчивость фазы оксида алюминия и улучшенную устойчивость фазы оксид циркония-оксид церия.

В одном варианте осуществления количество оксидов одного или нескольких допирующих элементов в неорганическом композитном оксиде по настоящему изобретению, выраженное в виде массовых долей объединенного количества отдельных бинарных оксидов соответствующих допирующих элементов на 100 массовых долей композитного оксида, составляет от более чем 0 до примерно 15 массовых долей, более типично от примерно 1 до 12 массовых долей и еще более типично от примерно 2 до 10 массовых долей оксидов одного или более допирующих элементов.

В одном варианте осуществления относительные количества компонентных элементов оксидов формулы неорганического композитного оксида, выраженных в виде бинарных оксидов соответствующих элементов, соответствуют структуре (1):

(Al2O3)a(CeO2)b(ZrO2)c(MxOy)d(Mx’Oy’)e(Mx”Oy”)f (1)

где:

каждый из MxOy, Mx’Oy’, Mx”Oy” представляет собой бинарный оксид, независимо выбранный из Y2O3, La2O3, Nd2O3, Pr6O11, Gd2O3:

коэффициенты a, b, c, d, e и f отражают соответствующие молярные количества соответствующих бинарных оксидов, где:

35≤a≤97,

0≤b≤50,

0≤c≤60,

0≤d≤14,

0≤e≤14 и

0≤f≤14,

при условии, что:

никакие два из M, M’ и M” не являются одним и тем же элементом, и

сумма d+e+f меньше или равна 14.

В одном варианте осуществления оксиды алюминия и необязательно одного или более допирующих элементов для первой одиночной кристаллографической фазы и оксиды одного или более элементов, выбранных из циркония и церия, и необязательно одного или более допирующих элементов формируют вторую кристаллографическую фазу.

В одном варианте осуществления неорганический оксид по настоящему изобретению включает пористую структуру оксида алюминия, включающую оксиды алюминия и необязательно оксиды одного или более соответствующих допирующих элементов и имеющую площадь поверхности и структуры, типично наночастицы, включающие оксид циркония, оксид церия или оксиды циркония и церия и необязательно оксиды одного или более соответствующих допирующих элементов, нанесенные на поверхность пористой структуры оксида алюминия.

В одном варианте осуществления неорганический оксид по настоящему изобретению включает пористую структуру оксида алюминия, включающую оксид алюминия и необязательно оксиды одного или более соответствующих допирующих элементов и имеющую площадь поверхности, которая включает площадь внешней поверхности и площадь внутренней поверхности, которая доступна посредством пор пористой структуры оксида алюминия, и дисперсные структуры, типично наночастицы, включающие оксид циркония, оксид церия или оксиды циркония и церия и необязательно оксиды одного или более соответствующих допирующих элементов, нанесенные на поверхность пористой структуры оксида алюминия, где дисперсные структуры, включающие оксид циркония, оксид церия или оксиды циркония и церия и необязательно оксиды одного или более соответствующих допирующих элементов, распределены по существу равномерно по всей площади внешней поверхности и доступной площади внутренней поверхности пористой структуры оксида алюминия.

В одном варианте осуществления неорганический оксид по настоящему изобретению включает пористую структуру оксида алюминия, включающую оксиды алюминия и необязательно оксиды одного или более соответствующих допирующих элементов и имеющую площадь поверхности, которая включает площадь внешней поверхности и площадь внутренней поверхности, и дисперсные структуры, типично наночастицы, включающие оксид циркония, оксид церия или оксиды циркония и церия и необязательно оксиды одного или более соответствующих допирующих элементов, нанесенные на поверхность пористой структуры оксида алюминия, где дисперсные структуры, включающие оксид циркония, оксид церия или оксиды циркония и церия и необязательно оксиды одного или более соответствующих допирующих элементов, распределены более плотно по всей площади внешней поверхности структуры носителя на основе оксида алюминия по сравнению с площадью внутренней поверхности структуры носителя на основе оксида алюминия.

В одном варианте осуществления структуры, включающие оксиды одного или более элементов, выбранных из циркония и церия, являются наночастицами, имеющими, после прокаливания при 1200°C в течение 5 часов, диаметр частиц или наиболее длинный характеристический размер примерно от 10 до 50 нм, более типично примерно от 15 до 35 нм.

В одном варианте осуществления неорганический оксид по настоящему изобретению находится в форме порошка, имеющего средний размер частиц от примерно 1 до 200 микрометров («мкм»), более типично от 10 до 100 мкм, или в форме гранул, имеющих средний размер частиц от 1 миллиметра («мм») до 10 мм. Альтернативно неорганический оксид может находиться в форме таблеток или экструдата (например, цилиндрической формы), причем размер и конкретная форма определяются рассматриваемым конкретным применением.

В одном варианте осуществления неорганический оксид по настоящему изобретению показывает высокую удельную площадь поверхности, имеющую хорошую термостойкость.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает удельную площадь поверхности по БЭТ после прокаливания при 900°C в течение 2 часов, больше или равную площади, вычисленной в соответствии с уравнением (1):

SA=1,8095[Al]+31,286 (Уравн. 1)

в котором:

SA представляет собой удельную площадь поверхности по БЭТ неорганического композитного оксида, в квадратных метрах на грамм (м2/г), и

[Al] представляет собой количество оксидов алюминия в композитном оксиде, выраженное в виде массовых долей Al2O3 на 100 массовых долей композитного оксида.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает удельную площадь поверхности по БЭТ после прокаливания при 1100°C в течение 5 часов, больше или равную площади, вычисленной в соответствии с уравнением (2):

SA=0,8235[Al]+11,157 (Уравн. 2)

в котором SA и Al, в каждом случае, является таким, как определено выше для уравнения 1.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает удельную площадь поверхности по БЭТ после прокаливания при 1200°C в течение 5 часов, больше или равную площади, вычисленной в соответствии с уравнением (3.1):

SA=0,3[Al]+7 (Уравн. 3.1)

в котором SA и Al, в каждом случае, является таким, как определено выше для уравнения 1.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает удельную площадь поверхности по БЭТ после прокаливания при 1200°C в течение 5 часов, больше или равную площади, вычисленной в соответствии с уравнением (3.1), и для 50<[Al]≤90, больше или равную площади, вычисленной в соответствии с уравнением (3.2):

SA=0,72[Al]-14 (Уравн. 3.2)

в котором SA и Al, в каждом случае, является таким, как определено выше для уравнения 1.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает удельную площадь поверхности по БЭТ после прокаливания при 900°C в течение 2 часов, больше или равную площади, вычисленной в соответствии с уравнением (1), и удельную площадь поверхности по БЭТ после прокаливания при 1100°C в течение 5 часов, больше или равную площади, вычисленной в соответствии с уравнением (2). В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает удельную площадь поверхности по БЭТ после прокаливания при 900°C в течение 2 часов, больше или равную площади, вычисленной в соответствии с уравнением (1), удельную площадь поверхности по БЭТ после прокаливания при 1100°C в течение 5 часов, больше или равную площади, вычисленной в соответствии с уравнением (2), и удельную площадь поверхности по БЭТ после прокаливания при 1200°C в течение 5 часов, больше или равную площади, вычисленной в соответствии с уравнением (3.1) или уравнением (3.1) и уравнением (3.2). В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает удельную площадь поверхности по БЭТ после прокаливания при 900°C в течение 2 часов, больше или равную площади, вычисленной в соответствии с уравнением (1), удельную площадь поверхности по БЭТ после прокаливания при 1100°C в течение 5 часов, больше или равную площади, вычисленной в соответствии с уравнением (2), и удельную площадь поверхности по БЭТ после прокаливания при 1200°C в течение 5 часов для 20≤[Al]≤50, больше или равную площади, вычисленной в соответствии с уравнением (3.1) и для 50<[Al]≤90, больше или равную площади, вычисленной в соответствии с уравнением (3.2).

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает объем пор, имеющий хорошую термическую устойчивость.

В одном варианте осуществления неорганический композитный оксид по настоящему изобретению показывает объем пор после прокаливания при 900°C в течение 2 часов, больше или равный объему, вычисленному в соответствии с уравнением (4.1):

PV=0,0097[Al]+0,0647 (Уравн. 4.1)

в котором:

PV представляет собой объем пор неорганического композитного оксида, в кубических сантиметрах на грамм (см3/г), и

[Al] является таким, как определено выше для уравнения (1).

В предпочтительном варианте осуществления, в котором неорганический композитный оксид изготавливают последовательным способом, как описано более подробно ниже, осаждения гидратов алюминия при условиях кислотной реакции и затем осаждения гидратов циркония и/или церия, неорганический композитный оксид по настоящему изобретению показывает объем пор после прокаливания при 900°C в течение 2 часов, больше или равный объему, вычисленному в соответствии с уравнением (4.2):

PV=0,0107[Al]+0,25 (Уравн. 4.2)

в котором PV и Al, в каждом случае, является таким, как определено выше для уравнения 4.1. Поскольку уравнение 4.2 дает более высокое значение PV для любого данного [Al], объем пор таких неорганических композитных оксидов после прокаливания при 900°C в течение 2 часов неизбежно также будет больше или равен объему, вычисленному в соответствии с уравнением (4.1).

Неорганический оксид по настоящему изобретению показывает гомогенное перемешивание церия, циркония и любых необязательных допирующих элементов на молекулярном уровне и отличается тем, что оксиды церия и циркония формируют твердый раствор, а не смесь бинарных оксидов церия и оксидов циркония. Гомогенное перемешивание церия и циркония подтверждается методом рентгеноструктурного анализа существованием в дополнение к кристаллическим фазам, относящимся к оксиду алюминия, одной одиночной кристаллической фазы, относящейся к кристаллической структуре флуоритного типа, не соответствующей существующим нескольким кристаллическим фазам, относящимся к различным бинарным оксидам оксида церия, оксида циркония или, в конечном итоге, оксидам допирующих элементов.

Неорганический оксид по настоящему изобретению показывает улучшенную устойчивость фаз. В одном варианте осуществления неорганический композитный оксид показывает кристаллическую структуру до прокаливания и сохраняет по существу ту же самую кристаллическую структуру после прокаливания при 900°C в течение 2 часов. В частности, после прокаливания метод рентгеноструктурного анализа не дал доказательства значительного количества альфа-оксида алюминия или разделения фаз для кристаллической фазы оксид церия - оксид циркония. В одном варианте осуществления неорганический композитный оксид показывает кристаллическую структуру до прокаливания и сохраняет по существу ту же самую кристаллическую структуру после прокаливания при 900°C в течение 2 часов и после прокаливания при 1100°C в течение 5 часов. В одном варианте осуществления неорганический композитный оксид показывает кристаллическую структуру до прокаливания и сохраняет по существу ту же самую кристаллическую структуру после прокаливания при 900°C в течение 5 часов и после прокаливания при 1100°C в течение 5 часов. В одном варианте осуществления неорганический композитный оксид показывает кристаллическую структуру до прокаливания и сохраняет по существу ту же самую кристаллическую структуру после прокаливания при 900°C в течение 2 часов, после прокаливания при 1100°C в течение 5 часов и после прокаливания при 1200°C в течение 5 часов.

Пористый неорганический композитный оксид по настоящему изобретению изготавливают взаимодействием алюминийсодержащих прекурсорных материалов, цирконий- и/или церийсодержащих прекурсорных материалов и необязательных прекурсорных материалов допирующего элемента в водной среде. Используемая в настоящем изобретении водная среда представляет собой среду, включающую воду, и которая может дополнительно включать одну или более растворимых в воде органических жидкостей, таких как, например, низшие спирты, такие как метанол, этанол, пропанол и бутанол, низшие гликоли, такие как этиленгликоль и пропиленгликоль, и низшие кетоны, такие как ацетон и метилэтилкетон.

В одном варианте осуществления:

(i) частицы, включающие гидрат алюминия, и

(ii) частицы, включающие гидрат циркония, или частицы, включающие гидрат церия, или частицы, включающие гидрат циркония и гидрат церия, формируют последовательно:

(1.1) формируя частицы гидрата алюминия в водной среде при температуре больше чем 50°C,

(1.2) после стадии (a) (1.1) регулируя pH водной среды до pH от 4 до 6, и

(1.3) после стадии (a) (1.2) формируя частицы, включающие гидрат циркония, частицы, включающие гидрат церия, или частицы, включающие гидрат циркония и гидрат церия, в водной среде, содержащей частицы гидрата алюминия, типично при температуре больше чем 50°C.

Гидратированный оксид алюминия, такой как, например, Al(OH)3, боемит, гиббсит или байерит или их смесь, формируют в водной среде. Гидратированный оксид алюминия можно сформировать в водной среде из водорастворимых солей алюминия разнообразными известными методами, такими как, например, добавление гидроксида аммония к водному раствору галогенида алюминия, такого как хлорид алюминия, или взаимодействие сульфата алюминия с алюминатом щелочного металла, таким как алюминат натрия, в водной среде. Подходящие водорастворимые соли алюминия включают катио