Устройство для квантования коэффициентов кодирования с линейным предсказанием, устройство кодирования звука, устройство для деквантования коэффициентов кодирования с линейным предсказанием, устройство декодирования звука и электронное устройство для этого

Иллюстрации

Показать все

Изобретение относится к области квантования коэффициентов кодирования с линейным предсказанием. Технический результат – обеспечение повышения эффективности квантования аудио или речевого сигнала посредством выбора оптимального модуля квантования. Устройство квантования речевого или аудио сигнала содержит: модуль выбора, выполненный с возможностью выбора на основе ошибки предсказания одного из первого блока квантования и второго блока квантования методом открытого контура; первый блок квантования выполнен с возможностью квантования входного сигнала, включающего в себя по меньшей мере один из речевого сигнала или аудио сигнала, без межкадрового предсказания; второй блок квантования выполнен с возможностью квантования входного сигнала с межкадровым предсказанием. 19 з.п. ф-лы, 38 ил., 9 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Аппаратура, устройства и изделия производства, совместимые с настоящим раскрытием, относятся к квантованию и деквантованию коэффициентов кодирования с линейным предсказанием и, более конкретно, к устройству для эффективного квантования коэффициентов кодирования с линейным предсказанием с низкой сложностью, устройству кодирования звука, использующему устройство квантования, устройству для деквантования коэффициентов кодирования с линейным предсказанием, устройству декодирования звука, использующему устройство деквантования, и электронным устройствам для этого.

УРОВЕНЬ ТЕХНИКИ

В системах для кодирования звука, такого как речь или аудио, коэффициенты кодирования с линейным предсказанием (LPC) используются, чтобы представлять кратковременную частотную характеристику звука. Коэффициенты LPC получаются в схеме разделения входного звука на блоки кадров и минимизации энергии ошибки предсказания на каждый кадр. Однако, так как коэффициенты LPC имеют большой динамический диапазон и характеристика используемого фильтра LPC является очень чувствительной к ошибкам квантования коэффициентов LPC, устойчивость фильтра LPC не гарантируется.

Таким образом, квантование выполняется посредством преобразования коэффициентов LPC в другие коэффициенты, для которых легко проверять устойчивость фильтра, которые являются предпочтительными для интерполяции, и которые имеют хорошую характеристику квантования. Главным образом является предпочтительным, чтобы квантование выполнялось посредством преобразования коэффициентов LPC в коэффициенты частот спектральных линий (LSF) или частот спектрального иммитанса (ISF). В частности, способ квантования коэффициентов LPC может увеличивать выигрыш квантования посредством использования высокой межкадровой корреляции коэффициентов LSF в частотной области и временной области.

Коэффициенты LSF указывают частотную характеристику кратковременного звука, и для кадров, в которых частотная характеристика входного звука изменяется быстро, коэффициенты LSF кадров также быстро изменяются. Однако для модуля квантования, использующего высокую межкадровую корреляцию коэффициентов LSF, так как должное предсказание не может выполняться для быстро изменяющихся кадров, производительность квантования модуля квантования уменьшается.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

ТЕХНИЧЕСКАЯ ЗАДАЧА

Одним аспектом является обеспечить устройство для эффективного квантования коэффициентов кодирования с линейным предсказанием (LPC) с низкой сложностью, устройство кодирования звука, использующее это устройство квантования, устройство для деквантования коэффициентов LPC, устройство декодирования звука, использующее это устройство деквантования, и электронное устройство для этого.

Согласно одному аспекту одного или более примерных вариантов осуществления, обеспечивается устройство квантования, содержащее блок определения пути квантования, который определяет один из множества путей, включающего в себя первый путь, не использующий межкадровое предсказание, и второй путь, использующий межкадровое предсказание, в качестве пути квантования входного сигнала, на основе критерия до квантования входного сигнала; первый блок квантования, который квантует входной сигнал, если в качестве пути квантования входного сигнала определяется первый путь; и второй блок квантования, который квантует входной сигнал, если в качестве пути квантования входного сигнала определяется второй путь.

Согласно другому аспекту одного или более примерных вариантов осуществления, обеспечивается устройство кодирования, содержащее блок определения режима кодирования, который определяет режим кодирования входного сигнала; блок квантования, который определяет один из множества путей, включающего в себя первый путь, не использующий межкадровое предсказание, и второй путь, использующий межкадровое предсказание, в качестве пути квантования входного сигнала на основе критерия до квантования входного сигнала, и который квантует входной сигнал посредством использования одной из первой схемы квантования и второй схемы квантования согласно определенному пути квантования; блок кодирования переменного режима, который кодирует квантованный входной сигнал в режиме кодирования; и блок кодирования параметров, который генерирует битовый поток, включающий в себя одно из результата, квантованного в первом блоке квантования, и результата, квантованного во втором блоке квантования, режим кодирования входного сигнала, и информацию пути, относящуюся к квантованию входного сигнала.

Согласно другому аспекту одного или более примерных вариантов осуществления, обеспечивается устройство деквантования, содержащее блок определения пути деквантования, который определяет один из множества путей, включающего в себя первый путь, не использующий межкадровое предсказание, и второй путь, использующий межкадровое предсказание, в качестве пути деквантования параметров кодирования с линейным предсказанием (LPC) на основе информации пути квантования, включенной в битовый поток; первый блок деквантования, который деквантует параметры LPC, если в качестве пути деквантования параметров LPC определяется первый путь; и второй блок деквантования, который деквантует параметры LPC, если в качестве пути деквантования параметров LPC выбирается второй путь, при этом информация пути квантования определяется на основе критерия до квантования входного сигнала на стороне кодирования.

Согласно другому аспекту одного или более примерных вариантов осуществления, обеспечивается устройство декодирования, содержащее блок декодирования параметров, который декодирует параметры кодирования с линейным предсказанием (LPC) и режим кодирования, включенные в битовый поток; блок деквантования, который деквантует декодированные параметры LPC посредством использования одной из первой схемы деквантования, не использующей межкадровое предсказание, и второй схемы деквантования, использующей межкадровое предсказание, на основе информации пути квантования, включенной в битовый поток; и блок декодирования переменного режима, который декодирует деквантованные параметры LPC в декодированном режиме кодирования, при этом информация пути квантования определяется на основе критерия до квантования входного сигнала на стороне кодирования.

Согласно другому аспекту одного или более примерных вариантов осуществления, обеспечивается электронное устройство, включающее в себя блок связи, который принимает, по меньшей мере, одно из звукового сигнала и закодированного битового потока, или который передает, по меньшей мере, одно из закодированного звукового сигнала и восстановленного звука; и модуль кодирования, который выбирает один из множества путей, включающего в себя первый путь, не использующий межкадровое предсказание, и второй путь, использующий межкадровое предсказание, в качестве пути квантования принятого звукового сигнала на основе критерия до квантования принятого звукового сигнала, квантует принятый звуковой сигнал посредством использования одной из первой схемы квантования и второй схемы квантования согласно выбранному пути квантования, и кодирует квантованный звуковой сигнал в режиме кодирования.

Согласно другому аспекту одного или более примерных вариантов осуществления, обеспечивается электронное устройство, включающее в себя блок связи, который принимает, по меньшей мере, одно из звукового сигнала и закодированного битового потока, или который передает, по меньшей мере, одно из закодированного звукового сигнала и восстановленного звука; и модуль декодирования, который декодирует параметры кодирования с линейным предсказанием (LPC) и режим кодирования, включенные в битовый поток, деквантует декодированные параметры LPC посредством использования одной из первой схемы деквантования, не использующей межкадровое предсказание, и второй схемы деквантования, использующей межкадровое предсказание на основе информации пути, включенной в битовый поток, и декодирует деквантованные параметры LPC в декодированном режиме кодирования, при этом информация пути определяется на основе критерия до квантования звукового сигнала на стороне кодирования.

Согласно другому аспекту одного или более примерных вариантов осуществления, обеспечивается электронное устройство, включающее в себя блок связи, который принимает, по меньшей мере, одно из звукового сигнала и закодированного битового потока, или который передает, по меньшей мере, одно из закодированного звукового сигнала и восстановленного звука; модуль кодирования, который выбирает один из множества путей, включающего в себя первый путь, не использующий межкадровое предсказание, и второй путь, использующий межкадровое предсказание, в качестве пути квантования принятого звукового сигнала на основе критерия до квантования принятого звукового сигнала, квантует принятый звуковой сигнал посредством использования одной из первой схемы квантования и второй схемы квантования согласно выбранному пути квантования, и кодирует квантованный звуковой сигнал в режиме кодирования; и модуль декодирования, который декодирует параметры кодирования с линейным предсказанием (LPC) и режим кодирования, включенные в битовый поток, деквантует декодированные параметры LPC посредством использования одной из первой схемы деквантования, не использующей межкадровое предсказание, и второй схемы деквантования, использующей межкадровое предсказание, на основе информации пути, включенной в битовый поток, и декодирует деквантованные параметры LPC в декодированном режиме кодирования.

ПОЛОЖИТЕЛЬНЫЕ ЭФФЕКТЫ ИЗОБРЕТЕНИЯ

Согласно представленной новой концепции, чтобы эффективно квантовать аудио или речевой сигнал, посредством применения множества режимов кодирования согласно характеристикам аудио или речевого сигнала и назначения различных количеств битов аудио или речевому сигналу согласно отношению сжатия, применяемому к каждому из режимов кодирования, может выбираться оптимальный модуль квантования с низкой сложностью в каждом из режимов кодирования.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеописанные и другие аспекты станут более ясными из подробного описания их примерных вариантов осуществления со ссылкой на прилагаемые чертежи, на которых:

Фиг. 1 является блок-схемой устройства кодирования звука согласно одному примерному варианту осуществления;

Фиг. 2A-2D являются примерами различных режимов кодирования, которые могут выбираться модулем выбора режима кодирования устройства кодирования звука из фиг. 1;

Фиг. 3 является блок-схемой модуля квантования коэффициентов кодирования с линейным предсказанием (LPC) согласно одному примерному варианту осуществления;

Фиг. 4 является блок-схемой определителя взвешивающей функции согласно одному примерному варианту осуществления;

Фиг. 5 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 6 является блок-схемой модуля выбора пути квантования согласно одному примерному варианту осуществления;

Фиг. 7A и 7B являются блок-схемами последовательности операций, иллюстрирующими операции модуля выбора пути квантования из фиг. 6, согласно одному примерному варианту осуществления;

Фиг. 8 является блок-схемой модуля выбора пути квантования согласно другому примерному варианту осуществления;

Фиг. 9 иллюстрирует информацию относительно состояния канала, передаваемого в сетевом конце, когда обеспечивается служба кодека;

Фиг. 10 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 11 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 12 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 13 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 14 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 15 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 16A и 16B являются блок-схемами модулей квантования коэффициентов LPC согласно другим примерным вариантам осуществления;

Фиг. 17A-17C являются блок-схемами модулей квантования коэффициентов LPC согласно другим примерным вариантам осуществления;

Фиг. 18 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 19 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 20 является блок-схемой модуля квантования коэффициентов LPC согласно другому примерному варианту осуществления;

фиг. 21 является блок-схемой модуля выбора типа модуля квантования согласно одному примерному варианту осуществления;

Фиг. 22 является блок-схемой последовательности операций, иллюстрирующей работу способа выбора типа модуля квантования, согласно одному примерному варианту осуществления;

Фиг. 23 является блок-схемой устройства декодирования звука согласно одному примерному варианту осуществления;

Фиг. 24 является блок-схемой модуля деквантования коэффициентов LPC согласно одному примерному варианту осуществления;

Фиг. 25 является блок-схемой модуля деквантования коэффициентов LPC согласно другому примерному варианту осуществления;

Фиг. 26 является блок-схемой примера первой схемы деквантования и второй схемы деквантования в модуле деквантования коэффициентов LPC из фиг. 25, согласно одному примерному варианту осуществления;

Фиг. 27 является блок-схемой последовательности операций, иллюстрирующей способ квантования согласно одному примерному варианту осуществления;

Фиг. 28 является блок-схемой последовательности операций, иллюстрирующей способ деквантования согласно одному примерному варианту осуществления;

Фиг. 29 является блок-схемой электронного устройства, включающего в себя модуль кодирования, согласно одному примерному варианту осуществления;

Фиг. 30 является блок-схемой электронного устройства, включающего в себя модуль декодирования, согласно одному примерному варианту осуществления; и

Фиг. 31 является блок-схемой электронного устройства, включающего в себя модуль кодирования и модуль декодирования, согласно одному примерному варианту осуществления.

ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Представленная новая концепция может обеспечивать возможность различных типов изменения или модификации и различных изменений в форме, и конкретные примерные варианты осуществления иллюстрируются на чертежах и описываются подробно в описании. Однако следует понимать, что конкретные примерные варианты осуществления не ограничивают представленную новую концепцию конкретной формой раскрытия, но включают в себя каждую модифицированную, эквивалентную, или замененную форму в пределах сущности и технического объема представленной новой концепции. В последующем описании, хорошо известные функции или конструкции подробно не описываются, так как они могли бы затруднить понимание изобретения излишними деталями.

Хотя такие признаки, как 'первый' и 'второй', могут использоваться, чтобы описывать разнообразные элементы, элементы не могут быть ограничены упомянутыми признаками. Упомянутые признаки могут использоваться, чтобы отличать некоторый элемент от другого элемента.

Терминология, используемая в заявке, используется только, чтобы описывать конкретные примерные варианты осуществления и не имеет какого-либо намерения, чтобы ограничивать новую концепцию. Хотя общие термины, такие как те, что в настоящее время широко используются как возможные, выбраны в качестве признаков, используемых в представленной новой концепции, при принятии в рассмотрение функций в представленной новой концепции, они могут изменяться согласно намерению специалистов в данной области техники, судебным прецедентам, или появлению новой технологии. В дополнение, в конкретных случаях, могут использоваться признаки, намеренно выбранные заявителем, и в этом случае, смысл признаков будет раскрываться в соответствующем описании. Соответственно, признаки, используемые в представленной новой концепции, должны определяться не посредством простых названий признаков, но посредством смысла признаков и содержания в соответствии с представленной новой концепцией.

Выражение в форме единственного числа включает в себя выражение в форме множественного числа, если они не являются явным образом отличающимися друг от друга в контексте. В настоящей заявке, следует понимать, что признаки, такие как 'включать в себя' и 'иметь', используются, чтобы указывать существование осуществленного признака, количества, этапа, операции, элемента, части, или их комбинации без исключения заранее возможности существования или добавления одного или более других признаков, количеств, этапов, операций, элементов, частей, или их комбинаций.

Представленная новая концепция теперь будет описываться более полно со ссылкой на сопровождающие чертежи, на которых показаны примерные варианты осуществления настоящего изобретения. Сходные ссылочные позиции на чертежах обозначают сходные элементы, и, таким образом, их повторное описание будет пропускаться.

Такие выражения, как "по меньшей мере, одно из", когда предшествуют списку элементов, модифицируют весь список элементов и не модифицируют отдельные элементы списка.

Фиг. 1 является блок-схемой устройства 100 кодирования звука согласно одному примерному варианту осуществления.

Устройство 100 кодирования звука, показанное на фиг. 1, может включать в себя процессор предварительной обработки (например, центральный блок обработки (CPU)) 111, анализатор 113 спектра и линейного предсказания (LP), модуль 115 выбора режима кодирования, модуль 117 квантования коэффициентов кодирования с линейным предсказанием (LPC), кодер 119 переменного режима, и кодер 121 параметров. Каждый из компонентов устройства 100 кодирования звука может осуществляться посредством, по меньшей мере, одного процессора (например, центрального блока обработки (CPU)) посредством объединения в, по меньшей мере, одном модуле. Следует отметить, что звук может означать аудио, речь, или комбинацию перечисленного. Описание, которое следует, для удобства описания ссылается на звук в качестве речи. Однако следует понимать, что может обрабатываться любой звук.

Как показано на фиг. 1, процессор 111 предварительной обработки может предварительно обрабатывать входной речевой сигнал. В процессе предварительной обработки, нежелательный частотный компонент может удаляться из речевого сигнала, или частотная характеристика речевого сигнала может регулироваться, чтобы быть предпочтительной для кодирования. Подробно, процессор 111 предварительной обработки может выполнять фильтрацию верхних частот, предыскажение, или преобразование дискретизации.

Анализатор 113 спектра и LP может извлекать коэффициенты LPC посредством анализа характеристик в частотной области или выполнения анализа LP над предварительно обработанным речевым сигналом. Хотя, в общем, выполняется один анализ LP на кадр, два или более анализа LP на кадр могут выполняться для дополнительного улучшения качества звука. В этом случае, один анализ LP является LP для конца кадра, который выполняется как стандартный анализ LP, и другие могут быть LP для средних подкадров для улучшения качества звука. В этом случае, конец кадра текущего кадра указывает конечный подкадр среди подкадров, формирующих текущий кадр, и конец кадра предыдущего кадра указывает конечный подкадр среди подкадров, формирующих предыдущий кадр. Например, один кадр может состоять из 4 подкадров.

Средние подкадры указывают один или более подкадров среди подкадров, существующих между конечным подкадром, который является концом кадра предыдущего кадра, и конечным подкадром, который является концом кадра текущего кадра. Соответственно, анализатор 113 спектра и LP может извлекать в целом два или более наборов коэффициентов LPC. Коэффициенты LPC могут использовать порядок 10, когда входной сигнал является узкополосным, и могут использовать порядок от 16 до 20, когда входной сигнал является широкополосным. Однако размерность коэффициентов LPC не ограничена этим.

Модуль 115 выбора режима кодирования может выбирать один из множества режимов кодирования в соответствии с множеством скоростей. В дополнение, модуль 115 выбора режима кодирования может выбирать один из множества режимов кодирования посредством использования характеристик речевого сигнала, которые получаются из информации о диапазоне, информации об основном тоне, или информации анализа частотной области. В дополнение, модуль 115 выбора режима кодирования может выбирать один из множества режимов кодирования посредством использования множества скоростей и характеристик речевого сигнала.

Модуль 117 квантования коэффициентов LPC может квантовать коэффициенты LPC, извлеченные посредством анализатора 113 спектра и LP. Модуль 117 квантования коэффициентов LPC может выполнять квантование посредством преобразования коэффициентов LPC в другие коэффициенты, подходящие для квантования. Модуль 117 квантования коэффициентов LPC может выбирать один из множества путей, включающего в себя первый путь, не использующий межкадровое предсказание, и второй путь, использующий межкадровое предсказание, в качестве пути квантования речевого сигнала на основе первого критерия до квантования речевого сигнала и квантовать речевой сигнал посредством использования одной из первой схемы квантования и второй схемы квантования согласно выбранному пути квантования. Альтернативно, модуль 117 квантования коэффициентов LPC может квантовать коэффициенты LPC как для первого пути посредством первой схемы квантования, не использующей межкадровое предсказание, так и для второго пути посредством второй схемы квантования, использующей межкадровое предсказание, и выбирать результат квантования одного из первого пути и второго пути на основе второго критерия. Первый и второй критерии могут быть идентичными друг с другом или отличающимися друг от друга.

Кодер 119 переменного режима может генерировать битовый поток посредством кодирования коэффициентов LPC, квантованных посредством модуля 117 квантования коэффициентов LPC. Кодер 119 переменного режима может кодировать квантованные коэффициенты LPC в режиме кодирования, выбранном посредством модуля 115 выбора режима кодирования. Кодер 119 переменного режима может кодировать сигнал возбуждения коэффициентов LPC в блоках кадров или подкадров.

Примером алгоритмов кодирования, используемых в кодере 119 переменного режима, может быть линейное предсказание с кодовым возбуждением (CELP) или алгебраическое CELP (ACELP). Алгоритм кодирования с преобразованием может дополнительно использоваться согласно режиму кодирования. Показательными параметрами для кодирования коэффициентов LPC в алгоритме CELP являются индекс адаптивной кодовой книги, усиление адаптивной кодовой книги, индекс фиксированной кодовой книги, и усиление фиксированной кодовой книги. Текущий кадр, закодированный посредством кодера 119 переменного режима, может сохраняться для кодирования последующего кадра.

Кодер 121 параметров может кодировать параметры, подлежащие использованию концом декодирования для декодирования, подлежащие включению в битовый поток. Является предпочтительным, если кодируются параметры, соответствующие режиму кодирования. Битовый поток, сгенерированный кодером 121 параметров, может сохраняться или передаваться.

Фиг. 2A - 2D являются примерами различных режимов кодирования, которые могут выбираться модулем 115 выбора режима кодирования устройства 100 кодирования звука из фиг. 1. Фиг. 2A и 2C являются примерами режимов кодирования, классифицированных в случае, когда количество битов, назначенное квантованию, является большим, т.е. в случае высокой скорости передачи битов, и фиг. 2B и 2D являются примерами режимов кодирования, классифицированных в случае, когда количество битов, назначенное квантованию, является маленьким, т.е. в случае низкой скорости передачи битов.

Во-первых, в случае высокой скорости передачи битов, речевой сигнал может классифицироваться в режим общего кодирования (GC) и режим транзитивного кодирования (TC) для простой структуры, как показано на фиг. 2A. В этом случае, режим GC включает в себя режим невокализированного кодирования (UC) и режим вокализованного кодирования (VC). В случае высокой скорости передачи битов, режим неактивного кодирования (IC) и режим кодирования аудио (AC) могут дополнительно включаться сюда, как показано на фиг. 2C.

В дополнение, в случае низкой скорости передачи битов, речевой сигнал может классифицироваться в режим GC, режим UC, режим VC, и режим TC, как показано на фиг. 2B. В дополнение, в случае низкой скорости передачи битов, режим IC и режим AC могут дополнительно включаться сюда, как показано на фиг. 2D.

На фиг. 2A и 2C, режим UC может выбираться тогда, когда речевой сигнал является невокализированным звуком или шумом, имеющим характеристики, аналогичные невокализированному звуку. Режим VC может выбираться, когда речевой сигнал является вокализованным звуком. Режим TC может использоваться, чтобы кодировать сигнал интервала перехода, в котором характеристики речевого сигнала быстро изменяются. Режим GC может использоваться, чтобы кодировать другие сигналы. Режим UC, режим VC, режим TC, и режим GC основываются на определении и критерии классификации, раскрытых в ITU-T G.718, но не ограничены этим.

На фиг. 2B и 2D, режим IC может выбираться для тихого звука, и режим AC может выбираться тогда, когда характеристики речевого сигнала являются приближенными к аудио.

Режимы кодирования могут дополнительно классифицироваться согласно диапазонам речевого сигнала. Диапазоны речевого сигнала могут классифицироваться в, например, узкополосный (NB), широкополосный (WB), сверхширокополосный (SWB), и с полной полосой частот (FB). NB может иметь ширину полосы от приблизительно 300 Гц до приблизительно 3400 Гц или от приблизительно 50 Гц до приблизительно 4000 Гц, WB может иметь ширину полосы от приблизительно 50 Гц до приблизительно 7000 Гц или от приблизительно 50 Гц до приблизительно 8000 Гц, SWB может иметь ширину полосы от приблизительно 50 Гц до приблизительно 14000 Гц или от приблизительно 50 Гц до приблизительно 16000 Гц, и FB может иметь ширину полосы вплоть до приблизительно 20000 Гц. Здесь, численные значения, относящиеся к ширинам полос, установлены для удобства и не ограничены этим. В дополнение, классификация диапазонов может устанавливаться более просто или с большей сложностью, чем вышеизложенное описание.

Кодер 119 переменного режима из фиг. 1 может кодировать коэффициенты LPC посредством использования разных алгоритмов кодирования, соответствующих режимам кодирования, показанным на фиг. 2A-2D. Когда типы режимов кодирования и количество режимов кодирования определяются, может иметься необходимость обучения кодовой книги снова посредством использования речевых сигналов, соответствующих определенным режимам кодирования.

Таблица 1 показывает пример схем и структур квантования в случае 4 режимов кодирования. Здесь, способ квантования, не использующий межкадровое предсказание, может называться страховочной схемой, и способ квантования, использующий межкадровое предсказание, может называться схемой с предсказанием. В дополнение, VQ обозначает модуль векторного квантования, и BC-TCQ обозначает модуль ограниченного по блокам квантования с решетчатым кодированием.

[Таблица 1]

Таблица 1
Режим кодирования Схема квантования Структура
UC, NB/WB Страховочная VQ+BC-TCQ
VC, NB/WB СтраховочнаяС предсказанием VQ+BC-TCQ с межкадровым предсказанием + BC-TCQ с внутрикадровым предсказанием
GC, NB/WB СтраховочнаяС предсказанием VQ+BC-TCQ с межкадровым предсказанием + BC-TCQ с внутрикадровым предсказанием
TC, NB/WB Страховочная VQ+BC-TCQ

Режимы кодирования могут изменяться согласно применяемой скорости передачи битов. Как описано выше, чтобы квантовать коэффициенты LPC при высокой скорости передачи битов с использованием двух режимов кодирования, 40 или 41 бит на кадр могут использоваться в режиме GC, и 46 битов на каждый кадр могут использоваться в режиме TC.

Фиг. 3 является блок-схемой модуля 300 квантования коэффициентов LPC согласно одному примерному варианту осуществления.

Модуль 300 квантования коэффициентов LPC, показанный на фиг. 3, может включать в себя первый преобразователь 311 коэффициентов, определитель 313 взвешивающей функции, модуль 315 квантования частот спектрального иммитанса (ISF)/частот спектральных линий (LSF), и второй преобразователь 317 коэффициентов. Каждый из компонентов модуля 300 квантования коэффициентов LPC может осуществляться посредством, по меньшей мере, одного процессора (например, центрального блока обработки (CPU)) посредством объединения в, по меньшей мере, одном модуле.

Как показано на фиг. 3, первый преобразователь 311 коэффициентов может преобразовывать коэффициенты LPC, извлеченные посредством выполнения анализа LP над концом кадра текущего или предыдущего кадра речевого сигнала, в коэффициенты в другом формате. Например, первый преобразователь 311 коэффициентов может преобразовывать коэффициенты LPC конца кадра текущего или предыдущего кадра в любой формат коэффициентов LSF и коэффициентов ISF. В этом случае, коэффициенты ISF или коэффициенты LSF указывают пример форматов, в которых коэффициенты LPC могут легко квантоваться.

Определитель 313 взвешивающей функции может определять взвешивающую функцию, относящуюся к важности коэффициентов LPC по отношению к концу кадра текущего кадра и концу кадра предыдущего кадра, посредством использования коэффициентов ISF или коэффициентов LSF, преобразованных из коэффициентов LPC. Определенная взвешивающая функция может использоваться в обработке выбора пути квантования или поиска индекса кодовой книги, посредством которого минимизируются ошибки взвешивания в квантовании. Например, определитель 313 взвешивающей функции может определять взвешивающую функцию по амплитуде и взвешивающую функцию по частоте.

В дополнение, определитель 313 взвешивающей функции может определять взвешивающую функцию посредством принятия в рассмотрение, по меньшей мере, одного из частотного диапазона, режима кодирования, и информации анализа спектра. Например, определитель 313 взвешивающей функции может выводить оптимальную взвешивающую функцию на каждый режим кодирования. В дополнение, определитель 313 взвешивающей функции может выводить оптимальную взвешивающую функцию по частотному диапазону. Дополнительно, определитель 313 взвешивающей функции может выводить оптимальную взвешивающую функцию на основе информации частотного анализа речевого сигнала. Информация частотного анализа может включать в себя информацию наклона спектра. Определитель 313 взвешивающей функции будет описываться более подробно ниже.

Модуль 315 квантования ISF/LSF может квантовать коэффициенты ISF или коэффициенты LSF, преобразованные из коэффициентов LPC конца кадра текущего кадра. Модуль 315 квантования ISF/LSF может получать оптимальный индекс квантования во входном режиме кодирования. Модуль 315 квантования ISF/LSF может квантовать коэффициенты ISF или коэффициенты LSF посредством использования взвешивающей функции, определенной посредством определителя 313 взвешивающей функции. Модуль 315 квантования ISF/LSF может квантовать коэффициенты ISF или коэффициенты LSF посредством выбора одного из множества путей квантования при использовании взвешивающей функции, определенной посредством определителя 313 взвешивающей функции. Как результат квантования, могут получаться индекс квантования коэффициентов ISF или коэффициентов LSF и коэффициенты квантованных ISF (QISF) или квантованных LSF (QLSF) по отношению к концу кадра текущего кадра.

Второй преобразователь 317 коэффициентов может преобразовывать коэффициенты QISF или QLSF в квантованные коэффициенты LPC (QLPC).

Теперь будет описываться отношение между векторным квантованием коэффициентов LPC и взвешивающей функцией.

Векторное квантование указывает обработку выбора индекса кодовой книги, имеющего наименьшую ошибку, посредством использования показателя возведенного в квадрат расстояния ошибки, при принятии в рассмотрение, что все элементы в векторе имеют одну и ту же важность. Однако, так как важность является разной в каждом из коэффициентов LPC, если ошибки важных коэффициентов уменьшаются, воспринимаемое качество конечного синтезированного сигнала может увеличиваться. Таким образом, когда коэффициенты LSF квантуются, устройства декодирования могут увеличивать характеристику синтезированного сигнала посредством применения взвешивающей функции, представляющей важность каждого из коэффициентов LSF по отношению к показателю возведенного в квадрат расстояния ошибки, и выбора оптимального индекса кодовой книги.

Согласно одному примерному варианту осуществления, взвешивающая функция по амплитуде может определяться на основе того, что каждый из коэффициентов ISF или LSF фактически влияет на огибающую спектра, посредством использования частотной информации и фактических спектральных амплитуд коэффициентов ISF или LSF. Согласно одному примерному варианту осуществления, дополнительная эффективность квантования может получаться посредством комбинирования взвешивающей функции по амплитуде и взвешивающей функции по частоте при принятии в рассмотрение характеристик восприятия и распределения формант частотной области. Согласно одному примерному варианту осуществления, так как используется фактическая амплитуда частотной области, информация огибающей всех частот может отражаться хорошо, и вес каждого из коэффициентов ISF или LSF может корректно выводиться.

Согласно одному примерному варианту осуществления, когда выполняется векторное квантование коэффициентов ISF или LSF, преобразованных из коэффициентов LPC, если важность каждого коэффициента является разной, может определяться взвешивающая функция, указывающая то, какой элемент является относительно более важным в векторе. В дополнение, чтобы улучшать точность кодирования, может определяться взвешивающая функция, способная обеспечивать больший вес части высокой энергии, посредством анализа спектра кадра, подлежащего кодированию. Высокая спектральная энергия указывает высокую корреляцию во временной области.

Описывается пример применения такой взвешивающей функции к функции ошибки.

Во-первых, если изменение входного сигнала является высоким, когда квантование выполняется без использования межкадрового предсказания, функция ошибки для поиска индекса кодовой книги посредством коэффициентов QISF может представляться посредством Уравнения 1 ниже. В противном случае, если изменение входного сигнала является низким, когда квантование выполняется с использованием межкадрового предсказания, функция ошибки для поиска индекса кодовой книги посредством коэффициентов QISF, может представляться посредством Уравнения 2. Индекс кодовой книги указывает значение для минимизации соответствующей функции ошибки.

(1)

(2)

Здесь, w(i) обозначает взвешивающую функцию, z(i) и r(i) обозначают входы модуля квантования, z(i) обозначает вектор, в котором среднее значение удалено из ISF(i) на фиг. 3, и r(i) обозначает вектор, в котором значение межкадрового предсказания